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It is widely known that the E8 polytope can be folded into two Golden Ratio (Φ) scaled copies
of the 4 dimensional (4D) 120 vertex 720 edge H4 600-cell. While folding an 8D object into a 4D
one is done by applying the dot product of each vertex to a 4×8 folding matrix, we use an 8×8
rotation matrix to produce four 4D copies of H4 600-cells, with the original two left side Φ scaled
4D copies related to the two right side 4D copies in a very specific way. This paper will describe and
visualize in detail the specific symmetry relationships which emerge from that rotation of E8 and
the emergent fourfold copies of H4. It will also introduce a projection basis using the Icosahedron
found within the 8x8 rotation matrix. It will complete the detail for constructing E8 from the 3D
Platonic solids, Icosians, and the 4D H4 600-cell. Eight pairs of Φ scaled concentric Platonic solids
are identified directly using the sorted and grouped 3D projected vertex norms present within E8.

PACS numbers: 02.20.-a, 02.10.Yn
Keywords: Coxeter groups, root systems, E8

I. INTRODUCTION

Fig. 1 is the Petrie projection of the largest of the exceptional simple Lie algebras, groups and lattices called E8.
It has 240 vertices and 6720 edges of 8D length

√
2. Interestingly, E8 has been shown to fold to the 4D Polychora

of H4 (a.k.a. the 120 vertex 720 edge 600-cell) and a scaled copy H4Φ[1][2], where Φ = 1
2

(
1 +
√

5
)

= 1.618... is the

big Golden Ratio and ϕ = 1
2

(√
5− 1

)
= 1/Φ = Φ− 1 = 0.618... is the small Golden Ratio. Fig. 2 shows the folding

orientation of E8 Dynkin diagram above the H4 Coxeter-Dynkin diagram.

FIG. 1: E8 Petrie projection
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FIG. 2: a) E8 Dynkin diagram in folding orientation b) The associated Coxeter-Dynkin diagrams H4

There are several choices for the form of E8, whether it be complex or split real (even or odd). For the purposes of
this work, the form selected is split real even (SRE). While the basic topology of the E8 Dynkin diagram is unique,
it has 8!=40320 permutations of node ordering. The node order used here is given in Fig. 2a. The 240 specific E8

group vertex values are determined from the simple roots matrix E8srm shown in (1) by using the weights of the 120
positive (and 120 negative) roots generated from the Lie algebra applied to the Cartan matrix, calculated here in (2).
It can also be derived directly from the structure and node order of the E8 Dynkin diagram.

E8srm =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
− 1

2 −
1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2

0 0 0 0 0 1 1 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0


(1)

E8Cartan = E8srm.E8Tsrm (2)

Rather than folding by taking the dot product of a 4×8 folding matrix against each of the 240 vertices of the SRE
E8, we rotate it using the 8×8 square rotation matrix. Unlike folding to 4D, the rotation preserves the integrity of E8,
including the 28680 edges of the complete graph, without losing the ability to identify the individual and combined
4D H4 and H4Φ edges. The specific matrix for performing the rotation of the SRE E8 group of vertices was shown[3]

to be that of (3). Notice that H4rot = H4Trot such that it is symmetric with a quaternion-octonion Cayley-Dickson-like
structure. Only the first 4 rows are needed for folding E8 to H4. The result is not two, but four copies of H4 600-cell
with the left (L) 4 dimensions associated with the two scaled copies (H4 and H4Φ) and the right (R) 4 dimensions
associated with another two copies (H4 and H4Φ).

H4rot =



Φ 0 0 0 ϕ2 0 0 0
0 −ϕ 1 0 0 ϕ 1 0
0 1 0 −ϕ 0 1 0 ϕ
0 0 −ϕ 1 0 0 ϕ 1
ϕ2 0 0 0 Φ 0 0 0
0 ϕ 1 0 0 −ϕ 1 0
0 1 0 ϕ 0 1 0 −ϕ
0 0 ϕ 1 0 0 −ϕ 1


(3)

A. Deconstructing the H4 600-cell

Each copy of the 600-cell is made up 120 vertices shown in Fig. 3 in E8 Petrie projection (or two Φ scaled copies of
the Van Oss projection when used in conjunction with 600-cells), with 24 of the 120 vertices making up the self-dual
24-cell. The 24-cell is in turn made up of the 16 vertices of the 8-cell a.k.a. Tesseract (Fig. 3a off-axis blue dots) and
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the 8 vertices of the 16-cell a.k.a. 4D Cross Polytope or 4-Orthoplex (Fig. 3a on-axis red dots), each of these being
the dual of the other. The other 96 vertices of the 600-cell are those of the Snub 24-cell, which can be visualized in
2D by rotating the 24-cell four times in increments of π/5 (as shown in Fig. 3b red, green, blue, yellow) or projected
to 3D (as shown in Fig. 4).

FIG. 3: a) 24-cell highlighting the 16-cell (red on-axis vertices) and 8-cell (blue off-axis vertices), b) Snub 24-cell highlighting
four π/5 rotations of the 24-cell (black) in red, green, blue, yellow

In applying H4rot to each vertex of E8, the 4 quadrants of (3) naturally produce 4D H4 L=R symmetry from
E8 vertices that have L=R symmetry. The 16 L=R E8

1
2 integer vertices are shown to be the 16 vertices of the

8-cellΦ permutations of {±1,±1,±1,±1}. Interestingly, the 16 L=-R 1
2 integer E8 vertices give the vertices of the

8-cell permutations of {±ϕ,±ϕ,±ϕ,±ϕ}. There are 8 integer E8 vertices that have L=R symmetry and 8 that have
L=-R. These rotate into the two scaled copies of the 16-cellΦ permutations of {±2, 0, 0, 0} and 16-cell permutations
of {±2ϕ, 0, 0, 0} within H4Φ and H4 respectively. A full list of E8 and H4 rotated vertices is shown in Appendix A.

It isn’t immediately obvious that there are other symmetries involved in the remaining 2*96=192 vertices of the
L/R 600-cells, namely those of the scaled copies Snub 24-cell permutations of {0,±1,±ϕ,±ϕ2} and Snub 24-cellΦ
permutations of {0,±1,±ϕ,±Φ}. It is clear from Appendix A that this L ↔ R relationship from E8 is not L=R or
L=-R. Careful analysis of the 28680 edges in the complete graph of the rotated E8 shows otherwise. This is discussed
in more detail in Section II.

B. Projecting E8 and H4

Projection of E8 to 2D (or 3D) requires 2 (or 3) basis vectors {X,Y, Z}. We start with those in (4), which are
simply the two 2D Petrie projection basis vectors of the 600-cell (a.k.a. the Van Oss projection) as shown in Fig. 3,
with a 3rd (z) basis vector added for the 3D projection. Notice the 8D basis vectors with zero in the last 4 columns
(or dimensions), highlighting the fact that E8 projection is based on a 4D H4 construct.

x={ 0, Φ2Sin 2π
15 , 2Sin 2π

15 , 0, 0, 0, 0, 0}
y={ 1, 0, 0, Φ2Sin 2π

30 , 0, 0, 0, 0}
z={ −Φ2Sin 2π

30 , 0, 0, 1, 0, 0, 0, 0}
(4)

X={ 0, −.068, .168, −.329, 0, .476, .168, .329}
Y={ .655, 0, −.137, .084, −.155, 0, .137, .084} = H4−1

rot.{x, y, z}
Z={ −.221, 0, −.405, .250, .052, 0, .405, .250}

(5)
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FIG. 4: a) 24-cell in 3D, b-e) Snub 24-cells in 3D from four π/5 rotations of the 24-cell in a)

Fig. 5 in 3D shows the same projection shown in Fig. 1 in 2D by adding the Z basis vector to the projection. The
result is that one face (or 2 of 6 cubic faces, which are the same), it projects E8 to its 2D Petrie projection and on
another face pair it projects to the 2D orthonormal view of the 600-cell. The third face pair is a rotation between the
other two pairs of faces. While the concentric structure of the scaled H4 polytopes is visible by noticing the green
interior edges, a more dramatic 3D visualization is described in the section III.

II. THE EDGE GROUP THAT LINKS H4 TO H4Φ (L↔ R)

It has already been mentioned that a single 8D E8 vertex (with a pair of L and R 4D entries) always links to
another E8 pair of 4D vertices through the L ↔ R column’s cross-reference index number. By studying the pattern
of green and black color-coded E8 L/R column entries in Appendix A, it becomes clear that the the L ↔ R index
always links between H4 and H4Φ pairs of 4D vertices. Since it has already been shown that the 24-cell L↔ R pairs
exhibit a symmetry for either self-reference or anti-vertex reference linking H4 and H4Φ 24-cells, this suggests there
might be a linking symmetry in the Snub 24-cells as well.

There are 4 Snub 24-cells of 96 vertices each in the rotation of E8. Interestingly, using the vertex index and the
L ↔ R index to define an edge between the 8D vertices results in a single group of 8D edge norm of length l = 2ϕ.
Indeed, if we select all 8D edges of norm l from the 28680 edges of the complete graph of the rotated E8, it results
in a group of 168 edge lines. From these, we eliminate the 72 edges where the first edge vertex’s L is not equal to
the second edge vertex’s R (as required for the cross-reference in L ↔ R). The remaining 96 edge vertex pairs are
precisely the 2 ∗ 96 = 192 L↔ R vertex pairs of the 4 Snub 24-cells of Appendix A. These are shown in Fig. 6 with
each edge line linking the H4 and H4Φ related vertices in the Snub 24-cells.
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FIG. 5: Vertex numbered E8 in 3D perspective projection showing 6720 edges of 8D norm of length
√

2

III. CONSTRUCTING E8 FROM THE H4 600-CELL

Dechant suggested[4] that the construction of E8 from the lower dimensional structures of the Icosahedron, and
spinors (Icosians), through the H4 600-cell is new. Baez has discussed the idea as well[5].

Analyzing [4] using the simple roots matrix E8srm in (1) as applied to the generation of the Cartan matrix (2), we

get similar results. See Fig. 7 for a symbolic analysis using MathematicaTM . Note the resulting Cartan matrix after
applying H4rot as a dot product to E8srm is the same as before rotation after applying Dechant’s ϕ=0 trick, with an
interesting exception in the entry at (5, 5) = 4 and not 2, and (6,5)=(5,6)=-2 and not -1, as they should be.

The detail of the Dechant’s construction successfully creates the two scaled L copies of 4D H4 and H4Φ without
providing detail on how to associate the other two scaled R copies within the 8D E8 vertices. This detail is assumed
due to the ability to “identify” the folded E8 Dynkin diagram’s structure using 4D H4 and H4Φ elements with each
node. It is not clear from that work that there is a prescription for constructing (L,R) 8D E8 vertices from H4 and
H4Φ. It seems in both of these works, it is left as a “challenge to the reader” to resolve these details.

In order to resolve that detail, the procedural construction from 4D to 8D would seem to require reference to some
form of H4−1

rot dot product applied to the properly associated combination of 240 4D L and R from H4 and H4Φ into
240 8D (L,R) vertices. From the 240 (L,R) 8D vertices, there are 48 which are easily determined from 24-cell and
24-cellΦ patterns mentioned in Section I-A. For the 24-cell, these are the 24 vertex permutations where the 8-cell
{±ϕ,±ϕ,±ϕ,±ϕ} and 16-cell {±2ϕ, 0, 0, 0} all have L=-R. For the 24-cellΦ, these are the 24 vertex permutations
where the 8-cellΦ {±1,±1,±1,±1} and 16-cellΦ {±2, 0, 0, 0} all have L=R.

The introduction of the edge group in Section II that links L and R to H4 and H4Φ (L↔ R) vertices of the Snub
24-cell is the key detail needed for a procedure to construct the other 192 8D vertices. Specifically, this procedure
involves pairing each of the 192 remaining Snub 24-cell permutations of {0,±1,±ϕ,±ϕ2} from H4 and Snub 24-cellΦ
permutations of {0,±1,±ϕ,±Φ} from H4Φ with some other Snub 24-cell H4Φ and H4 vertex, respectively. The
solution offered is to simply select from the set of 1922 = 36864 possible pairwise combinations of (L,R), by choosing
only those with a 2ϕ 8D norm edge length between (L,R) and (R,L) where L 6= ±R as in (6).

√
(L,R)− (R,L)

2
=
√

2(R− L)2 = 2ϕ (6)

It is the introduction of H4−1
rot as a dot product with the identified 8D (L,R) H4 and H4Φ vertices that unlocks the

detail of constructing E8 from the Icosahedron and H4!
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FIG. 6: Vertex numbered Petrie projection of the rotated E8, showing the 96 edges of 8D norm l = 2ϕ which links the
Snub 24-cell H4 and H4Φ (L ↔ R) vertices (Note: the 8 excluded positive E8 8-Orthoplex (or equivalently, theH4 and H4Φ
4-Orthoplex) “generator vertices” are shown as larger gray labeled axis dots which overlap their darker black E8 vertices)

.

IV. CONCENTRIC PLATONIC SOLID HULLS OF E8 AND H4

By selecting a 3D projection basis for E8 from rows 2 through 4 of H4rot and sorting the resulting projected vertex
positions into groups based on its 3D norm position, a pattern of 14 Platonic solid hulls in 7 Φ scaled pairs emerges
with 4 points at the origin, as shown in Fig. 8. Listing these from smallest norm to largest, we have for the smaller
H4; 2 Icosahedrons, 2 Dodecahedrons, and 2 Icosahedrons from a group of 4. We finish the smaller H4 with an
IcosaDodecahedron. The larger scaled H4Φ has 2 Icosahedrons from the previously mentioned group of 4 and adds 2
Dodecahedrons, 2 Icosahedrons, and the outer IcosaDodecahedron hull.

It is an interesting exercise to apply this concentric hull creation procedure on the sub-group structures of E8 (such
as D8, BC8, E7, E6, D6, BC6). For example, the 112 integer vertex D8 projects to one pair of Φ scaled (outer and
interior) hulls of the 30 vertex IcosaDodecahedrons and two pairs of Φ scaled (outer and interior) hulls 12 vertex
Icosahedrons, with 4 vertices at the origin. Similarly, the 27 = 128 1

2 integer vertices of BC8 (a.k.a. the 8-DemiCube
or 7-cube) projects to two pairs of Φ scaled (outer and interior) hulls of 32 vertex Rhombic Triacontahedrons (each
made of an Icosahedron and a Dodecahedron). The 8 grouped sets of hull vertices in E8 split across the integer
(Bosons) and 1

2 integer Fermions as assigned in [3]. These are shown in Figs. 9-10, respectively.
The two scaled 30 vertex IcosaDodecahedrons mentioned are isomorphic to the 60 vertex D6.

V. PLATONIC SOLID CRYSTAL PROJECTION PRISMS

In analyzing the 3 basis vectors from Section IV (rows 2 through 4 of H4rot used in projecting the Platonic solid
hulls), we find that by taking the transpose of the 3×8 basis vector matrix, the results are 8 3D vertex locations
with 2 at the origin. Adding their anti-vertices (i.e. their negation, as in rows 6 through 8 of H4rot) results in a
very symmetric construction of the Icosahedron from 3 Golden Rectangles aligned along orthonormal axial planes as
shown in Fig. 1 of [5] (originally obtained from Wikipedia commons). So in a sense, the Platonic solid’s Icosahedron
becomes a “crystal projection prism” through which we get a 3D projection of the entire structure of E8. This
projection results in seven Φ scaled pairs of Icosahedrons, Dodecahedrons, and IcosaDodecahedrons, with an 8th
“scaled pair of 2 vertices” at the origin coming from the pair of vertices at the origin in our basis vectors. Any 3D
rotation of any set of 6 Icosahedron vertices (or 6 anti-vertices) combined with 2 at the origin (in any order) can be
used as a crystal projection prism to produce this sequence of 8 pairs of Platonic solid hulls.
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FIG. 7: Symbolic analysis using MathematicaTM comparing the Cartan matrix before and after rotating the simple roots matrix
E8srm used to create it (Note: the resulting Cartan matrix is not precisely that of E8, even after applying the Dechant ϕ = 0
trick)
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FIG. 8: a) Sorted list of the vertex norms with their grouped vertex counts. b) 3D surface models for each of the 7 hulls of
vertices c) Combined 3D surface model with increasing transparency for each successive hull.

FIG. 9: Numbered 112 integer vertex D8 perspective projected into a combined 3D surface model of hulls with increasing
transparency for each successive hull, including the list of the vertex norms with their grouped vertex counts
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FIG. 10: Numbered 128 1
2

integer vertex BC8 perspective projected into a combined 3D surface model of hulls with increasing
transparency for each successive hull, including the list of the vertex norms with their grouped vertex counts

FIG. 11: 3D projection using an orthonormal basis on H4 and H4Φ vertices (i.e. the rotated E8)

An alternative perspective is to look at E8 after being rotated into H4 and H4Φ vertices. Any set of 3D orthonormal
projection basis from the L or R 4D halves provide for the same results, as shown in Fig. 11. Notice the vertex norm
group counts are identical to those in Fig. 8, but the image is rotated and scaled differently as expected.

It should also be noted that the Icosahedron as basis vectors used in projecting E8 to 3D is explicitly represented
in the projections as the 16 8-Orthoplex excluded “generator vertices” with 4 at the origin. These can be seen as
8 positive labeled dotted line axis vectors in the diagrams with the “anti-generator’ vertices” being the tail of the
positive axis vector. In this particular projection basis, these axis vertices overlap the included 8-Orthoplex vertices
which are part of the 240 vertices in E8, indicating a special relationship between the generators and vertices wthin
this particular projection basis. Please note that the rotated vertices do not all maintain the same non-zero index
location when they rotate from E8 to H4 and H4Φ. See the red and orange highlighted rows in Appendix A for more
detail.

This process of taking 8 selected points from symmetric 3D objects and creating E8 projection prism basis vectors
out of their transposed matrix produces a few interesting (read symmetric) concentric hull sets of objects. A few
examples are shown in Appendix B Figs. 12-14, each with: a) the crystal prism geometry and vertices, b) the selected
basis vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with
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progressively increasing transparency and tally of vertex norms. These figures also highlight the vertices with size,
shape, and color based on algorithms that take advantage of the L/R structure of E8. More detail on the algorithm
for this assignment is provided in [3].

There are non-Platonic solid prisms that also create interesting concentric hull patterns from E8. Some of these
are the MetabidiminishedIcosahedron (with its negated vertices gives the GyroelongatedPentagonalPyramid), the
Cuboctahedron, and the RhombicDodecahedron. These are shown in Appendix B Figs. 15-17.

VI. CONCLUSION

Instead of simply folding the 8D E8 vertices into 4D pairs of H4 and H4Φ vertices, we rotated them using an 8×8
matrix. This transforms E8 into a fourfold H4 600-cell structure. This was deconstructed into the 40 individual
16 vertex Tesseracts and 8 vertex 4-Orthoplexes. By projecting these structures into 2D and 3D visualizations, a
better understanding of the symmetry relationships within E8 was studied. In addition to showing that the base
24-cell structures have an independent (self referencing) existence within H4 and H4Φ, an edge group of norm 2ϕ was
found to describe the detail of the Snub 24-cells’ link between H4 and H4Φ (L ↔ R). Using that discovery, a more
explicit procedure and basis for constructing E8 from H4 has been given. Highlighting the relationship between the
vertices of an Icosahedron, the rotation matrix, and the 3D projection basis for the concentric hulls of E8, eight pairs
of concentric hulls of Platonic solids were identified. We show that the symmetries of various geometric structures,
including all of the Platonic solids, function as 3D crystal projection prisms.
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APPENDIX A: LIST OF E8 AND ITS ROTATED H4 AND H4Φ VERTICES

This table splits the E8 and its rotated H4 vertices into L/R 4D elements.

1. Table structure

The first column is an SRE E8 vertex index number derived from sorting the E8 vertices by their position based
on the 256 = 28 binary pattern from the 9th row of the Pascal triangle {1, 8, 28, 56, 70, 56, 28, 8, 1} and its
associated Cl8 Clifford Algebra. This construction is described in more detail in [3]. The odd groups (1,3,5,7,9)
with (1,26,70,26,1) elements (respectively) are the 128 1

2 integer vertices. The even groups (2,4,6,8) with (8,56,56,8)
elements (respectively) are the 112 integer vertices along with the 16 excluded 8 generator (and 8 anti-generator)
vertices (2-9 and 248-255) with permutations of {±1, 0, 0, 0, 0, 0, 0, 0} (a.k.a. the 8-Orthoplex), such that they indicate
the basis vectors used for projecting the polytope.

Only the first half of the 240 vertices is shown, since the last half is simply the reverse order negation of the vertices
in the first half (e.g. the E8 vertex n = 10 has as its’ negation 257− n = 247).

The middle column labeled L↔R indicates the vertex reference number that contains the same L as the R (and
equivalently, the same R as the L, interestingly enough).

2. Table color coding

The E8 L/R columns’ green color-coded elements indicate that the 4D vertex rotates into the smaller H4 600-cell.
Conversely, the E8 L/R columns’ black color-coded elements indicate the 4D vertex rotates into the larger H4Φ
600-cell.

The H4 L/R columns’ red color-coded rows are 24-cell elements that always self-reference and are always mem-
bers of the scaled up 600-cell H4Φ. The H4 L/R columns’ orange color-coded rows are 24-cell elements that al-
ways reference the negated elements in the range of 129-256 and are always members of the smaller 600-cell H4.
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FIG. 12: Tetrahedron Crystal Projection Prism projecting E8 a) the crystal prism geometry and vertices, b) the selected basis
vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with progressively
increasing transparency and tally of vertex norms

APPENDIX B: HULL PRISM FIGURES
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FIG. 13: Octahedron Crystal Projection Prism projecting E8 a) the crystal prism geometry and vertices, b) the selected basis
vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with progressively
increasing transparency and tally of vertex norms (Note: The Cube also produces the same concentric hull structure scaled by√

2)
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FIG. 14: Dodecahedron Crystal Projection Prism projecting E8 a) the crystal prism geometry and vertices, b) the selected basis
vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with progressively
increasing transparency and tally of vertex norms
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FIG. 15: MetabidiminishedIcosahedron (with its negated vertices gives the GyroelongatedPentagonalPyramid) Crystal Pro-
jection Prism projecting E8 a) the crystal prism geometry and vertices, b) the selected basis vectors, c) the individual 3D
projected concentric hull objects, d) the combined set of concentric objects with progressively increasing transparency and tally
of vertex norms
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FIG. 16: Cuboctahedron Crystal Projection Prism projecting E8 a) the crystal prism geometry and vertices, b) the selected
basis vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with progressively
increasing transparency and tally of vertex norms
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FIG. 17: RhombicDodecahedron Crystal Projection Prism projecting E8 a) the crystal prism geometry and vertices, b) the
selected basis vectors, c) the individual 3D projected concentric hull objects, d) the combined set of concentric objects with
progressively increasing transparency and tally of vertex norms


