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Abstract. From a very-well-poised 6φ5 series formula we deduce a general
series expansion formula involving the q-gamma function. With this formula
we can give q-analogues of many Ramanujan-type series.

1. Introduction

In [10] Ramanujan listed 17 series expansions for 1/π without proof and the
proof of the first three was sketched in [9]. The Borwein brothers found the first
complete proof of all the 17 formulas in [2]. D.V. Chudnovsky and G.V. Chud-
novsky [3] proved several series representations of the Ramanujan’s independently
and established certain new series as well. Please see [1] for the history of the
Ramanujan-type series for 1/π. Recently, Liu [7, 8] established many series ex-
pansions for 1/π by using properties of the general rising shifted factorial and the
gamma function. In the recent paper [6], Guo and Liu supplied q-analogues of two
Ramanujan-type series for 1/π by using q-WZ pairs and some basic hypergeometric
identities. Motivated by the work of Liu [7, 8] and Guo and Liu [6] we shall estab-
lish q-analogues for Ramanujan-type series in this work. Our method is different
from that of Guo and Liu.

Throughout this paper we assume |q| < 1. Gosper [5] introduced q-analogues of
sinx and π :

sinq(πx) := q(x−1/2)
2 (q2−2x; q2)∞(q2x; q2)∞

(q; q2)2∞
and

πq := (1− q2)q1/4
(q2; q2)2∞
(q; q2)2∞

,

where (z; q)∞ is given by

(z; q)∞ =

∞∏
n=0

(1− zqn).

They satisfy the following relations:

lim
q→1

sinq x = sinx, lim
q→1

πq = π

and

(1.1) Γq2(x)Γq2(1− x) =
πq

sinq(πx)
qx(x−1),

where Γq(x) is the q-gamma function defined by
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(1.2) Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x.

From the definition of the q-gamma function we can see that

(1.3)
(qx; q)n
(1− q)n

=
Γq(x+ n)

Γq(x)
,

where n is a non-negative integer and (z; q)n is the q-shifted factorial defined as

(z; q)0 = 1, (z; q)n =

n−1∏
k=0

(1− zqk) for n ≥ 1.

We now extend the definition of (qx; q)n to any complex α :

(1.4) (qx; q)α =
Γq(x+ α)

Γq(x)
(1− q)α

and denote
(qx; q)α
(1− q)α

by (x|q)α. Then, for any non-negative integer n, we have

(x|q)n =

n−1∏
k=0

[x+ k]q

and

(x|q)−n =
Γq(x− n)

Γq(x)
=

(1− q)n

(qx−n; q)n
,

where [z]q is the q-integer defined by

[z]q =
1− qz

1− q
.

Our main aim of the present work is to establish the following general series
expansion.

Theorem 1.1. For any complex number α and Re(1 + a+ b+ c+ d) > 0 we have
∞∑
n=0

(1− q4n+2a+2α)(α|q2)a+n(β|q2)n−b(γ|q2)n−c(δ|q2)n−d
(1− q2)[n]q2 !(1 + α− β|q2)a+b+n(1 + α− γ|q2)a+c+n(1 + α− δ|q2)a+d+n

qAn

=
Γq2(1 + α− β)Γq2(1 + α− γ)Γq2(1 + α− δ)Γq2(2 + α− β − γ − δ)

Γq2(α)Γq2(1 + α− β − γ)Γq2(1 + α− β − δ)Γq2(1 + α− γ − δ)

× (β|q2)−b(γ|q2)−c(δ|q2)−d(2 + α− β − γ − δ|q2)a+b+c+d−1
(1 + α− β − γ|q2)a+b+c(1 + α− β − δ|q2)a+b+d(1 + α− γ − δ|q2)a+c+d

,

where A = 2(a+ b+ c+ d+ 1 + α− β − γ − δ) and [n]q! is given by

[0]q! = 1, [n]q! =

n∏
k=1

[k]q for n ≥ 1.

The next section is devoted to our proof of Theorem 1.1. In Section 3 we deduce
q-analogues of certain Ramanujan type series for 1/π. In the last section several
q-analogues of series expansions for π2 are also obtained.
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2. Proof of Theorem 1.1

Recall the following summation formula for the basic hypergeometric series [4,
(2.7.1)]:

(2.1) 6φ5

(
a, qa

1
2 ,−qa 1

2 , b, c, d

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d
; q,

aq

bcd

)
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

,

where
∣∣∣∣ aqbcd

∣∣∣∣ < 1 and 6φ5 is the basic hypergeometric series given by

6φ5

(
a1, a2, a3, a4, a5, a6
b1, b2, b3, b4, b5

; q, z

)
=

∞∑
n=0

(a1, a2, a3, a4, a5, a6; q)n
(q, b1, b2, b3, b4, b5; q)n

zn.

Replacing (q, a, b, c, d) by (q2, q2a, q2b, q2c, q2d) in (2.1) and employing (1.2) and
(1.3) we have
(2.2)
∞∑
n=0

(1− q4n+2a)Γq2(a+ n)Γq2(b+ n)Γq2(c+ n)Γq2(d+ n)

(1− q2)[n]q2 !Γq2(1 + a− b+ n)Γq2(1 + a− c+ n)Γq2(1 + a− d+ n)
q2n(1+a−b−c−d)

=
Γq2(b)Γq2(c)Γq2(d)Γq2(1 + a− b− c− d)

Γq2(1 + a− b− c)Γq2(1 + a− b− d)Γq2(1 + a− c− d)
.

It follows from (1.4) that

Γq2(a+ n+ α) = (α|q2)a+nΓq2(α),Γq2(n− b+ β) = (β|q2)n−bΓq2(β),

Γq2(n− c+ γ) = (γ|q2)n−cΓq2(γ),Γq2(n− d+ δ) = (δ|q2)n−dΓq2(δ),

Γq2(β − b) = (β|q2)−bΓq2(β),Γq2(γ − c) = (γ|q2)−cΓq2(γ),Γq2(δ − d) = (δ|q2)−dΓq2(δ),

Γq2(a+ b+ n+ 1 + α− β) = (1 + α− β|q2)a+b+nΓq2(1 + α− β),

Γq2(a+ c+ n+ 1 + α− γ) = (1 + α− γ|q2)a+c+nΓq2(1 + α− γ),

Γq2(a+ d+ n+ 1 + α− δ) = (1 + α− δ|q2)a+d+nΓq2(1 + α− δ),
Γq2(a+ b+ c+ 1 + α− β − γ) = (1 + α− β − γ|q2)a+b+cΓq2(1 + α− β − γ),

Γq2(a+ b+ d+ 1 + α− β − δ) = (1 + α− β − δ|q2)a+b+dΓq2(1 + α− β − δ),
Γq2(a+ c+ d+ 1 + α− γ − δ) = (1 + α− γ − δ|q2)a+c+dΓq2(1 + α− γ − δ)

and
Γq2(a+ b+ c+ d+ 1 + α− β − γ − δ)

= (2 + α− β − γ − δ|q2)a+b+c+d−1Γq2(2 + α− β − γ − δ).

Making the sunbstitutions: a → a + α, b → β − b, c → γ − c, d → δ − d in (2.2)
and then substituting the above identities into the resulting equation we can easily
deduce the result. This finishes the proof of Theorem 1.1. �

3. q-Analogues of Ramanujan type series for 1/π

In this section we employ Theorem 1.1 to deduce certain q-analogues of Ramanu-
jan type series for 1/π.
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Theorem 3.1. For Re(a+ b+ c+ d) > 0 we have
∞∑
n=0

(1− q4n+2a+1)(1/2|q2)a+n(1/2|q2)n−b(1/3|q2)n−c(2/3|q2)n−d
(1− q2)[n]q2 !(1|q2)a+b+n(7/6|q2)a+c+n(5/6|q2)a+d+n

q2(a+b+c+d)n

=
(1/2|q2)−b(1/3|q2)−c(2/3|q2)−d(1|q2)a+b+c+d−1

(1/3|q2)a+b+d(2/3|q2)a+b+c(1/2|q2)a+c+d
·

[1/6]q2(q4/3, q2/3; q2)∞q
1/4

(q1/3, q5/3; q2)∞πq
.

Proof. It follows from (1.1) that

Γ2
q2(1/2) = πqq

−1/4,(3.1)

Γq2(1/3)Γq2(2/3) =
πq

sinq(π/3)
q−2/9,

Γq2(7/6)Γq2(5/6) = [1/6]q2Γq2(1/6)Γq2(5/6)

=
πq

sinq(π/6)
[1/6]q2q

−5/36.

Then, by the definition of sinq,

(3.2)
Γq2(7/6)Γq2(5/6)

Γq2(1/3)Γq2(2/3)
=

sinq(π/3)

sinq(π/6)
[1/6]q2q

1/12 =
(q4/3, q2/3; q2)∞[1/6]q2

(q1/3, q5/3; q2)∞
.

Therefore, the result follows easily by setting (α, β, γ, δ) = (1/2, 1/2, 1/3, 2/3) in
Theorem 1.1 and applying the identities Γq(1) = 1, (3.1) and (3.2). �

Taking (a, b, c, d) = (1, 0, 0, 0) in Theorem 3.1 we can get

Example 3.1. We have
∞∑
n=0

(1− q4n+3)(1− q2n+1)(1/2|q2)2n(1/3|q2)n(2/3|q2)n
(1− q2)(1− q2n+2)([n]q2 !)2(7/6|q2)1+n(5/6|q2)1+n

q2n

=
[1/6]q2(q4/3, q2/3; q2)∞q

1/4

[1/3]q2 [2/3]q2 [1/2]q2(q1/3, q5/3; q2)∞πq
.

This series expansion for 1/πq can be regarded as a q-analogue of the series for
1/π :

∞∑
n=0

(4n+ 3)(2n+ 1)(1/2)2n(1/3)n(2/3)n
(n+ 1)(6n+ 1)(6n+ 5)(6n+ 7)(n!)2(1/6)n(5/6)n

=

√
3

6π
.

Putting (a, b, c, d) = (0, 0, 0, 1) in Theorem 3.1 we can deduce that

Example 3.2. We have

q2/3

(1 + q)[1/3]q2 [5/6]q2
−
∞∑
n=1

(1− q4n+1)(1/2|q2)2n(1/3|q2)n(2/3|q2)n−1
(1− q2)([n]q2 !)2(7/6|q2)n(5/6|q2)1+n

q2n

=
[1/6]q2

[1/3]2q2 [1/2]q2
· (q4/3, q2/3; q2)∞q

11/12

(q1/3, q5/3; q2)∞πq
.

This series expansion for 1/πq can be considered as a q-analogue of the series for
1/π :

1− 5

18

∞∑
n=1

(4n+ 1)(1/2)2n(1/3)n(2/3)n−1
(n!)2(7/6)n(5/6)1+n

=
5√
3π
.
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4. q-Analogues of series expansions for π2

In this section we use Theorem 1.1 to give q-analogues of some series expansions
for π2.

Theorem 4.1. For Re(a+ b+ c+ d− 1/2) > 0 we have

∞∑
n=0

(1− q4n+2a)(1|q2)a+n−1(1/2|q2)n−b(1/2|q2)n−c(1/2|q2)n−d
(1− q2)[n]q2 !(1/2|q2)a+b+n(1/2|q2)a+c+n(1/2|q2)a+d+n

q2(a+b+c+d)n−n

=
π2
q (1/2|q2)−b(1/2|q2)−c(1/2|q2)−d(1/2|q2)a+b+c+d−1

(1|q2)a+b+c−1(1|q2)a+b+d−1(1|q2)a+c+d−1q1/2

Proof. It can be dedeuced from Γq(x+ 1) = [x]qΓq(x) and Theorem 1.1 that

∞∑
n=0

(1− q4n+2a+2α)(α+ 1|q2)a+n−1(β|q2)n−b(γ|q2)n−c(δ|q2)n−d
(1− q2)[n]q2 !(1 + α− β|q2)a+b+n(1 + α− γ|q2)a+c+n(1 + α− δ|q2)a+d+n

qAn

=
Γq2(1 + α− β)Γq2(1 + α− γ)Γq2(1 + α− δ)Γq2(2 + α− β − γ − δ)
Γq2(α+ 1)Γq2(2 + α− β − γ)Γq2(2 + α− β − δ)Γq2(2 + α− γ − δ)

× (β|q2)−b(γ|q2)−c(δ|q2)−d(2 + α− β − γ − δ|q2)a+b+c+d−1
(2 + α− β − γ|q2)a+b+c−1(2 + α− β − δ|q2)a+b+d−1(2 + α− γ − δ|q2)a+c+d−1

.

Then the result follows readily from by setting (α, β, γ, δ) = (0, 1/2, 1/2, 1/2) in the
above identity and applying the identities Γq(1) = 1 and (3.1). �

Taking (a, b, c, d) = (1, 0, 0, 0) in Theorem 4.1 we can obtain

Example 4.1. We have
∞∑
n=0

(1 + q2n+1)qn

(1− q2n+1)2
=

π2
q

(1− q2)2q1/2
.

This series expansion for π2
q can be regarded as a q-analogue of the series for π2 :

∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

Setting (a, b, c, d) = (1, 1, 1, 0) in Theorem 4.1 we can derive

Example 4.2. We have
∞∑
n=0

(1 + q2n+1)q5n

(1− q2n−1)2(1− q2n+1)2(1− q2n+3)2
=
π2
q (1 + q + q2)q3/2

(1 + q2)(1− q2)6
.

This series expansion for π2
q can also be considered as a q-analogue of the series

for π2 :
∞∑
n=0

1

(2n− 1)2(2n+ 1)2(2n+ 3)2
=

3π2

256
.

Putting (a, b, c, d) = (1, 1, 1, 1) in Theorem 4.1 we can deduce
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Example 4.3. We have

(1 + q)q3

(1− q)5(1− q3)3
−
∞∑
n=1

(1 + q2n+1)q7n

(1− q2n−1)3(1− q2n+1)2(1− q2n+3)3

=
π2
q (1 + q + q2)(1 + q + q2 + q3 + q4)q5/2

(1 + q2)3(1− q2)8
.

This series expansion for π2
q is also a q-analogue of the series for π2 :

1

27
−
∞∑
n=1

1

(2n− 1)3(2n+ 1)2(2n+ 3)3
=

15π2

4096
.

Remark. Besides those formulas displayed in Theorems 3.1 and 4.1 and their con-
sequences, we can give a general series expansions for 1/π2

q by taking (α, β, γ, δ) =

(1/2, 1/2, 1/2, 1/2) in Theorem 1.1, from which many series expansions for 1/π2
q

can be deduced. We shall not display them out one by one in this work.
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