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Abstract

The acceptance of the hypothesis about two-potentiality of the stationary gravitational field

made it possible to find solutions of field equations and equations of motion within the

General Relativity, which in extreme case lead to compliance with the Newtonian theory of

gravity both inside and outside of the mass source.
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1.  Introduction

In the dissertation [1] I proposed a black-hole model of the Universe. Our Universe can be

treated as a gigantic homogeneous Black Hole with an anti-gravity shell. Our Galaxy, to-

gether with the solar system and the Earth, which in the cosmological scale can be conside-

red only as a point, should be located near the center of the Black Hole Universe.

From the theory of Newtonian gravity [2] we know that the absolute value of the gravitational

field intensity at the center of homogeneous ball with a constant density is equal to zero. To-

gether with growth of distance from the center – gravitational field intensity grows linearly,

reaching its maximal value on the ball surface. With further growth of distance – it decreases

inversely squared. In order to obtain an analogical result in Einstein’s General Theory of Re-

lativity, it should be noted that the stationary gravitational field can be described by two po-

tentials.

2.  Two-potentiality of the stationary gravitational field

The stationary gravitational field is a two-potential field [1]:
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2R

GMexin =ϕ−ϕ ,    0exin =− EE .

      inE , exE   –  gravitational field intensity respectively inside and outside of the ball

      inϕ , exϕ   –  gravitational field potential respectively inside and outside of the ball

      M  –  mass of the ball,    R  – radius of the ball,    ρ   –  density

       
~
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3.  Field equations

Einstein’s gravitational field equations will be written as [4]:
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In the case where homogeneously distributed mass in the ball area, is a source of stationary

gravitational field, we postulate existence of the solution in the following form:
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The divergence of the tensor ( αβT ) should be equal to zero, which actually takes place:
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The assumptions made allow to reduce the number of field equations to two.
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      R  –  radius of the ball in which the source mass is located

      
2S

c

2GM
r =   –  Schwarzschild radius

The presented solutions of field equations satisfy the following boundary conditions.
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4.  Signes of right-hand sides of Poisson’s equations and boundary conditions

In Newton’s theory of gravity, boundary conditions for the gravitational potentials

0 lim    R,r

0 lim    R,r0

ex

r

in

0r

=ϕ≥

=ϕ<≤

∞→

→

correspond to the following forms of Poisson’s equation in spherical coordinates:
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The equivalents of these relations in General Relativity are:
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Signes of right-hand sides of Poisson’s equations depend on assumed boundary conditions,

which are connected with two-potentiality of stationary gravitational field.

5.  Equations of motion and field equations in General Relativity, and two-potentiality of

2ewton’s stationary gravitational field

Postulated by us [1], within the frames of General Relativity, equations of motion of free test

particle lead to a conclusion that Newton’s stationary gravitational field is a two-potential

field. We will show this on an example of gravitational field, which source is a mass distribu-

ted homogeneously in the volume of a ball with radius (R).
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where ( inϕ ) and ( exϕ ) are potentials of stationary gravitational field respectively inside and

outside of the ball, we obtain

We will also give the definitions of potentials ( inϕ ) and ( exϕ ) corresponding to a standard de-

finition of gravitational potential.

r

GM
dr a 

r
2R

GM
dr a

Rr

r

ex

df
ex

2

3

Rr

0

r

in

df
in

−=−=ϕ

−==ϕ

∫

∫
∞

≥

<

In field equations inside of the mass source, we will replace the time-time component ( in

44g ) of

metric tensor with the potential ( inϕ ).
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Poisson’s equation for the potential ( inϕ )
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The first of these equations is Poisson’s equation for the potential ( inϕ ) in spherical coordina-

tes. From the classical Poisson’s equation it differs only by the sign of the right-hand side. In

turn, from both equations it follows that
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By analyzing Poisson’s equation for the potential ( inϕ ) we showed that the equations of mo-

tion are contained in field equations inside of the mass source.

In field equations outside of the mass source we will replace the time-time component ( ex
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of metric tensor with the potential ( exϕ ).
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Equation of motion for radial component of free fall acceleration

inside of the mass source

Poisson’s equation for the potential ( exϕ )
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The first of these equations is Poisson’s equation for the potential ( exϕ ) in spherical coordina-

tes. In turn, from both equations it follows that
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Analyzing Poisson’s equations for the potentials ( inϕ ) and ( exϕ ) we obtained analogical re-

sults. The equations of motion are included in the field equations.

The introduction of two potentials in Newton’s theory of gravity made it possible to find in

the frame work of General Relativity the solutions of field equations and equations of motion

that in the extreme case ( Srr >> , 22 cv << ) lead to compabillity of both theories, both inside

and outside the mass source.
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Diagram that shows how potentials ( inϕ ) and ( exϕ ) depend on the distance (r) from the center

of mass source in case of ( Srr >> ) and ( 22 cv << ).

Equation of motion for radial component of free fall acceleration

outside of mass source
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6.  Equations of motion and field equations

How should the equations of motion have to be formulated so that the unscaled radial coordi-
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Answering this question, we will use the second of the two field equations.
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7.  2ew test of General Relativity

In order to show in Earth conditions the two-potentiality of the stationary gravitational field,

should be measured ratio of distance passed by light to the time of flight, in a vertically posi-

tioned vacuum cylinder, right under and right above the surface of Earth (of the sea level).

The difference of the squares of these measurements should be equal to the square of escape

speed. This experiment would be a new test of General Relativity.

Below we will justify the desirability of the proposed experiment [1].
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8.  Final remarks

The spherical coordinate system used in this paper, for (r = 0) and (θ = 0º, 180º), generates

apparent singularities in expressions such as
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1
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θsinr

1
g
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and in the original Poisson’s equation. We used this coordinate system despite the mentioned

pathologies, because it is convenient in calculations.
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