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In this paper I categorize and analyze the ‘constant Lagrangian’ model fits I made

of the complete SPARC database of 175 galaxies. Of the 175 galaxies, 45 allowed a

single fit rotation curve, so about 26 percent. Another 9 galaxies could almost be

plotted on a single fit. Then 30 galaxies could be fitted really nice on crossing dual

curves. The reason for the appearance of this dual curve, in its two versions, could

be given and related to the galactic constitution and dynamics. Another 25 galaxies

could be fitted on parallel transition dual curves. This appearance could also be

related to galactic dynamics and galactic mass distribution. Then there were the 19

multiple fit galaxies, complex extended galaxies, the complexities of which could be

analyzed on the basis of the 4 types of dual fits. In total 128 of the 175 galaxies could

be fitted and analyzed very well to reasonably well within the error margins. That

is a 73 percent success rate. This amazing result rules out stochastic coincidence as

an explanation of those fits. In my opinion, the success of the ‘constant Lagrangian’

approach indicates that the problem of the galaxy rotation curves can be solved on

the basis of the principle of conservation of energy.
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I. INTRODUCTION

In a recent preprint I introduced a ‘constant Lagrangian’ model for galactic dynamics

(de Haas, 2018b). In a few sequential preprints I went from a qualitative attempt at fitting

real rotational velocity curves using the proposed model, see (de Haas, 2018d,c), towards a

quantitative analysis by including the error bars of the measured velocity, (de Haas, 2018e,a).

In that last preprint I presented the analysis of the full set of 175 galaxies at the SPARC

database, as provided by (Lelli et al., 2016) in the file Rotmod-LTG.zip. That rotation

curve fitting result was presented in a non-categorized order, it just followed the order of

the alphabetic-numerical list. I subsequently categorizes the fitting curves according to the

fitting result. After having fit and categorized those 175 rotation curves, I realized that it

allowed me to go from a rather weak deductive to a more robust inductive justification of

the ‘constant Lagrangian’ model.

In this paper, after giving a somewhat renewed presentation of the ‘constant Lagrangian’

model, I present a further analysis of those 175 fits. I split the 175 galaxies in several

categories. The most significant group is the single fit category, galaxies that directly fit to

the model. Then there are four dual fit categories. Two with a crossover transition dual

fit and two with a parallel transition dual fit. The galaxies with three or more fits can by

analyzed using the four dual categories. At the end there is the rest category of galaxies

that defy simple fits and subsequent categorization, 27 percent in total. That means that

73 percent of the galaxies allowed for perfect to moderate analysis and explanation on the

basis of the constant Lagrangian model.

II. THE VIRIAL THEOREM IN TROUBLE ON THE GALACTIC SCALE.

In 1932 the Dutch astronomer Oort observed that the stars in the galactic vicinity of

the Sun are moving peculiarly fast, almost 8 times as fast as could be inferred from the

calculated Newtonian acceleration. Oort assumed that dark matter would be the cause of

this apparent difference, with ‘dark’ referring to ordinary matter not seen by us due to

various reasons (Oort, 1932).

In 1933 Dark Matter was mentioned as “dunkle Materie” in a paper by Zwicky. Fritz

Zwicky was studying the Coma Cluster of galaxies and found that his calculations for orbital
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acceleration and stellar mass within it was off by a large factor. He concluded that there

should be a much greater density of dark matter within the cluster than there was luminous

matter. Zwicky concluded that this constituted an unsolved problem (Zwicky, 1933). In

1937 Zwicky regarded his study on the Coma Cluster a test of Newton’s law of gravity on the

largest cosmological scale possible, by applying the virial theorem on a cluster of galaxies.

He also mentioned in his 1937 paper the possibility to test the virial theorem by applying it

to the rotational velocities of the individual stars in the separate galaxies. But he concluded

that this was technologically out of reach (Zwicky, 1937).

The breakthrough research of Rubin and Ford around 1970-1975 established beyond doubt

the outer rotational velocity curves of individual galaxies, which turned out to be flat (Rubin

et al., 1978). This was in conflict with velocity curves that resulted from the application of

the virial theorem to the luminous mass of these galaxies. Rubin and Ford cited colleagues

who suggested the existence of a large galactic halo of dark matter. In a 1980 paper pre-

senting further research they concluded that the form of the rotation curves implied that

significant non-luminous mass should be located at large distances beyond the optical galaxy.

The total mass of a galaxy should, for large distances, increase at least as fast as the distance

from the center (Rubin et al., 1980).

The third major evidence for Dark Matter was the gravitational lensing effect of clusters

of galaxies. The mass of stars and hot gas in clusters who collectively act as a gravitational

lens is too small to bend the light from the background galaxies as much as they actually

do. A large density of dark matter in the center of these cluster is needed to explain the

strength of the observed lensing effect (Koopmans et al., 2009).

In the course of decades it has become more and more clear that ordinary matter can’t

be the cause of those observed phenomena. That realization caused the term ‘dark matter’

to evolve into ‘Dark Matter’, with the capital letters indicating its elusive character. Today

it has been predominantly, but not unanimously, been accepted that non-baryonic particles

must exist in the calculated densities. A range of different astrophysical observations point

in this direction (The ATLAS Collaboration, 2018).
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III. MOND

One of the few non-particle approaches to the problem of Dark Matter is MOND or

MOdified Newtonian Dynamics. MOND started in 1983 with two seminal paper of Milgrom.

I quote from his papers:

All determinations of dynamical mass within galaxies and galaxy systems make

use of a virial relation of the form V 2 = MGr−1 where V is some typical velocity

of particles in the system, r is of the order of the size of the system, M is the mass

to be determined, and G is the gravitational constant. [...] It must have occurred

to many that there may, in fact, not be much hidden mass in the universe and

that the dynamical masses determined on the basis of the above virial relation

are gross overestimates of the true gravitational masses.(Milgrom, 1983b)

Instead of assuming the Newtonian theory to remain valid in and around galaxies, Mil-

grom modified Newtons second law by making inertia a function of acceleration (Milgrom,

1983b). Milgrom replaced mga = F by

mgµ

(
a

a0

)
a = F. (1)

With such a deviation only reveals itself for accelerations with a ≈ a0. When a� a0, µ ≈ 1

and the Newtonian regime reasserts itself. This resulted in the capacity to reasonably fit

most of the galaxy rotation curves and it lead to an intrinsic connection to the baryonic

Tully-Fisher relation as V 4
∞ = a0GM (Milgrom, 1983a).

The original Tully-Fisher relation is a relation between the luminosity of a spiral galaxy

and its, maximum, rotation velocity (Tully and Fisher, 1977). The physical basis of the

Tully-Fisher relation is the relation between a galaxy’s total baryonic mass and the velocity

at the flat end of the rotation curve, the final velocity. According to McGaugh both stellar

and gas mass of galaxies have to be taken into account in the relation that is referred to

as the Baryonic Tully-Fisher (BTF) relation. In 2005 McGaugh determined the baryonic

version of the LT relation as Md = 50v4
f , see (McGaugh, 2005). In this form, Md is expressed

in solar mass M� = 1, 99 ·1030 kg units and the final velocity of the galactic rotation velocity

curve vf is expressed in km/s. If we express the galactic mass in kg and the velocity in m/s

we get the total baryonic mass, final velocity relations in SI unit values as Mb = 1, 0 ·1020v4
f .
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In 1983, Milgrom interpreted the BTF relation as indicative of his proposed deviation from

Newtonian gravity, justifying his modification of Newtonian dynamics or MOND (Milgrom,

1983b). Using McGaug’s 2005 values in SI units, Milgrom’s presentation of the BTF relation

can be cast in the form v4
f = 1, 0 · 10−20Mb = Ga0Mb, resulting in an acceleration a0 =

1, 5 · 10−10 m/s2 in McGaug’s values. Milgrom hypothesized that this relation should hold

exactly, thus interpreting it as an inductively found law of nature, instead of looking at it as

just a coincidental empirical relation (Milgrom, 1983a). The resulting acceleration can be

written as 5 · a0 ≈ cH0, with the velocity of light c and the Hubble constant H0. According

to Milgrom, the deeper significance of this relation between this special galactic acceleration

and the Hubble acceleration should be revealed by future cosmological insights (Milgrom,

1983b).

IV. CLASSICAL LAGRANGIAN DYNAMICS

One problem with Milgrom’s MOND is that is rather asynchronous to modify gravity by

returning to Newton instead of starting by Einstein’s General Relativity. But in the stan-

dard cosmological General Relativity approach towards the galaxy rotation curve problem

the existence of Dark Matter is presumed from the beginning. The ‘constant Lagrangian’

model can be seen as an intermediate approach: it uses General Relativity concepts without

presuming from the start the existence of Dark Matter. This intermediate approach starts

with Lagrangian mechanics.

The classical Lagrangian equation of motion reads

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (2)

In classical gravitational dynamics I assume circular orbits with q̇ = v and q = r. The

Lagrangian itself is then given by L = K−V , with V the Newtonian potential gravitational

energy and K the kinetic energy. One then gets

d

dt

(
∂L

∂q̇

)
=
dp

dt
= F. (3)

The other part gives

∂L

∂q
= −dV

dr
, (4)
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so one gets Newton’s equation of motion in a central field of gravity

Fg = −dV
dr
. (5)

Further analysis of the context results in the identification of the Hamiltonian of the system,

H = K + V , as being a constant of the orbital motion and the virial theorem as describing

a relation between K and V in one single orbit but also between different orbits, given by

the relation 2K + V = 0.

The classical virial theorem has two main interpretations. The first one states that in

circular orbits, the centripetal force equals the gravitational force. This leads directly to the

scalar relation 2K = −V . The second one states that masses in collapsing orbits have to

dissipate half of the potential energy in order to resume a stable lower orbit because in such

a collapse from a higher stable orbit to a lower stable orbit, only half of the freed potential

energy can be transformed into kinetic energy.

On the galactic scale it is assumed that velocities are so low and gravitational fields are so

weak, that Newtonian mechanics suffices and not much of relativity is needed. The problem

with the rotational velocities of stars in galaxies and galaxies in cluster of galaxies is thus

supposed to be a Newtonian physics issue that can be dealt with in the dynamics described

above. The Dark Matter solution to the too fast rotational galactic velocities has two faces.

On the one hand one tries to describe the density distribution of Dark Matter, needed in

order to match the measurements with classical dynamics, specifically the virial theorem.

On the other hand one tries to identify the Dark Matter constituents, usually seen as an

out-of-the-box extension of the known Standard Model of particle physics.

V. A GEODETIC APPROACH OF GRAVITATIONAL ORBITS

If one tries to apply the concepts of General Relativity to the galaxy rotation problem and

related virial theorem, the notion of geodetic motion in General Relativity must be central.

The analysis can start in a semi-relativistic approach, by applying the classical Lagrangian

equation of motion to geodetic orbits. The most important aspect of geodetic motion in GR

is that it requires no force to move on a geodetic. This has important implications for the

Lagrangian equation of motion, because Fg = 0 on a geodetic. One gets

d

dt

(
∂L

∂q̇

)
= Fg = 0 (6)
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and as a consequence also

∂L

∂q
= −dL

dr
= 0. (7)

As a result, one has

L = K − V = constant (8)

on geodetic orbits. This is the theoretical core of the ‘constant Lagrangian’ model for galactic

dynamics. The difference between the classical approach and this paper, the additional

choice so to speak, is that I assume a model in which the Lagrangian is a constant for all

orbits of my model galaxy. That’s all. The effort in presenting this model is in the sequence

of introduction, interpretation, application and implication of this core ad-hoc assumption

of a constant L for all r on a model galaxy rotation curve.

The first observation is that I do not use the Einstein Equations but the classical La-

grangian equations on geodetic orbits. This choice has to be interpreted as an in between

approximation. Newton’s law of gravity follows from the Einstein Equations in case of a

weak field: Newton is the weak field limit of Einstein. But in Einstein’s time, the plane-

tary solar system was already assumed to be a weak gravitational field. More essentially is

the observation that an axiomatic theory of gravity that states that in geodetic motion, no

forces of gravity exist, only local curvature of space-time, will not magically transform into

an axiomatic theory that is all about forces of gravity in orbits around central masses, just

by slowly weakening the potential. The use of the classical Lagrangian has to be interpreted

as an in between these two conflicting axiomatic systems. I use Lagrange as the diplomatic

mediator between Newton and Einstein. The theoretical core of my model is breathtakingly

simple. The rest, it’s introduction, interpretation, application and implication, isn’t simple

at all.

Although the requirement that the force of gravity is zero on a geodetic orbit seems

obvious from a GR perspective, there is still dispute among the experts relative to this issue.

Relative to the geodetic precession or the de Sitter precession, discussion and opposite views

remain as to the role of the force of gravity in this effect. Some claim that the force of

gravity cannot have any role in it, others describe the geodetic precession as the sum of a

time-like Thomas precession due to the force of gravity and a Schouten precession due to

the curvature of three dimensional space (de Haas, 2014). Given this paradoxical situation

relative to a well established effect of General Relativity, it is by no means settled how
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to handle the requirement of having no gravitational force on a geodetic motion relative to

satellites orbiting the earth. So let alone relative to galactic orbits, where General Relativity

too had to presume the existence of Dark Matter.

The Lagrangian of the system as being the constant of the geodetic motion is used on a

daily basis by many of us because it is applied by GNSS systems for the relativistic correction

of atomic clocks in satellites. Let’s elaborate this a bit further. In General Relativity, the

proper time-rate dτ is defined through the metric distance ds as ds ≡ cdτ . The square

metric distance is defined through

ds2 ≡ gµνdx
µdxν . (9)

Given coordinate world time-rate dt, which is the time-rate of a standard clock at a position

where dτ = dt (in GR-Schwarzschild this implies a clock at rest at infinity), we get the

general
ds2

dt2
=
c2dτ 2

dt2
= gµν

dxµ

dt

dxν

dt
= gµνV

µV ν , (10)

with the geodesic four-vector velocity V µ. In this equation, dτ stands for the local proper

clock-rate of a clock in a geodetic orbit in a field of gravity and dt is the universal clock-rate.

Because of this interpretation of dt, the velocity V µ is the velocity as seen from a position

where dτ = dt. See for example (Singer, 1956), (Weinberg, 1972, p. 79), (Misner et al.,

1973, p. 1054-1055), (Straumann, 1984, p. 97), (Ohanian and Ruffini, 2013, p. 119).

In case of the Schwarzschild metric in polar coordinates, we have (Ruggiero et al., 2008)

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1 +

2Φ

c2

)−1

dr2 − r2dθ2 − r2sin2θdφ2. (11)

In case of a clock on a circular geodesic on the equator of a central non-rotating mass M we

have dr
dt

= 0, dθ
dt

= 0, sinθ = 1 and dφ
dt

= ω. We thus get

ds2

dt2
=
c2dτ 2

dt2
=

(
1 +

2Φ

c2

)
c2 − r2ω2 (12)

and
dτ 2

dt2
= 1 +

2Φ

c2
− r2ω2

c2
. (13)

With vorbit = rω we have
dτ 2

dt2
= 1 +

2Φ

c2
− v2

orbit

c2
. (14)
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So finally we get the GR result

dτ

dt
=

√
1 +

2Φ

c2
− v2

orbit

c2
(15)

with dτ as the clock-rate of a standard clock A in a geodetic orbit and dt as the ‘universal’

clock-rate G of a standard clock at rest in infinity, the only condition for which dτ = dt.

The result of Eqn. (15) is the basic relativistic correction used in GNSS clock frequencies,

with the first usually presented as the gravity effect or gravitational potential correction and

the second as the velocity effect or the correction due to Special Relativity (Ashby, 2002;

Hećimović, 2013; Delva and Lodewyck, 2013).

Given the classical definitions of K = 1
2
mv2

orbit and V = mΦ, we get

dτ

dt
=

√
1− 2L

U0

. (16)

All the satellites of a GNSS system are being installed on a similar orbit and thus syntonized

relative to one another because they share the same high and velocity and have constant

L and dτ
dt

on those orbits. But different GNSS systems, as for example GPS compared to

GALILEO, are functioning on different orbits with different velocities and those systems

aren’t syntonized relative to one another. This non-syntonization between satellites on

orbits with different heights and virial theorem connected velocities is an all to real technical

obstacle for the effort towards realizing an integration of the different GNSS systems into

one single global network. For satellites for which the virial theorem holds, the Lagrangian

isn’t a constant on orbits with different radii. Thus, with ∆L
∆r
6= 0, atomic clocks moving in

free fall on those different radii aren’t syntonized. For GNSS systems, the virial theorem

constitutes a problem, not an asset.

VI. A COMPLETELY SYNTONIZED MODEL GALAXY

Fundamental in the approach of this paper is to analyze gravity using relative frequency

shifts, and thus dτ
dt

, as one of the basic experimental inputs. Such a method is looming in

today’s geodesy. In modern gravitational geodesy scientists are investigating the relativistic

frequency shift as a new observable type for gravity field recovery (Mayrhofer and Pail,

2012). Driven by this development, modern geodesy is about to go through a change from the

Newtonian paradigm to Einstein’s theory of general relativity (Kopeikin et al., 2017). A new
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generation of atomic clock is the game changer for this new domain of chronometric geodesy,

and requires additional new techniques to be developed in the field of frequency transfer

and comparison (Delva and Lodewyck, 2013). The paradigm shift towards gravitational

divergence recovery is based on the principle of frequency comparison between two clocks

on different space-time locations in order to measure the frequency shift between them

(Delva and Lodewyck, 2013). The knowledge of the Earth’s gravitational field has often

been used to predict frequency shifts between distant clocks. In relativistic geodesy, the

problem is reversed and the measurement of frequency shifts between distant clocks now

provides knowledge of the gravitational field (Delva and Lodewyck, 2013). This reversal is

also present in my postulate of the ‘constant Lagrangian’ model. A constant Lagrangian

implies a zero divergence in the syntonization of atomic oscillators and thus an absence of

gravitational stress. A divergence in the Lagrangian implies a divergence in the time dilation

factor dτ
dt

and thus a non-zero gravitational stress.

The key to this paper’s approach is to extend this clock frequency perspective towards

gravity from geodesy to galaxies. When I connected

dτ 2

dt2
= 1 +

2Φ

c2
− v2

orbit

c2
= 1− 2L

U0

(17)

to the problem of the galactic rotation curve, I realized that the flat rotation curve implies

atomic clock syntonization in those areas. In those outer regions, the gravitational potential

can be assumed to be approximately zero and the velocity constant. This made me curious

as to the clock-rate status in the inner regions. It is intriguing to realize that you can jump

from orbit to orbit and still encounter a constant clock-rate on all the orbiting satellites you

encounter on an imaginary voyage through the outer regions of galaxies. Those flat rotation

rate zones are the GNSS engineer’s dream come true. This implies that precisely in those

regions where the classical virial theorem seems in trouble, L ' constant, not just in one

single orbit but also between different orbits.

It should be clear that for those geodetic orbits, the classical virial theorem, which in

its most essential form states that Fgravity = Fcentripetal, becomes meaningless because on

circular geodetics this reduces to the empty expression 0 = 0. From the energy perspective,

by what mechanism should masses in orbital collapse in the outer region of galaxies dissi-

pate half of the potential energy? It seems that the virial theorem isn’t fundamental, but in

need of a dissipative mechanism in order to assert itself. Without such a (thermo)dynamics,
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conservation of mechanical energy in orbital collapse could well be the rule, with as a conse-

quence that all the potential gravitational energy is transformed into orbital kinetic energy:

a ‘constant Lagrangian’ model.

In order to study the relativistic clock-rate behavior in the inner regions of galaxies, I

had to construct a model galaxy. My model galaxy is build of a model bulge with mass

M and radius R and a Schwardschild metric emptiness around it. The model bulge has

constant density ρ0 = M
V

= 3M
4πR3 and its composing stars rotate on geodetics in a quasi-solid

way. So all those stars in the bulge have equal angular velocity on their geodetic orbits,

with v = ωr. On the boundary between the quasi solid spherical bulge and the emptiness

outside of it, the orbital velocities are behaving smoothly. So the last star in the bulge and

the first star in the Schwarzschild region have equal velocities and potentials. I also assume

that the Newtonian potential itself is unchanged and unchallenged, remains classical in the

whole galaxy and its surroundings. Such a model galaxy doesn’t, for the moment, have a

SMBH in the center of its bulge and it only has some very lonely stars in the space outside

the bulge.

The gravitational potential in such a case is well known, see Fig.(1). If this sphere would

be in a quasi solid condition for which the classical virial theorem would hold, so 2K = −V ,

then on the boundary r = R we would have K = GM
2R

and L = K−V = 3GM
2R

. At the center

of the rotating sphere, K = 0 and we also have L = 3GM
2R

.

From r = 0 to r = R, the potential Φ increased as r2. The kinetic energy does the same

because v2 = ω2r2. One can conclude that they increase identical and that L = K − V is a

constant inside the quasi-solid sphere. We can write for the region from r = 0 to r = R

L

m
=
v2
orbit

2
+
GM

r
=

3GM

2R
= constant. (18)

As a result, inside such a model bulge, L is a constant of the motion, not only in one orbit

but also between orbits. All the clocks inside such a model bulge would be syntonized.

Thus, in the model galaxy that I am about to construct, we have L = constant inside the

model bulge and we have L = constant in the outer regions where the rotational velocity

curve flattens and the Newtonian potential turns negligibly small. So let’s be bold and

declare L = K − V = constant in the entire galaxy, without changing the Newtonian

potential. What would be the implications?
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FIG. 1. The potential inside and out of a model bulge

We would get K = L+ V and L = V (r = 0) so for the region 0 ≤ r ≤ R we get

v2
orbit =

GM

R
· r
R

(19)

and outside the model bulge, where R ≤ r ≤ ∞, we have

v2
orbit =

3GM

R
− GM

r
. (20)

In Fig.(2) I sketched the result, with −V = +Kescape.

From the perspective of a free fall Einstein elevator observer, the free fall on a radial

geodetic from infinity towards the center of the bulge, the other free fall tangential geodetics

seem to abide the law of conservation of energy, because the escape kinetic energy plus

the orbital kinetic energy is a constant on my model galaxy with galactic constant L. An

Einstein elevator system with test mass m that would be put in an orbital collapse situation,

magically descending from orbit to orbit in a process in thermodynamic equilibrium, would

have constant total kinetic energy, from the radial free fall perspective. This can be expressed

as L = Korbit − V = Korbit +Kescape = Kfinal.
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FIG. 2. The square of the orbital velocity profile in the model galaxy with L = constant.

Such a model galaxy would also be a GNSS engineer’s dream come true because the whole

model galaxy is in one single syntonized mode, a clock-rate halo or time-bubble, defined by

dτ

dt
=

√
1− 2L

U0

. (21)

Given the Baryonic Tully-Fisher relation in Milgrom’s version v4
final = Ga0M with 2πa0 ≈

cH0, with a0 as Milgrom’s galactic minimum acceleration and H0 as the Hubble constant,

we get as a galactic clock-rate fix

dτ

dt
=

√
1− 2L

U0

=

√
1−

v2
final

c2
=

√√√√
1−

√
v4
final

c4
= (22)√

1−
√
Ga0M

c4
=

√
1−

√
GH0M

2πc3
=

√
1−

√
M

2πMU

, (23)

in which I used L = 3GM/R = Kfinal = 1
2
mv2

final and MU = c3

GH0
. This last constant can
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be referred to as an apparent mass of the Universe, a purely theoretical number constant,

see (Mercier, 2015).

In a model Universe, this would imply that my model galaxy would realize a proper time

bubble with clock-rate dτ relative to the universal clock-rate dt in proportion to the masses

of galaxy M and Universe MU . In the theoretical environment of my model galaxy, the Bary-

onic Tully-Fisher relationship implies that the galactic clock-rate is fixed through the mass

of my model galaxy and that this fix is a cosmological one. So what is a universal accelera-

tion minimum a0 in MOND can be interpreted as a universally correlated (through MU) but

still local (through M) clock-rate syntonization in my model galaxy geodetic environment.

VII. GALAXIES WITH A SINGLE FIT ROTATION CURVE

Having determined the model galactic velocity rotation curve based on the Lagrangian

as a galactic constant of orbital motion, the question is to what extend real galaxies can

be modeled in this way. In my Lagrangian approach I analyze the plot of v2
orb, in (km/s)2

against r, in kpc. This in contrast to the usual rotation curves where vorb, in (km/s) is

plotted against r, in kpc. In the Lagrangian approach, the energies, not the velocities, are

primary.

In each plot the experimental values are given in red stars with vertical error bars and

the theoretical model values in black circles. The fitting plot is with one single fit for M , in

units of 1010Msolar, and R, in units of kpc. The most important cut in the model is the

change from the model bulge to the model empty space around it, which happens at the

chosen value for R. In the model bulge, V 2
orb ∝ r2, outside the model bulge V 2

orb ∝ −r−1.

In this section, I use the SPARC database, including the error margins, as provided

by (Lelli et al., 2016). This database functions as a random set relative to my model. I

analyzed, fitted, the full set of 175 galaxies at the SPARC database, as provided by (Lelli

et al., 2016) in the file Rotmod-LTG.zip. The SPARC website also provides a luminosity

and mass distribution analysis of those 175 galaxies. It is to the reader to compare the

results of my fits with the surface brightness and mass distribution graphs of SPARC (from

the MassModels-LTG.zip file). As an inductive first indication, the fits of this database

shows that, at least, huge stretches of almost all galaxy rotation curves can be plotted on a

constant Lagrangian curve.
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Of the 175 galaxies, 45 allowed a single fit rotation curve, so about 25 percent. This

amazing result rules out stochastic coincidence as an explanation of those fits. Relative to

the model, those 175 galaxies were a random set. The restrictions for a single fit (of almost

all measurements) within the error margins are such that a 25 percent positive match rules

out the possibility of a coincidental correlation without any causation. In the next pages I

present 8 selected galaxies of the 45 with a nice single fit. In Appendix A, the rest of the 45

single fits are given. All the plots are produced in Microsoft Excel, which for a High School

teacher is the standard available software.

In the results of Fig.(3) and Fig.(4) the three aspects of the model curve are clearly

present. First the model bulge patter is clearly present in the ascending parabolic part of

the curve. This part of the model is classical because it combines the virial theorem and

the constant Lagrangian. In my model, there shouldn’t be need for any Dark Matter inside

the bulge, because the behavior is purely classical. Then secondly the shift from bulge to

free space as a continuous increasing function instead of the abrupt decrease as would be

expected classically with the virial theorem. Thirdly is the type of ascending towards a

maximum. This part of the graph is more clearly visible in Fig.(6).

Whatever the theory applied, these single fit galaxies have realized a constant Lagrangian

structure and are syntonized over the entire rotation curve. This result is a consequence of

the fit and independent of my justifications of the model. One should realize the consequence:

if we were able to launch GNSS satellites in orbit over the entire rotation curve of those

galaxies, all the atomic clocks in those standard satellites would be syntonized. If we could

express the degree of syntonization on a galactic velocity curve in terms of entropy, these

single fit galaxies reach the lowest possible time-like entropy because they achieve the highest

order as to the syntonization of their clocks.

If we examen the surface brightness and mass distribution graphs of these galaxies, (from

the MassModels-LTG.zip file), there is one dominant denominator: with a few exceptions,

the measured rotation curves of these galaxies do not extend beyond the measured range

of the surface brightness. The four exceptions are D564-8, UGC04483, UGC00634 and

UGC08490.
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VIII. THE NON-SINGLE FIT GALAXIES

Some 116 galaxies of the 175 could be categorized as ‘dual fit’, with the remark that it

also contains a rest category with a rotation ‘curve’ that was actually too chaotic or too

partial to be fit at all.

A. Almost single fit galaxies

The first category in the dual fit galaxies are the ones that almost allowed a single fit, but

where the error margins prevented such a decision. These ‘deviations’ from a single model

curve presented itself at the bulge part closest to the center of those galaxies. See Fig.(9)as

an example. There are 9 galaxies in this category. See Appendix B.
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B. Abrupt transition crossover dual fit galaxies

The second category in the dual fit galaxies are the ones that have an abrupt transition

from one fit to the next. These abrupt transitions from a one model curve to the next model

curve mostly occurred. See Fig.(67) as an example. There are 30 galaxies in this category.

See Appendix C. In many cases, the abrupt transition is corresponding to a change in the

composition of the galaxy. For example the ending of a strong surface brightness and the

beginning of the gas filled outer regions of the galaxy.

The abrupt transitions mainly come in two types, upwards crossing over from below

as in Fig.(67) or right corner crossing over from the left as in Fig.(84). In the first case,

the galaxy’s time-rate shifts to a higher frequency, in the second case it shifts to a lower

frequency. The frequency shifts are rather abrupt, effectively splitting these galaxies in two

clock-rate time zones.

1. Upwards abrupt crossover transition

In the example of Fig.(67), the crossover coincides with the new R2, so it marks a new

end of the ‘bulge’ or the beginning of a new ‘outside the bulge’ area. The additional 21

galaxy fits of this type can be found in Appendix C 1. In the velocity rotation curves of

SPARC, the two zones are also recognizable, but not so distinctly as in the squared velocity

rotation curves, especially when fitted along constant Lagrangian curves.

In the upwards abrupt transition, the rotation curve starts of as a model galaxy including

a model bulge ending at R1 with inside mass M1 and an outside area where the virial theorem

seems invalidated and the constant Lagrangian alone determines the shape of the curve. In

the model galaxy there is by definition only an insignificant amount of mass outside the

model bulge but in real galaxies the mass outside the bulge can be much more than the

mass of the bulge, as is the case for galaxies with a substantial disk.

My interpretation of the upwards abrupt transition is that the galaxies dynamics allowed

for or favored a sudden reset because the upward crossover happens to coincide with the new

bulge radius R2, identifying a higher mass M2 inside R2. The additional mass outside R1

first follows the model curve beyond R1 but eventually the accumulated new mass disrupts

the initial ‘constant Lagrangian’ curve. But the model curve doesn’t break down, it just
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resets itself by defining a new bulge with radius R2 which includes all the additional mass

into M2. It is as if a thin spherical shell with a high density mass M2 −M1 appears at R2,

causing this abrupt transition.

Because the two constant Lagrangian curves co-define atomic clock-rate frequencies, this

crossover partitions the galaxy in two distinct clock-rate zones or ‘time bubbles’. It results

in a lower atomic frequency or clock-rate time-bubble inside a higher atomic frequency or

clock-rate time-bubble.
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FIG. 10. NGC0247

2. Right corner abrupt crossover transition

In the example of Fig.(11), the crossover coincides with the end of the model bulge at

R1. The additional 7 galaxy fits of this type can be found in Appendix C 2. What seems

to happens here is that the initial model bulge is being build up but then proves incapable

of installing its own ‘constant Lagrangian’ curve or clock-rate time bubble outside its bulge

defined by M1 and R1. That failure doesn’t result in a recourse to the virial rotation curve

but to a ‘constant Lagrangian’ curve defined by a smaller model bulge inside the original

model bulge. This smaller model bulge has radius R2 and mass M2. So in this case the

bulge is abruptly reset to a smaller version.
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This type of crossover also partitions the galaxy in two distinct clock-rate zones or ‘time

bubbles’. Now it results in a higher atomic frequency or clock-rate time-bubble inside a

lower atomic frequency or clock-rate time-bubble.
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FIG. 11. KK98-251
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C. Non-crossover, parallel transition dual fit galaxies

This subsection contains 25 galaxies. It can be devided in two very different subsections.

1. Non-crossover upwards transition dual fit galaxies

This subsection contains 9 galaxies. In the example of Fig.(12), a typical galaxy for this

category is given. See Appendix D 1 for the remaining 8 galaxies of this subsection. It is as

if the galaxy is drifting towards a higher frequency on a higher constant Lagrangian before

settling for a new constant curve. This might be related to the appearance of extra mass

in the transition zone. In these zones of these galaxies, the transition to a higher constant

Lagrangian model curve seems to follow the addition of mass instead of a sudden shift. The

settlement of the measured velocity curve on a new and higher model curve might then

happen when no significant amount of mass is added any longer. This transition should

then be read as indicating a continuous and substantial increase of the amount of galactic

mass that is added to the effective model bulge.
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2. Non-crossover downwards transition dual fit galaxies

This subsection contains 16 galaxies. In the example of Fig.(13) a typical example is given.

The characteristic of this subtype is that is mainly occurs in the larger scale velocity curves,

roughly in between 10kpc and 100kpc. See Appendix D 2 for the remaining 15 galaxies

of this subsection. The galaxies of this category drift slowly on a large scale, ' 10kpc,

dimension downwards until a new upwards moving constant Lagrangian curve is found. The

direction of the drift implies that from orbit to orbit energy is being or has been dissipated

in a virial like way. These downward drift zones should therefore show a thermodynamically

higher activity than the surrounding constant Lagrangian zones. Those zones should be the

more turbulent zones of those galaxies because with a non-zero ∆L
∆r

, the Newtonian force

of gravity Fg should also be non-zero in that zone and matter should not be moving on

geodetic orbits. It should be a zone with non-zero gravitational stress between orbits. But

because the galaxies almost always achieve to return to a non-virial constant Lagrangian

curve, a purely Newtonian regime should not be expected in such zones. Those zones might

be characterized as drifting in between an Einsteinian dynamics and a Newtonian dynamics,

because the Lagrangian isn’t a constant so gravitational stresses should be expected but the

drifting down seems too slow for a full reaffirmation of the virial theorem.
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D. Triple fit galaxies and beyond

This subsection contains 19 galaxies. In the example of Fig.(14) a typical galaxy in this

category is given. See Appendix E for the remaining 18 galaxies of this subsection. The

galaxy NGC5371 is chosen because of its small error margins. Those small margins greatly

reduce the freedom of interpretation while fitting the experimental curve. Most of these

galaxies have rotation curves that reach beyond 50kpc. The characteristic of this subtype

is that the rotation curves can be analyzed as a row of dual rotation curves. As such, these

rotation curves do not need additional interpretation beyond the conclusion that they are

extended and complicated but still posses large stretches that can be fitted on constant

Lagrangian curves. The shift from one curve to another is not a failure of the ‘constant

Lagrangian’ model but instead reveals internal dynamics of the galaxy. That is similar to

how paradigm shifts work. One can see from the first fit that this galaxy has a strong small

bulge that dominates the rotation curve up to 7.5kpc. Then the additional mass of the disk

that was building up disrupts this first fit and a second fit is installed, dominated by the

mass of bulge and disk. This fit looses its grip after 20kpc, when the luminosity fades and at

the same time a lot of H1 gas is added. In between 25kpc and 30kpc, this galaxy is probably

gravitationally and thermodynamically highly active because the measured rotation curve

is dropping, which implies that in that region, gravitational energy has been and/or is being

dissipated. Then from 35kpc and beyond, the gas clouds in that region should be less

active again, allowing them to remain on a constant Lagrangian curve again. Interesting

in this galaxy is the interrelation between the first shift and the third fit, they have the

same R. Another observation is the fact that the description of the subsequent curves,

their justification, can be entirely formulated using the baryonic, observable mass of that

galaxy. If the ‘constant Lagrangian’ postulate could be formulated as being nothing but

the conservation of energy in disguise, active in those situations where virial dissipation

of gravitational energy during orbital collapse isn’t possible or opportunistic, then a ‘Dark

Matter’ hypothesis would be completely superfluous for the explanation of galaxy rotation

curves. In the analysis of the fit of galaxy NGC5371 I made extensive use of the surface

brightness and mass model of the SPARC database.
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E. The rest of the fitted galaxies (the almost no-fits)

This category contains 47 galaxies. For these 47 galaxies, a partial fit was almost always

possible. For UGC08286 it might have been better not to present a fit at all, see Fig.(15).

See the appendix for the rest of the galaxies of this category. Most of the galaxies in this

section could be appointed to one of the previous categories but not without the cost of

seeming over eager to impose order, even when disorder dominates. This means that 27

percent of the galaxies couldn’t be easily put into on of the proposed categories.

Only 16 of these galaxies where so chaotic that any fit might seem appropriate. At least 25

of them could without to much imagination, but at the cost of significantly less error margin

rigor, be categorized into one of the previous sections. The scientific integrity demands that

when the SPARC database of 175 galaxies are subjected to an independent model, that

the ‘failures’ and the difficulties to model reality will be recognized as such. Thus, the rest

category of about 47 galaxies has about the same weight as the single fit category of about

45 galaxies. That doesn’t change the fact that statistically these two numbers should be

vastly different if the ‘constant Lagrangian’ model had no connection to reality what so ever.

All the galaxies of this category are presented in the appendix with proposed best fit. It is
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up to the reader to decide to what extend these fits are product of my imagination and to

what extend forced by the measured velocities with their respective error margins.
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IX. CONCLUSION

The least daring conclusion of this paper is that complete to huge stretches of galaxy

rotation curves can be effectively plotted on constant Lagrangian curves. On these stretches

atomic clocks are highly syntonized, creating effective time-rate zones and bubbles.

Of the 175 galaxies, 45 allowed a single fit rotation curve, so about 26 percent. Another

9 galaxies could almost be plotted on a single fit. Then 30 galaxies could be fitted really

nice on crossing dual curves. The reason for the appearance of this dual curve, in its two

versions, could be given and related to the galactic constitution and dynamics. Another 25

galaxies could be fitted on parallel transition dual curves. This appearance could also be

related to galactic dynamics and galactic mass distribution. Then there were the 19 multiple

fit galaxies, complex extended galaxies, the complexities of which could be analyzed on the

basis of the 4 types of dual fits. In total 128 of the 175 galaxies could be fitted and analyzed

very well to reasonably well within the error margins. That is a 73 percent success rate.
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This amazing result rules out stochastic coincidence as an explanation of those fits. Relative

to the model, those 175 galaxies were a random set.

In my opinion, the success of the ‘constant Lagrangian’ approach indicates that the prob-

lem of the galaxy rotation curves can be solved on the basis of the principle of conservation

of energy. Inside a model bulge, thermodynamic and stellar processes allow for a side by

side existence of the virial theorem and the constant Lagrangian condition. Outside the

model bulge, orbital collapse conditions are mostly such that these conditions do not allow

the collapsing matter to dissipate half of the gravitational energy. This invalidates the virial

theorem, which is then replaced by the constant Lagrangian condition. From a radial free

fall perspective, the last condition is just a conservation of energy expression. From a Gen-

eral Relativity perspective, a constant Lagrangian condition implies a zero force of gravity

and that in turn means that a metric approach is allowed and needed. But on stretches

of galactic curves where the Lagrangian isn’t a constant from orbit to orbit, gravitational

stresses are present and the application of General Relativity should be expected to meet

its limitations. Those regions can be seen as intermediates between Newton and Einstein.

That might also be the reason for the partial successes of MOND.
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Appendix A: The additional single fit selection.
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FIG. 16. CamB
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FIG. 17. D512-2
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Appendix B: The almost single fit selection.
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Appendix C: Abrupt transition crossover dual fit galaxies

1. Upwards abrupt crossover transition
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FIG. 61. D631-7
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FIG. 77. UGC07399
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FIG. 79. UGC07866
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FIG. 81. UGC12732
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2. Right corner abrupt crossover transition
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FIG. 83. DDO064
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FIG. 84. ESO563-G021
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FIG. 85. F563-V1
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FIG. 87. IC4202
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FIG. 90. F563-1
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Appendix D: Non-crossover, parallel transition dual fit galaxies

1. Non-crossover upwards transition dual fit galaxies

-5000

0

5000

10000

15000

20000

-5 0 5 10 15 20

V
^

2
 (

k
m

^
2

/s
^

2
)

r (kpc)

F568-V1 fit; M1= 0.159 1010 M ; R1= 1.7kpc; M2= 0.106 1010 M ; R2= 1 kpc 

Measured v^2 Fit 1 of V^2 Fit 2 of V^2

FIG. 92. F568-V1
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FIG. 93. NGC0055
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FIG. 96. UGC06446
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2. Non-crossover downwards transition dual fit galaxies
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FIG. 99. F563-1

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7

V
^

2
 (

k
m

^
2

/s
^

2
)

r (kpc)

NGC 2366 fit; M1= 0.057 1010 M ; R1= 1.8kpc; 

M2= 0.0595 1010 M ; R2= 2.3kpc 

Measured v^2 Fit 1 of V^2 Fit 2 of V^2

FIG. 100. NGC2366
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FIG. 101. NGC2841
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FIG. 103. NGC3992
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FIG. 104. NGC4088
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FIG. 105. NGC4217
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FIG. 107. NGC5985
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FIG. 109. NGC7331
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FIG. 111. UGC07151
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FIG. 112. UGC07608
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Appendix E: Triple fit galaxies and beyond
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FIG. 114. NGC0024
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NGC0289 fit; M1= 0.131 1010 M ; R1= 0.5kpc; 
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FIG. 115. NGC0289
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NGC1003 fit; M1= 0.51 1010 M ; R1= 4.1kpc; 
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FIG. 116. NGC1003
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Measured v^2 Fit 1 of V^2 Fit 2 of V^2 Fit of V^2

FIG. 117. NGC1090
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FIG. 118. NGC2403
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NGC2915 fit; M1= 0.21 1010 M ; R1= 2kpc; 
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FIG. 119. NGC2915
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FIG. 120. NGC4013
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NGC5585 fit; M1= 0.0031 1010 M ; R1= 0.23 kpc; M2= 0.0204 1010 M ; R2= 0.85kpc; 
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FIG. 121. NGC5585
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NGC6015 fit; M1= 0.11 1010 M ; R1= 0.8 kpc; M2= 0.54 1010 M ; R2= 2kpc; 
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FIG. 122. NGC6015
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FIG. 123. NGC6503
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NGC6946 fit; M1= 0.178 1010 M ; R1= 0.9kpc; M2= 1.105 1010 M ; R2= 2.9kpc; 
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FIG. 124. NGC6946
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FIG. 125. UGC02916
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FIG. 126. UGC02953
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FIG. 127. Zooming in on UGC02953
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FIG. 128. UGC06787
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UGC08699 fit; M1= 0.099 1010 M ; R1= 0.28 kpc; 

M2= 1.49 1010 M ; R2= 3.8kpc; M3= 1.5 1010 M ; R3= 5kpc    
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FIG. 129. UGC08699
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FIG. 130. UGC09133
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UGC09133 fit; M1= 0.0121 1010 M ; R1= 0.02 kpc; M2= 0.401 1010 M ; R2= 0.6kpc; 
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FIG. 131. Zooming in on UGC09133
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FIG. 132. UGC11455
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UGC11914 fit; M1= 0.033 1010 M ; R1= 0.05 kpc; 
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FIG. 133. UGC11914
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Appendix F: Rest ‘dual’ fit galaxies
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DDO154 fit; M1= 0.0037 1010 M ; R1= 0.6kpc; M2= 0.05 1010 M ; R2= 2kpc 
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FIG. 134. DDO154
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DDO168 fit; M1= 0.06 1010 M ; R1= 1.7kpc;  
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FIG. 135. DDO168
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ESO444-G084 fit; M1= 0.0038 1010 M ; R1= 0.3kpc; 

M2= 0.054 1010 M ; R2= 1.3kpc 

Measured v^2 Fit 1 of V^2 Fit 2 of V^2

FIG. 136. ESO444-G084
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F567-2 fit; M1= 1.6 1010 M ; R1= 3.5kpc; 

M2= 0.033 1010 M ; R2= 2.3kpc 

Measured v^2 Fit 1 of V^2 Fit 2 of V^2

FIG. 137. F567-2
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FIG. 138. F568-3
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FIG. 139. F583-4

97



0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12

V
^

2
 (

k
m

^
2

/s
^

2
)

r (kpc)

NGC0300 fit; M1= 0.041 1010 M ; R1= 1.1kpc; M2= 0.151 1010 M ; R2= 2kpc 
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FIG. 140. NGC0300
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NGC0801 fit; M1= 0.738 1010 M ; R1= 1.28kpc; 

M2= 0.185 1010 M ; R2= 0.5kpc 
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FIG. 141. NGC0801
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NGC0891 fit; M1= 0.206 1010 M ; R1= 0.6kpc; 

M2= 0.0118 1010 M ; R2= 0.03kpc 
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FIG. 142. NGC0891
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NGC1705 fit; M1= 0.0073 1010 M ; R1= 0.18kpc; 

M2= 0.00211 1010 M ; R2= 0.05kpc 
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FIG. 143. NGC1705
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NGC 2903 fit; M1= 0.175 1010 M ; R1= 0.7kpc; M2= 0.56 1010 M ; R2= 1.2kpc 
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FIG. 144. NGC2903
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NGC2955 fit; M1= 0.206 1010 M ; R1= 0.51kpc; M2= 0.55 1010 M ; R2= 0.9kpc 
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FIG. 145. NGC2955
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NGC2998 fit; M1= 1 1010 M ; R1= 2kpc; M2= 0.287 1010 M ; R2= 0.8kpc 
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FIG. 146. NGC2998
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NGC3521 fit; M1= 0.133 1010 M ; R1= 0.4kpc; M2= 0.198 1010 M ; R2= 0.5kpc 
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FIG. 147. NGC3521
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NGC3726 fit; M1= 0.54 1010 M ; R1= 2.9kpc; M2= 0.27 1010 M ; R2= 1.2kpc 
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FIG. 148. NGC3726

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35 40

V
^

2
 (

k
m

^
2

/s
^

2
)

r (kpc)

NGC3769 fit; M1= 0.325 1010 M ; R1= 2.2 kpc; M2= 0.133 1010 M ; R2= 1.2kpc 
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FIG. 149. NGC3769
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NGC3893 fit; M1= 0.155 1010 M ; R1= 0.7kpc; M2= 0.056 1010 M ; R2= 0.2kpc 
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FIG. 150. NGC3893
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NGC3953 fit; M1= 0.692 1010 M ; R1= 1.8kpc; 

M2= 0.0779 1010 M ; R2= 0.2 kpc 
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FIG. 151. NGC3953
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NGC4010 fit; M1= 0.336 1010 M ; R1= 2.8kpc; M2= 1010 M ; R2= kpc 
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FIG. 152. NGC4010
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NGC4051 fit; M1= 0.29 1010 M ; R1= 1.3kpc; M2= 0.575 1010 M ; R2= 2.7kpc 
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FIG. 153. NGC4051
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NGC 4100 fit; M1= 1.15 1010 M ; R1= 2.9kpc; M2= 0.1 1010 M ; R2= 0.5kpc 
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FIG. 154. NGC4100
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NGC4138 fit; M1= 0.335 1010 M ; R1= 1kpc; M2= 0.81 1010 M ; R2= 4kpc 
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FIG. 155. NGC4138
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NGC4157 fit; M1= 0.975 1010 M ; R1= 2.4kpc; 

M2= 0.513 1010 M ; R2= 1.85kpc 
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FIG. 156. NGC4157
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NGC4559 fit; M1= 0.045 1010 M ; R1= 0.8kpc; M2= 0.263 1010 M ; R2= 2.1kpc 
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FIG. 157. NGC4559
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NGC5005 fit; M1= 0.097 1010 M ; R1= 0.2kpc; M2= 0.4 1010 M ; R2= 0.7kpc 
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FIG. 158. NGC5005
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NGC5055 fit; M1= 0.672 1010 M ; R1= 1.75kpc; M2= 0.134 1010 M ; R2= 0.55kpc 
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FIG. 159. NGC5055
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NGC5907 fit; M1= 0.607 1010 M ; R1= 1.4kpc; M2= 3.04 1010 M ; R2= 7.5kpc 
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FIG. 160. NGC5907
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NGC6195 fit; M1= 0.89 1010 M ; R1= 1.3kpc; 

M2= 1.35 1010 M ; R2= 2.5kpc 
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FIG. 161. NGC6195
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NGC7814 fit; M1= 0.0836 1010 M ; R1= 0.2kpc; 

M2= 0.255 1010 M ; R2= 0.7 kpc 
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FIG. 162. NGC7814
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PGC51017 fit; M1= 0.00017 1010 M ; R1= 0.05kpc; 

M2= 0.00144 1010 M ; R2= 0.5kpc 
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FIG. 163. PGC51017
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UGC128 fit; M1= 0.426 1010 M ; R1= 3.5kpc; M2= 0.744 1010 M ; R2= 5kpc 
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FIG. 164. UGC128
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UGC00191 fit; M1= 0.045 1010 M ; R1= 1.05kpc; M2= 0.1318 1010 M ; R2= 2.1kpc 
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FIG. 165. UGC00191
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UGC02259 fit; M1= 0.101 1010 M ; R1= 1.4kpc; M2= 0.167 1010 M ; R2= 2.2kpc 
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FIG. 166. UGC02259
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UGC02487 fit; M1= 10.2 1010 M ; R1= 7.5kpc; M2= 9.3 1010 M ; R2= 10kpc 
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FIG. 167. UGC02487
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UGC02885 fit; M1= 3.7 1010 M ; R1= 5kpc; M2= 11.2 1010 M ; R2= 14kpc 
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FIG. 168. UGC02885
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UGC03205 fit; M1= 0.92 1010 M ; R1= 1.7kpc; M2= 0.23 1010 M ; R2= 0.6kpc 
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FIG. 169. UGC03205
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UGC03546 fit; M1= 0.039 1010 M ; R1= 0.1kpc; M2= 0.24 1010 M ; R2= 0.8kpc 
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FIG. 170. UGC03546
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UGC05716 fit; M1= 0.021 1010 M ; R1= 0.83kpc; M2= 0.0444 1010 M ; R2= 1kpc 
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FIG. 171. UGC05716
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UGC05721 fit; M1= 0.0164 1010 M ; R1= 0.33kpc; 
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FIG. 172. UGC05721
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UGC05764 fit; M1= 0.0277 1010 M ; R1= 0.9kpc; 
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Measured v^2 Fit 1 of V^2 Fit 2 of V^2

FIG. 173. UGC05764
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FIG. 174. UGC05986
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FIG. 175. UGC06614
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FIG. 176. UGC06973
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FIG. 177. UGC07603
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FIG. 178. UGC07690
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FIG. 179. UGC12506
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