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Abstract

We derive these laws with a simplicity for high school students and
cocky beach girls.

1 Maxwell-Boltzmann.

Consider a system of N particles in contact with a heat reservoir; the
system can be in a finite number of states |i〉 each characterized by an
energy εi and other numbers αi. The question is, given a temperature T ,
what is the probability that it is found in |i〉? It is very simple to figure
out the answer, given that we have to allow for the system to change from
|i〉 to |j〉 with a probability p(i→ j)(t) per unit time. These probabilities
have to be determined dynamically; suppose initial probability pi(t) is
given. The latter satisfies

ṗi(t) =
∑
j

(pj(t)p(j → i)(t)− pi(t)p(i→ j)(t))

where t is time. One notices that∑
i

ṗi(t) =
∑
i,j

(pj(t)p(j → i)(t)− pi(t)p(i→ j)(t)) = 0

so that total probability is conserved. Moreover, it is clear that

p(i→ j)p(j → k) = κp(i→ k)

must be j independent and κ (i, k) independent as a matter of “homol-
ogy” condition. It signifies that, in a way, the transition from i to k can
happen in multiple stages where only the number of intermediate stages
matters and not the detais thereof. The stronger form sets κ equal to one,
which would mean that a system has its own radiative temperature and
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cannot be heated up, by means of a reservoir, to a stable state of higher
temperature. This law can be derived in another way by noticing that

p(i→ j) = pi?pj

where pi has some functional form in terms of εi and αi and pi? is the
fictional probability of destroying a state |i〉. This means that the prob-
ability of transition is given by the probability of destruction of a state
|i〉 followed by the birth of |j〉 where both these happenings are indepen-
dent of one and another. Obviously, this is achieved by putting εi, αi to
−εi,−αi and one remarks that

ṗi(t) = (
∑
j

pj(t)pj?(t)− pi?(t))pi(t).

Now, an energy εi reflects a certain wavelength λi with εi = ~c
λi

and c

the speed of light, ~ the quantum constant. τi = λi
c

= ~
εi

is a timescale
associated to observation of that energy. A suitable defining characteristic
is therefore

0 = pi(
~
εi

)− pi(0) =

∫ ~
εi

0

ṗi(t)dt =

∫ ~
εi

0

(
∑
j

pj(t)pj?(t)− pi?(t))pi(t)dt.

For example, pi(0) = 1 and pj(0) = 0 with i 6= j satisfies this criterium
although pi(τ) = 1 for all τ > 0 and therefore this timescale is rather
ambiguous. It is utterly clear, given that the system can only “sing” the
modes εi that this requirement signifies that it is stable on the associated
timescale. This definition of temporary temperature T[0,τi] associated to
a time interval of measurement, for example by putting your finger on a
heating plate, is now open for discussion and weakening. Now, we come
back to the homology law which would imply that

pj?pj = κ

for all j and therefore

ṗi(t) = Nκpi(t)− κ.

This leads for a constant κ to solutions of the kind

pi(t) =
1

N
(1− eNκt)

which only retains κ = −∞ which is the uniform distribution wich is in
conflict with pj?pj = κ. This suggests one to replace

p(i→ j)p(j → k) = κp(i→ k)

with ∑
j

p(i→ j)p(j → k) = κp(i→ k)

which is a principle of ignorance indicating that one does not know the
intermediate state as a matter of principle. This leads to∑

j

pj?pj = κ

and therefore
ṗi(t) = (κ− pi?(t))pi(t).
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This at least incorporates the case pi = 1, pj = 0 given the functionality
pk = δ(εk − εi).

Traditional Maxwell-Boltzmann can be derived from one principle; in gen-
eral, one looks for a time independent distribution with the property that
it factorizes over different independent subsystems. That is

p1∪2(ε1i + ε2j ) =
∑

(k,l):ε1
k
+ε2
l
=ε1i+ε

2
j

p1(ε1k)p2(ε1l )

and p(εi) where εi is a time independent energy. This implies

p(εi) =
e−βεi∑
j e
−βεj

.

Here, β = 1
kBT

where kB is Boltzmann constant and T the temperature in
kelvin. This is not a solution to our above system which requires different
p(i → j) violating the homology condition. The separability condition
is often assumed to be correct although it excludes hidden correlations
between both subsystems by means of interaction through the heat bath.
Such equilibrium will never settle as is most easily seen .
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