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Abstract

We revisit the construction of diffeomorphic but not isometric solutions to the
Schwarzschild metric. The solutions relevant to Black Holes are those which require
the introduction of non-trivial areal-radial functions that are characterized by the
key property that the radial horizon’s location is displaced continuously towards
the singularity (r = 0). In the limiting case scenario the location of the singularity
and horizon merges and any infalling observer hits a null singularity at the very
moment he/she crosses the horizon. This fact may have important consequences for
the resolution of the firewall problem and the complementarity controversy in black
holes. Next we show how modified Newtonian dynamics (MOND) can be obtained
from solutions to Finsler gravity, and which in turn, can also be modeled by metrics
which are diffeomorphic but not isometric to the Schwarzschild metric. The key
point now is that one will have to dispense with the asymptotic flatness condition, by
choosing an areal radial function which is finite at r =∞. Consequently, changing
the boundary condition at r =∞ leads to MONDian dynamics. We conclude with
some discussions on the role of scale invariance and Born’s Reciprocal Relativity
Theory based on the existence of a maximal proper force.

Keywords : General Relativity; Black Holes; Finsler Geometry; MOND; Dark Matter.
PACS : 04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly

1



1 Introduction : Diffeomorphic Metrics to the

Schwarzschild Solution, Firepoints and Firewalls

The static spherically symmetric (SSS) vacuum solution of Einstein’s field equations
[1] that we learned from the text books is actually the Hilbert form of the original
Schwarzschild [2] solution

(ds)2 = (1− 2GM

r
) (dt)2 − (1− 2GM

r
)−1 (dr)2 − r2 (dΩ)2. (1.1)

Birkoff’s theorem states that all static spherically symmetric vacuum solutions to Ein-
stein’s equations are diffeomorphic to the Hilbert-Schwarzchild solution. There are an
infinite number of metrics which are diffeomorphic but not isometric to the Hilbert form
of the Schwarzschild [2] solution. In particular, given an areal radial function ρ(r) 6= r
(in c = 1 units), the metric

(ds)2 = (1− 2GM

ρ(r)
) (dt)2 − (1− 2GM

ρ(r)
)−1 (dρ)2 − ρ2(r) (dΩ)2. (1.2)

is diffeomorphic but not isometric to the Hilbert form of the Schwarzschild [2] solution.
(dρ)2 = (dρ(r)/dr)2(dr)2, and the solid angle infinitesimal element is (dΩ)2 = (dφ)2 +
sin2(φ)(dθ)2. The surface area at each point r is now given by 4π(ρ(r))2 so that ρ(r)
plays the role of an effective radius and hence the name of “areal-radial” function for
ρ(r).

It is clear that the metric (1.2) is diffeomorphic but not isometric to the Hilbert form
(1.1) of the Schwarzschild [2] solution because the area elements r2 (dΩ)2 6= ρ2(r) (dΩ)2

are not equal, except in the trivial case when ρ(r) = r. The (active) diffeomorphisms are
simply established by the mappings r → ρ(r). We have not relabeled the radial variable
r by giving it another “name” and calling it “ρ”, because ρ(r) is itself a function of r.
Furthermore, one has not performed a naive change of variables by writing r = r(r′)
because ρ(r) 6= r = r(r′). The metric (1.2) leads to modifications of the Newtonian
potential. One recovers the Newtonian potential in the regime when ρ(r) ' r. In the
Appendix it is shown explicitly that the metric (1.2) is a solution to Einstein’s vacuum
field equations.

It is well known to the experts that the extended Schwarzschild metric solution for
r < 0 with M > 0, corresponds to a solution in the region r > 0 with M < 0. Negative
masses are associated with repulsive gravity. For this reason, the domain of values of r
will be chosen to span the whole real axis −∞ ≤ r ≤ ∞.

The boundary condition obeyed by the areal radial function ρ(r) at the origin is
ρ(r = 0) = 0. At infinity, and asymptotically flat metric would require ρ(r →∞) ∼ r →
∞. The Hilbert textbook (black hole) solution [5] when ρ(r) = r obeys the boundary
conditions but the Abrams-Brillouin [4] choice ρ(r) = r + 2GM does not. The original
solution of 1916 found by Schwarzschild for ρ(r) did not obey the boundary condition
ρ(r = 0) = 0 as well. The condition ρ(r = 0) = 2GM has a serious flaw and is : how
is it possible for a point-mass at r = 0 to have a non-zero area 4π(2GM)2 and a zero
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volume simultaneously ? Therefore one cannot have Abrams-Brillouin’s [4] choice. It
is known that fractals have unusual properties related to their lengths, areas, volumes,
dimensions but we are not focusing on fractal spacetimes at the moment. For instance,
one could have a fractal horizon surface of infinite area but zero volume (space-filling
fractal surface). The finite area of 4π(2GM)2 could then be seen as a regularized value
of the infinite area of a “fractal horizon”.

The Hilbert choice for the areal radial function ρ(r) = r is ultimately linked to the
actual form of the Newtonian potential VN = −(Gm1m2/r). In the last few decades cor-
rections to Newton’s law of gravitation and constraints on them have become the subject
of considerable study, see the monograph [6]. Yukawa-type corrections to Newton’s grav-
itational law from two recent measurements of the Casimir interaction between metallic
surfaces was studied by [7]. A Yukawa-like correction to the Newtonian potential could
be chosen to be

V (r) = − Gm1m2

r
(1− λ e−r/2GM), λ > 0 (1.3a)

where λ and ro = 2GM are the strength and interaction range of the Yukawa-type correc-
tion. One may notice that the potential (1.3a) can be rewritten in terms of an areal-radial
function ρ(r) as

V (r) = − Gm1m2

ρ(r)
, ρ(r) =

r

1− λ e−r/2GM
, λ 6= 1 (1.3b)

One has the correct boundary conditions for the areal radial function when λ 6= 1

ρ(r = 0) = 0; ρλ(r →∞)→ r, ρ(r = rh) = 2GM ; 0 ≤ rh ≤ 2GM (1.3c)

so that the location of the horizon radius rh has been shifted towards the singularity.
In the asymptotic regime one has as expected ρ(r → ∞) → r, so that the areal-radial
function tends to r (as in the Hilbert choice) and the expression for the potential is
asymptotic to the Newtonian one. At the end of this section we shall discuss the case
when λ = 1.

Instead of the Yukawa-type areal radial function (1.3b), one could have had many
other areal-radial functions ρ(r) 1 obeying the boundary conditions. In particular, the
metric solutions (1.2) are invariant under the transformations r → −r;M → −M for
our particular choice of the areal radial functions given in eq-(1.3b) due to the condition
ρ(−r,−M) = −ρ(r,M). This allows us to extended the solutions to the r < 0 region.
For a recent analysis of the properties of the maximal extensions ( in regions r < 0 ) of
the Kerr and Kerr-Newman spacetimes with negative mass, see [8].

Given the particular choice of the areal radial function in eq-(1.3b), it is important to
emphasize that the Newtonian potential is recovered in the regime when r >> 2GM , so
that V (r) = −Gm1m2

ρ(r)
' −Gm1m2

r
. For example, in the case of the sun its Schwarzschild

radius 2GM is of the order of 3 Kms which is much smaller than the solar radius and
the scale of the planetary orbits. Consequently, in the regime when r >> 2GM , all the

1We thank Matej Pavsic for a discussion on other choices for the radial functions
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metric solutions in eq-(1.2) reduce to the standard textbook Hilbert solution in eq-(1.1),
and the Newtonian potential is always recovered from an infinity of modified potentials.

In the next section we will show why modified Newtonian dynamics (MOND) [14]
associated with galaxies can be obtained from Finsler gravity, and which in turn, can
be modeled by metrics (1.2) which are diffeomorphic but not isometric to the Hilbert-
Schwarzschild metric. The key point is that one will have to dispense with the asymptotic
flatness condition, by choosing a different areal radial function than the ones discussed
above, and instead introduce an infrared-cutoff for the metric at r = ∞ in the form of
ρ(r =∞) = ρo = finite.

The solutions to Einstein’s equations are defined modulo diffeomorphisms. There-
fore, all these mathematically distinct solutions obtained via the active diffeomorphisms
r → ρ(r), and obeying the same boundary conditions at r = 0,∞, are not physically
distinguishable, but they represent one and the same physical solution of the field equa-
tions. It will be shown in the next section that changing the boundary condition at r =∞
leads to MONDian dynamics. For a historical account of the role of active and passive
diffeomorphisms within the context of the “hole argument” that much troubled Einstein
we refer to [10] 2.

To model the scenario when the horizon merges precisely with the singularity one
needs an area radial function defined as follows

ρ(r = 0) = 0, ρ(r) =
r

1 − e−r/2GM
, r > 0 (1.4)

Under r → −r; M → −M one has that ρ(r)→ −ρ(r) so one can ensure the invariance of
the metric (1.2) under these transformations and extend the solutions to the r < 0 region.

Hence, we have in eq-(1.4) that ρ(r = 0+;M) = 2GM , and ρ(r = 0−;−M) = −2GM ,
but ρ(r = 0) = 0 since a point mass must have zero area and zero volume. The horizon
is located at rh = 0+ and the singularity at r = 0. There is a discontinuity of ρ(r) at
r = 0. The right r = 0+, and left r = 0− limits of ρ(r) give respectively ±2GM , while
ρ(r = 0) = 0 which is the arithmetic mean of 2GM and −2GM .

In the Appendix it is shown that the areal-radial function ρ(r) given by eq-(1.4) (along
with an infinite number of C∞ differentiable functions) solves the vacuum field equations.
The finite discontinuity of ρ(r) occurs at one single point r = 0 (the origin), whereas
(dρ/dr) = ∞ at r = 0±. Hence, the derivatives of ρ(r) are continuous while ρ(r) is
discontinuous at r = 0. A typical example of this behavior is the tangent function tan(θ).
At θ = π/2, the tangent exhibits a discontinuity as it goes from ∞ to −∞, whereas
the derivative remains the same and equal to ∞. Fractal curves on the other hand are
continuous everywhere but nowhere differentiable. Concluding, the derivatives of ρ(r)
are continuous, and the metric (1.2) whose areal-radial function ρ(r) is given by eq-(1.4)
solves the vacuum field equations as shown in the Appendix.

Because a point mass is an infinitely compact source of infinite density, there is nothing
wrong with the possibility of having a discontinuity of the metric at the location of the
singularity r = 0. Due to the boundary condition ρ(r = 0) = 0, there is a curvature

2If it much troubled Einstein imagine what it has done to us during the past decades in trying to
decipher what dark matter is, and whether or not it exists

4



tensor singularity and the Kretschmann invariant RµνρσR
µνρσ ∼ (2GM)2/ρ(r)6 diverges

at ρ(r = 0) = 0. In this extreme case, when the the location of the horizon merges with the
singularity, there is a null-line singularity at r = 0 and a null-surface at r = 0+. This may
sound quite paradoxical but it is a consequence of the metric discontinuity at r = 0, the
location of the point mass (singularity). This key fact may have important consequences
for the resolution of the firewall problem and the complementarity controversy in black
holes. We may label the null-line singularity at r = 0 as a firepoint, and the null-
surface at r = 0+ as a firewall. A recent discussion of the notion of a firepoint can be
found in [11] where they propose the singularity itself as a “firepoint” capable to break
the entanglement between the “in” and the “out” states created through the Hawking
process.

When the areal-radial function ρ(r) has the actual form in eq-(1.4) there is no interior
region beyond the horizon r = 0+, so that the metric (1.2) is truly static everywhere.
The Fronsdal-Kruskal-Szekeres analytical continuation of the metric (1.1) inside the hori-
zon is not static. Klinkhamer [12] provided earlier on a regularization of the standard
Schwarzschild solution with a curvature singularity at the center by removing the inte-
rior region of a ball and identifying the antipodal points on the boundary. The resulting
four-dim manifold has now the topology R × M̃3 where M̃3 is a nonsimply-connected
manifold, which up to a point (the center), is homeomorphic to the 3-dim real projective
space RP 3. In our case, there is no need to remove the interior region by surgery. The
discontinuity ρ(r = 0) = 0; ρ(r = 0+) = 2GM of the areal-radial function amounts to a
sort of “point-splitting” creating a void (hole) in spacetime, isolating and expunging the
curvature singularity at the center from the remaining region of spacetime. The topology
of the region free of the singularity at the center is M̃4 = R× M̃3, where M̃3 = R3 − {0}
is the punctured 3-dim space.

2 Finsler Geometry, Modified Newtonian Dynamics

and Areal Radial Functions

It has long been known that if one recurs to Newton’s inverse-square law of gravity,
the observed baryonic matter cannot provide enough force to attract the matter (stars)
present in the outer edges of the galaxies [17]. Postulating that galaxies are surrounded
by massive, non-luminous dark matter is one of the most widely accepted proposals to
solve the problem. No dark matter has been detected yet. An extensive overview with a
vast number of references of the tests and problems of the standard model in Cosmology
can be found in [19].

Some models have been built as an alternative to the dark matter hypothesis. The
main ideas are based on assuming that the Newtonian gravity or Newtons dynamics
is invalid on galactic scales. In the MOND model (modified Newtonian dynamics) of
Milgrom [14] it assumes that the Newtonian dynamics does not hold on galactic scales.
In Extended Theories of Gravity, like f(R) gravity [18] it is shown that several gravitating
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structures like stars, spiral galaxies, elliptical galaxies and clusters of galaxies can be self-
consistently described without dark matter. There are other MONDian theories, for
example, by introducing several scalar, vector and tensor fields, Bekenstein [15] rewrote
the MOND model of Milgrom in a covariant formalism (the TeVeS model). There is the
Einstein-aether theory [16] admitting a preferred reference frame and broken local Lorentz
invariance.

The accurate measurement of the speed of gravitational waves (GW) compared to the
speed of light in 2017 ruled out modified gravity theories, termed “dark matter emula-
tors”, which dispense with the need for dark matter by making ordinary matter couple
to a different metric from that of GW. These models have the property that, in the
extreme weak field regime relevant to cosmology, gravitational waves propagate on differ-
ent geodesics from those followed by photons and neutrinos. Therefore, the differential
Shapiro delay between GWs and photons/neutrinos is due to the gravitational potential
of only the dark matter. Some examples of these Dark Matter (DM) emulator theories
include Bekenstein’s TeVeS theory [15] and Moffat’s Scalar-TensorVector gravity theory
[21]. It is important to understand that dark matter emulators constitute a special class
of modified gravity theories which attempt to dispense with dark matter. Many modifica-
tions of gravity do not fall within this class [20], including Milgrom’s bi-metric formulation
of MOND [22], nonlocal MOND [23], such as superfluid dark matter [25], or dipolar dark
matter [24]. Nor does it apply to certain types of Einstein-Aether theories [26] whose vec-
tor kinetic terms are properly chosen. Therefore, other kinds of modified gravity theories
which dispense with the need for dark matter and are still viable [20].

In this section we shall review the main ingredients of Finsler geometry [27], [28],
[29]; present a solution of the vacuum field equation in Finsler gravity, in the weak field
approximation [30], and show how it reproduces the main results of MOND. The so-
lution depends on the rotational velocity of the galaxy consistent with the relationship
between the Tully-Fisher relation [36] and MOND. We finalize by showing how this Finsler
gravity solution leads to a metric that is diffeomorphic (but not isometric) to the Hilbert-
Schwarzschild metric. The most salient feature is that the metric is not asymptotically
flat due to the infrared cutoff of the areal radial function, and resulting from imposing
different boundary conditions for the metric at r =∞ than in the Hilbert-Schwarzschild
metric case.

We shall begin with a very brief discussion of Finsler geometry [27], [28], [29] before
discussing the gravitational vacuum field equations. Finsler geometry is based on a non-
negative real function F (x,y = dx

dτ
), obeying F (x, λy) = λF (x,y), and defined on the tan-

gent bundle TM represented by the coordinates x ≡ x0, x1, x2, · · ·xn; y ≡ dx0

dτ
, dx

1

dτ
, · · · dxn

dτ
.

The fundamental metric tensor is given as

gµν(x,y) ≡ 1

2

∂2F 2

∂yµ∂yν
(2.1)

The arc-length is
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L =
∫

F (x0, x1, · · ·xn; y0, y1, · · · yn) dτ =
∫

F (x0, x1, · · ·xn;
dx0

dτ
,
dx1

dτ
, · · · dx

n

dτ
) dτ

(2.2)
The Cartan tensor (which measures the deviation from a Riemannian manifold) is given
by the third derivative

Cµνσ(x,y) =
1

4

∂3F 2

∂yµ∂yν∂yσ
(2.3)

If Cµνσ(x,y) = 0 everywhere in the tangent space, the Finsler space becomes a metric
space with gµν(x) independent on the tangent space coordinates y (velocities). The
geodesic equation on a Finsler manifold is given by

d2xµ

dτ 2
+ 2 Gµ = 0 (2.4)

where the geodesic spray coefficients Gµ (dropping the x,y dependence for convenience)
are given by

Gµ =
1

4
gµν

(
yσ

∂2F 2

∂xν∂yσ
− ∂F 2

∂xν

)
(2.5)

The corresponding nonlinear connection Nµ
ν (x,y) associated to the geodesic spray coef-

fcients is defined by

2 Gµ(x,y) = Nµ
ν (x,y) yν =

1

2
gµν

(
yσ

∂2F 2

∂xν∂yσ
− ∂F 2

∂xν

)
(2.6)

The nonlinear connection allows to decompose the tangent space to the tangent bundle
T(x,y)TM at the point (x,y) into a vertical space spanned by ∂

∂yµ
, and a horizontal space

spanned by the so-called elongated derivatives δ
δxµ
≡ ∂

∂xµ
−N ν

µ
∂
∂yν

. The nonlinear curvature
derived from Nµ

ν is

Rµ
νσ ≡

δNµ
ν

δxσ
− δNµ

σ

δxν
,

δ

δxµ
≡ ∂

∂xµ
−Nν

µ

∂

∂yν
(2.7)

Regarding the tangent bundle TM as an 2(n + 1)-dim manifold of its own, one can con-
struct linear covariant derivatives which are compatible with the structure induced by
the nonlinear connection and which preserves the horizontal-vertical split of the tangent
bundle TM with basis δ

δxµ
, ∂
∂yµ

.
The nonlinear connection is unique, however the linear connections are not, and many

different choices are possible [28]. For example, the horizontal part of a torsionless linear
connection is given in terms of the elongated derivatives δ/δxµ as

Γµνσ(x,y) =
1

2
gµλ(x,y) ( δνgσλ(x,y) + δσgνλ(x,y) − δλgνσ(x,y) ) (2.8)
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and the horizontal part of the curvature (dropping x,y) is

Rµ
νσλ = δσΓµνλ − δλΓ

µ
νσ + Γµξσ Γξνλ − Γµξλ Γξνσ − Cµ

νξ R
ξ
σλ (2.9)

In Finsler geometry there is a geometrical invariant (under coordinate transformations)
that only depends on the Finsler structure F (x,y) and is insensitive to the choices of the
linear connection. It is the Ricci scalar defined in terms of the geodesic spray coefficients
as

R ≡ Rµ
µ =

1

F 2

(
2
∂Gµ

∂xµ
− yλ

∂2Gµ

∂xλ∂yµ
+ 2Gλ ∂2Gµ

∂yλ∂yµ
− ∂Gµ

∂yλ
∂Gλ

∂yµ

)
(2.10)

With these geometrical ingredients the analog of the Newtonian limit in Finsler spaces
based on the notion of “locally Minkowski” spacetime was studied by [30]. A Finsler
spacetime is “locally Minkowski” if there is a coordinate system x with induced tangent
space coordinates y, such that F only depends on y, but not on x. A “locally Minkowski”
spacetime is a solution of the Finslerian vacuum field equations [29] . The authors [30]
assumed a very small metric perturbation hµν(x,y) to the locally Minkowski one ηµν(y)

gµν(x,y) = ηµν(y) + hµν(x,y), |hµν(x,y)| << 1 (2.11)

and found that to leading order in the post-Newtonian approximation the explicit form
of the Finslerian line element which solves the vacuum field equations in a 4D Finsler
spacetime is given by

F 2 (dτ)2 = (1− 2GM

R(r, v)
) (dt)2 − (1 +

2GM

R(r, v)
) (dR)2 − R2(r, v) (dΩ)2 (2.12)

where the radial coordinate in the locally Minkowski space-time of the galaxies is defined

as R(r, v) ≡
√
ηij(v)xixj. In this spherically symmetric case, the radial function is de-

noted by R(r, v) (which must not be confused with the scalar curvature R), and now it
depends on both r, and the velocity v, due to functional dependence of gµν(x,y) on both
coordinates and velocities.

Li and Chang [30] have shown that Finsler gravity reduces to MOND if the spatial
components of the locally Minkowski metric of galaxies is of the form

η00 = 1, ηij(y) = δij

(
1− (

GMao(y
0)4

(δmnymyn)2
)2
)

= δij

(
1− (

GMao
v4

)2
)

(2.13)

vi =
dxi

dx0
=

(dxi/dτ)

(dx0/dτ)
=
yi

y0
(2.14)

where ao = 1.2 × 10−10m/s2 is the acceleration constant of MOND [14], and which is of
the order of c2

RH
, where RH is the present-day Hubble scale.

In this particular case the radial coordinate in the locally Minkowski space-time of the
galaxies becomes
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R(r, v) ≡
√
ηij(v) xi xj = r f(v), f(v) ≡

√
1− (

GMao
v4

)2, i, j = 1, 2, 3. (2.15)

and the modified Newtonian equations of motion associated with the Finslerian line
element (2.12) are given by

GM

R2
=

v2

R
⇒ GM

r2f 2(v)
=

v2

rf(v)
⇒ GM

r2
=

v2

r
f(v) =

v2

r

√
1− (

GMao
v4

)2 (2.16)

One may recover the MONDian behavior from eq-(2.16) if v(r) satisfies the following
relation

GMao
v4(r)

=
1√

1 + (v
2(r)
rao

)2
(2.17)

upon inserting (2.17) into the last term of eq-(2.16) it allows to rewrite the scaling factor
f(v) in terms of v and r, leading finally to the desired result of MOND

GM

r2
=

v2

r
f(v) =

v2

r

( v2

rao
)√

1 + ( v2

rao
)2

=
v2

r
µ(

v2

rao
) (2.18)

where

µ(x) ≡ x√
1 + x2

, x ≡ v2

rao
(2.19)

is the interpolating function in MOND. From eqs-(2.18, 2.19) one learns

x << 1, µ(x) ∼ x; x >> 1, µ(x) ∼ 1 (2.20a)

The deep-MOND regime is characterized by x << 1, µ(x) ∼ x, such that

r →∞, R(r)→
√
GMao
ao

, v4(r)→ GMao, f(v)→ 0 (2.20b)

and one recovers the Tully-Fisher relation GMao ∼ v4.
Introducing the following definitions in the deep infrared

Rc ≡ R(r →∞), vc ≡ v(r →∞) (2.21a)

one can then rewrite (2.20b) in the following more familiar form

GM

R2
c

=
v2c
Rc

= ao '
c2

RH

(2.21b)

Given that 2GM/c2 ≡ RS is the definition of the Schwarzschild radius associated to a
point mass M gravitational source, from eq-(2.21b) one arrives at the following scaling
relations involving the Hubble radius RH , RS and Rc
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1

2

RS

RH

= (
vc
c

)4,
1

2
RS RH = (Rc)

2 (2.22)

Below we shall see the importance of these scaling relations (2.22) within the context of
Black Hole Cosmology [32] and Born’s Reciprocal Relativity Theory [31].

Given a galaxy of size Lg, from eq-(2.17) one can solve for v = v(r) and obtain the
rotational velocities for test masses in the region r > Lg

v4(r) =
(GM

r
)2 +

√
(GM

r
)4 + 4(GMao)2

2
, r > Lg (2.23)

Eq-(2.23) is equivalent to the following expression

r2(v) =
(v4/a2o)

( v4

GMao
)2 − 1

, r > Lg (2.24)

and

v2

r
=

v4

GM

√√√√1 − a2o
( v4

GM
)2
⇔ v4

GM
= ao

√√√√1 +
(v2/r)2

a2o
, r > Lg (2.25)

To sum up, given that the range of scales is

RS < Lg < R(r, v(r)) < Rc < RH (2.26)

in the region R(r, v(r)) > Lg one has GM
R2 = v2

R
leading then to the rotational velocities

associated to MONDian dynamics. In the interior region of the galaxy, ordinary Newto-
nian gravity is assumed to be valid, and for spherical symmetric mass distributions one
has

GM(r)

r2
=

v2

r
, r < Lg (2.27)

which just follows from Gauss theorem when the mass enclosed M(r) inside the spherical
region of radius r < Lg is given by M(r) =

∫ r
0 ρ(r′)4πr′2dr′.

Having gone through this Finsler geometric tour underlying MONDian dynamics, we
can finally relate the results of this section with the previous one by noticing that in the
regime (2GM/R) << 1, a Taylor expansion yields

(1− 2GM

R
)−1 ∼ (1 +

2GM

R
) (2.28)

and the Finslerian line element (2.12) in this regime reduces to

F 2 (dτ)2 = (1− 2GM

R(r, v)
) (dt)2 − (1− 2GM

R(r, v)
)−1 (dR)2 − R(r, v)2 (dΩ)2 (2.29)
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leading then to a metric which is diffeomorphic (but not isometric) to the Hilbert-
Schwarzchild one (after inserting the functional relation v = v(r) given explicitly by
eq-(2.23)) into the areal radial function R(r, v) = R(r, v(r)). In fact, the metric (2.29) is
a solution to the vacuum Einstein field equations in a 4D spacetime for any functional
form 3 v = v(r), as shown explicitly in the Appendix 4.

The particular form of v(r) in eq-(2.23) was dictated to us by the empirical astronom-
ical observations. Furthermore, from eq-(2.15) one learns that under the transformations

r → −r, M → −M, ao → −ao ⇒ R(r, v)→ −R(r, v) (2.30)

the areal radial function changes sign as it should be in order for the metric (2.29) to
remain invariant.

Despite that the metric (2.29) is diffeomorphic (but not isometric) to the
Hilbert-Schwarzschild one, it is not asymptotically flat. The Kretschmann invariant
RµνσλRµνσλ ∼ ( 2GM

R3(r,v(r))
)2 6= 0 is non-vanishing at r = ∞ due to the fact that

R(r =∞) = Rc =
√
GMao/ao 6=∞ as shown in eq-(2.20b). In the limit that ao = 0, the

areal radial function becomes the trivial one R = r, and one recovers the asymptotically
flat Hilbert-Schwarzschild metric associated with ordinary Newtonian mechanics (in the
weak field and slow moving bodies limit).

In a nutshell, simply by rewriting GM
R2 as

GMeff (r)

r2
, in terms of an effective mass Meff (r)

enclosed in a spherical region of radius r, it leads to the relation Meff (r) = M/f 2(v(r)) ≥
M , since f(v(r)) ≤ 1, and such that the enhanced value of the “effective” mass Meff (r)
compared to M would seem as if non-luminous “dark matter” were present in the galaxies.

3 Concluding Remarks : Scale Invariance and Born’s

Reciprocal Relativity Theory

By simple inspection one can verify that eqs-(2.15-2.26) are scale invariant under

t→ λt, r → λr, R(r, v)→ λR(r, v), M → λM, ao → λ−1ao, v → v, c→ c (3.1)

with λ = constant and which implies a flat rotation curve. Note the anomalous scaling
of the macroscopic galactic mass M → λM as compared to the scaling m → λ−1m of
a fundamental particle (consistent with the scaling of the Compton wavelength h̄/mc).
Under these scalings (3.1) f(v) given by eq-(2.15) is invariant and the metric (2.29) scales
(ds)2 → λ2(ds)2 as it occurs in Weyl’s geometry under conformal transformations.

Another similar scaling occurs in Born’s Reciprocal Relativity theory. It was shown
in [31] how one can implement a maximal proper force principle within the context of
Born’s Reciprocal Relativity theory, Mach’s principle and Black-Hole Cosmology [32], [33]

3With the provision that R(−r, v(−r)) = −R(r, v(r))
4In the appendix a Lorentzian signature is used
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by setting the following proper forces to be equal to the maximal proper force value b (
“b” stands for Born)

MU (
c2

RH

) = mP (
c2

LP
) = b (3.2)

where MU is the Universe’s total mass inside the present-day Hubble radius RH ; mP , LP
are the Planck mass, and length, respectively. What (3.2) indicates is that the observed
Universe’s total mass MU coincides with the product of the maximal proper force times
the Hubble horizon scale (an infrared cutoff), and which in turn, is the black hole horizon
radius corresponding to a Universe-mass black hole. The Planck mass is the product of
the maximal proper force times the Planck scale (ultraviolet cutoff), and which in turn,
is the black hole horizon radius corresponding to a Planck-mass black hole. And so forth,
namely a black hole’s mass M coincides with the product of the maximal proper force b
with its black hole horizon radius Rh.

Eq-(3.2) is also invariant under the scalings (3.1). Milgrom [14] long ago pointed out
the importance of scale invariance for MOND phenomenology, it is still impressive how
much of that phenomenology, (i.e. flat rotation curves and baryonic Tully Fisher) is a
consequence of scale invariance alone.

The recent new hypothesis of [34] is that this scale invariance is due to the dark
matter undergoing a second order phase transition in the region normally associated with
MONDian behavior. It is based on the idea that dark matter has a super-fluid phase [35]
which, if successful, would explain the flattening of the rotation curves, the Tully-Fisher
[36] and acceleration relations and the relation between ao ∼ c2/RH .

In this work we do not have to recur to these hypothesis [34]. Eqs-(2.20, 2.21) lead
to these acceleration relations. A proposal that advocates the fall of dark matter can be
found in [38]. Scale invariance is assumed in the empty regions of space. The Weyl gauge
field Aµ of dilatations contributes to modifications of the Christoffel connection leading
then to repulsive corrections to the geodesic equations. We have not invoked the role of
Quantum Gravity in this work nor what are the asymptotic symmetries (if any). What
we find remarkable is how powerful is the diffeomorphism symmetry of Einstein’s vacuum
field equations to account for the Finsler gravity solution described here, and which is
able to model MOND by simply replacing the radial coordinate r with the areal radial
function R(r, v(r)).

APPENDIX A : Schwarzschild-like solutions in D > 3

In this Appendix we follow closely the calculations of the static spherically symmetric
vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start with the
line element with the Lorentzian signature (−,+,+,+, ....,+)

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 +R2(r)g̃ijdξ
idξj. (A.1)

where the areal radial function ρ(r) is now denoted by R(r) and which must not be
confused with the scalar curvature R. Here, the metric g̃ij corresponds to a homogeneous
space and i, j = 3, 4, ..., D − 2 and the temporal and radial indices are denoted by 1, 2

12



respectively. In our text we denoted the temporal index by 0. The only non-vanishing
Christoffel symbols are given in terms of the following partial derivatives with respect to
the r variable and denoted with a prime

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi2j = R′

R
δij, Γijk = Γ̃ijk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δikg̃jl − δil g̃jk).

(A.3)

The vacuum field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′
R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′
R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′
. (A.7)

The solution of this equation is

µ+ ν = lnR′2 + C, (A.8)

where C is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)
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where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3 ) (
dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3 )−1 (
dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3 )− 2 lnR′ (A.13)

βD is a constant equal to 16π/(D − 2)ΩD−2, where ΩD−2 is the solid angle in the D − 2
transverse dimensions to r, t and is given by 2π(D−1)/2/Γ[(D − 1)/2].

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3 ) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3 )(dt)2 +
(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξ
idξj =

−(k − βDGDM

RD−3 )(dt)2 +
1

(k − βDGDM
RD−3 )

(dR)2 + R2(r)g̃ijdξ
idξj (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the form R(r). It is also interesting to observe that the only effect of the homoge-
neous metric g̃ij is reflected in the k = ±1 parameter, associated with a positive (negative)
constant scalar curvature of the homogeneous D − 2-dim space. k = 0 corresponds to a
spatially flat D−2-dim section. The metric solution in eq-(1.2) is associated to a different
signature than the one chosen in this Appendix, and corresponds to D = 4 and k = 1.
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