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Abstract: In this paper we study the neutrosophic triplet groups for a ∈ Z2p and prove this collection
of triplets (a, neut(a), anti(a)) if trivial forms a semigroup under product, and semi-neutrosophic
triplets are included in that collection. Otherwise, they form a group under product, and it is of
order (p− 1), with (p + 1, p + 1, p + 1) as the multiplicative identity. The new notion of pseudo
primitive element is introduced in Z2p analogous to primitive elements in Zp, where p is a prime.
Open problems based on the pseudo primitive elements are proposed. Here, we restrict our study to
Z2p and take only the usual product modulo 2p.

Keywords: neutrosophic triplet groups; semigroup; semi-neutrosophic triplets; classical group of
neutrosophic triplets; S-semigroup of neutrosophic triplets; pseudo primitive elements

1. Introduction

Fuzzy set theory was introduced by Zadeh in [1] and was generalized to the Intuitionistic Fuzzy
Set (IFS) by Atanassov [2]. Real-world, uncertain, incomplete, indeterminate, and inconsistent data
were presented philosophically as a neutrosophic set by Smarandache [3], who also studied the notion
of neutralities that exist in all problems. Many [4–7] have studied neutralities in neutrosophic algebraic
structures. For more about this literature and its development, refer to [3–10].

It has not been feasible to relate this neutrosophic set to real-world problems and the engineering
discipline. To implement such a set, Wang et al. [11] introduced a Single-Valued Neutrosophic Set
(SVNS), which was further developed into a Double Valued Neutrosophic Set (DVNS) [12] and a Triple
Refined Indeterminate Neutrosophic Set (TRINS) [13]. These sets are capable of dealing with the real
world’s indeterminate data, and fuzzy sets and IFSs are not.

Smarandache [14] presents recent developments in neutrosophic theories, including the neutrosophic
triplet, the related triplet group, the neutrosophic duplet, and the duplet set. The new, innovative,
and interesting notion of the neutrosophic triplet group, which is a group of three elements, was
introduced by Florentin Smarandache and Ali [10]. Since then, neutrosophic triplets have been a field of
interest that many researchers have worked on [15–22]. In [21], cancellable neutrosophic triplet groups
were introduced, and it was proved that it coincides with the group. The paper also discusses weak
neutrosophic duplets in BCI algebras. Notions such as the neutrosophic triplet coset and its connection
with the classical coset, neutrosophic triplet quotient groups, and neutrosophic triplet normal subgroups
were defined and studied by [20].

Using the notion of neutrosophic triplet groups introduced in [10], which is different from
classical groups, several interesting structural properties are developed and defined in this paper.
Here, we study the neutrosophic triplet groups using only {Z2p,×}, p is a prime and the operation ×
is product modulo 2p. The properties as a neutrosophic triplet group under the inherited operation ×
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is studied. This leads to the definition of a semi-neutrosophic triplet. However, it has been proved
that semi-neutrosophic triplets form a semigroup under ×, but the neutrosophic triplet groups, which
are nontrivial and are not semi-neutrosophic triplets, form a classical group of neutrosophic triplets
under ×.

This paper is organized into five sections. Section 2 provides basic concepts. In Section 3,
we study neutrosophic triplets in the case of Z2p, where p is an odd prime. Section 4 defines the
semi-neutrosophic triplet and shows several interesting properties associated with the classical group
of neutrosophic triplets. The final section provides the conclusions and probable applications.

2. Basic Concepts

We recall here basic definitions from [10].

Definition 1. Consider (S,×) to be a nonempty set with a closed binary operation. S is called a neutrosophic
triplet set if for any x ∈ S there will exist a neutral of x called neut (x), which is different from the algebraic
unitary element (classical), and an opposite of x called anti (x), with both neut (x) and anti (x) belonging to S
such that

x ∗ neut (x) = neut (x) ∗ x = x

and
x ∗ anti (x) = anti (x) ∗ x = neut (x) .

The elements x, neut (x), and anti (x) are together called a neutrosophic triplet group, denoted by
(x, neut (x) , anti (x)).

neut (x) denotes the neutral of x. x is the first coordinate of a neutrosophic triplet group and not
a neutrosophic triplet. y is the second component, denoted by neut (x), of a neutrosophic triplet if
there are elements x and z ∈ S such that x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. Thus, (x, y, z) is the
neutrosophic triplet.

We know that (neut (x) , neut (x) , neut (x)) is a neutrosophic triplet group. Let {S, ∗} be the
neutrosophic triplet set. If (S, ∗) is well defined and for all x, y ∈ S, x ∗ y ∈ S, and (x ∗ y) ∗ z = x ∗ (y ∗ z)
for all x, y, z ∈ S, then {S, ∗} is defined as the neutrosophic triplet group. Clearly, {S, ∗} is not a group
in the classical sense.

In the following section, we define the notion of a semi-neutrosophic triplet, which is different
from neutrosophic duplets and the classical group of neutrosophic triplets of {Z2p,×}, and derive
some of its interesting properties.

3. The Classical Group of Neutrosophic Triplet Groups of {Z2p,×} and Its Properties

Here we define the classical group of neutrosophic triplets using {Z2p,×}, where p is an odd
prime. The collection of all nontrivial neutrosophic triplet groups forms a classical group under the
usual product modulo 2p, and the order of that group is p− 1. We also derive interesting properties of
such groups.

We will first illustrate this situation with some examples.

Example 1. Let S = {Z22,×} be the semigroup under × modulo 22. Clearly, 11 and 12 are the only
idempotents or neutral elements of Z22. The idempotent 11 ∈ Z22 yields only a trivial neutrosophic triplet
(11, 11, 11) for 11× 21 = 11, where 21 is a unit in Z22. The other nontrivial neutrosophic triplets associated
with the neutral element 12 are H = {(2, 12, 6) , (6, 12, 2) , (4, 12, 14) , (14, 12, 4) , (16, 12, 20) , (20, 12, 16) ,
(12, 12, 12) , (10, 12, 10) , (8, 12, 18) , (18, 12, 8)}. It is easily verified that {H,×} is a classical group of order
10 under component-wise multiplication modulo 22, with (12, 12, 12) as the identity element. (12, 12, 12)×
(12, 12, 12) = (12, 12, 12) product modulo 22. Likewise,

(2, 12, 6)× (2, 12, 6) = (4, 12, 14) ,
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and (2, 12, 6)× (4, 12, 14) = (8, 12, 18) ;
(2, 12, 6)× (8, 12, 18) = (16, 12, 20) ,

and (2, 12, 6)× (16, 12, 20) = (10, 12, 10) ;
(10, 12, 10)× (2, 12, 6) = (20, 12, 16) ,

and (2, 12, 6)× (20, 12, 16) = (18, 12, 8) ;
(2, 12, 6)× (18, 12, 8) = (14, 12, 4) ,

and (2, 12, 6)× (14, 12, 4) = (6, 12, 2) ;
(6, 12, 2)× (2, 12, 6) = (12, 12, 12) ,

and (2, 12, 6)10 = (12, 12, 12) .

Thus, H is a cyclic group of order 10.

Example 2. Let S = {Z14,×} be the semigroup under product modulo 14. The neutral elements or idempotents
of Z14 are 7 and 8. The neutrosophic triplets are

H = {(2, 8, 4) , (4, 8, 2) , (6, 8, 6) , (10, 8, 12) , (12, 8, 10) , (8, 8, 8)},

associated with the neutral element 8. H is a classical group of order 6. Clearly,

(10, 8, 12)× (10, 8, 12) = (2, 8, 4),
(10, 8, 12)× (2, 8, 4) = (6, 8, 6),
(10, 8, 12)× (6, 8, 6) = (4, 8, 2),

(10, 8, 12)× (4, 8, 2) = (12, 8, 10), and
(10, 8, 12)× (12, 8, 10) = (8, 8, 8).

Thus, H is generated by (10, 8, 12) as (10, 8, 12)6 = (8, 8, 8), and (8, 8, 8) is the multiplicative identity of
the classical group of neutrosophic triplets.

Example 3. Let S = {Z38,×} be the semigroup under product modulo 38. 19, 20 ∈ Z38 are the idempotents
of Z38.

H = {(2, 20, 10) , (10, 20, 2) , (4, 20, 24) , (24, 20, 4) , (20, 20, 20) , (8, 20, 12) ,
(12, 20, 8) , (16, 20, 6) , (6, 20, 16) , (32, 20, 22) , (22, 20, 32) , (18, 20, 18) ,

(34, 20, 14) , (14, 20, 34) , (26, 20, 28) , (28, 20, 26) , (30, 2036) , (36, 20, 30)}

is the classical group of neutrosophic triplets with (20, 20, 20) as the identity element of H.

In view of all these example, we have the following results.

Theorem 1. Every semigroup {Z2p,×}, where p is an odd prime, has only two idempotents: p and p + 1.

Proof. Clearly, p is a prime of the form 2n + 1 in Z2p.

p2 = (2n + 1)2 = 4n2 + 4n + 1

= 4n2 + 2n + 2n + 1

= 4n2 + 2n + p

= 2n (2n + 1) + p

= 2np + p

= p.
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Thus, p is an idempotent in Z2p. Consider p + 1 ∈ Z2p :

(p + 1)2 = p2 + 2p + 1

= p2 + 1

= p + 1 as p2 = p.

Thus, p and p + 1 are the only idempotents of Z2p. In fact, Z2p has no other nontrivial idempotent.
Let x ∈ Z2p be an idempotent. This implies that x must be even as all odd elements other than p are

units.
Let x = 2n (where n is an integer), and 2 < n < p− 1 such that x2 = 4n2 = x = 2n, which implies

that 2n (2n− 1) = 0.
This is zero only if 2n− 1 = p as 2n− 1 is odd. Otherwise, 2n = 0, which is not possible, as n

is even and n is not equal to 0, x 6= 0, so 2n− 1 = p. That is, x = 2n = p + 1 is the only possibility.
Otherwise, x = 0, which is a contradiction.

Thus, Z2p has only two idempotents, p and p + 1.

Theorem 2. Let G = {Z2p,×}, where p is an odd prime, be the semigroup under ×, product modulo 2p.

1. If a ∈ Z2p has neut (a) and anti (a), then a is even.
2. The only nontrivial neutral element is p + 1 for all a, which contributes to neutrosophic triplet groups

in G.

Proof. Let a in G be such that a× neut (a) = a if a is odd and a 6= p. Then a−1 exists in Z2p and we
have neut (a) = 1, but neut (a) 6= 1 by definition. Hence the result is true.

Further, we know neut (a)× neut (a) = neut (a), that is neut (a) is an idempotent. This is possible
if and only if a = p + 1 or p.

Clearly, a = p is ruled out because ap = 0 for all even a in Z2p, hence the claim.
Thus, neut (a) = p + 1 is the only neutral element for all relevant a in Z2p.

Definition 2. Let {Z2p,×} be the semigroup under multiplication modulo 2p, where p is an odd prime.
H = {(a, neut (a) , anti (a)) |a ∈ 2Z2p \ {0}}. {H,×} is the collection of all neutrosophic triplet groups. H
has the multiplicative identity (p + 1, p + 1, p + 1) under the component-wise product modulo 2p. H is defined
as the classical group of neutrosophic triplets.

We have already given examples of them. It is important to mention this definition is valid only
for Z2p under the product modulo 2p where p is an odd prime.

Example 4. Let S = {Z46,×} be the semigroup under product modulo 46. Let

H = {(24, 24, 24) , (2, 24, 12) , (12, 24, 2) , (4, 24, 6) , (6, 24, 4) , (8, 24, 26) ,
(26, 24, 8) , (16, 24, 36) , (36, 24, 16) , (32, 24, 18) , (18, 24, 32) , (22, 24, 22) ,
(10, 24, 30) , (14, 24, 28) , (28, 24, 14) , (30, 24, 10) , (20, 24, 38) , (38, 24, 20) ,

(34, 24, 44) , (44, 24, 34) , (40, 24, 42) , (42, 24, 40)}

be the classical group of neutrosophic triplets, with (24, 24, 24) as the identity under ×. o (H) = 22.

In view of all of this, we have to define the following for Z2p.

Definition 3. Let {Z2p,×} be the semigroup under product modulo 2p, where p is an odd prime. Let
K = {2, 4, . . . , 2p− 2} be the set of all even elements of Z2p. For p + 1 ∈ K, x × p + 1 = x,∀ x ∈ K.
There also exists a y ∈ K such that yp−1 = p + 1. We define this y as the pseudo primitive element of K ⊆ Z2p.
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Note: We can define pseudo primitive elements only for Z2p where p is an odd prime and not for
any Zn, where n is an even integer that is analogous to primitive elements in Zp, where p is a prime.

We will illustrate this situation with some examples.

Example 5. Let {Z6,×} be the modulo semigroup. For K = {2, 4}, 2 is the pseudo primitive element of K ⊆ Z6.

Example 6. Let {Z14,×} be the modulo semigroup under product ×, modulo 14. Consider K =

{2, 4, 6, 8, 10, 12} ⊆ Z14. Then 10 is the pseudo primitive element of K ⊆ Z14.

Example 7. Let {Z34,×} be the semigroup under product modulo integer 34. 10 is the pseudo primitive
element of K = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32} ⊆ Z34.

Similarly, for {Z38,×}, 10 is the pseudo primitive element of K = 2Z38 \ {0} ⊆ Z38.
However, in the case of Z22, Z58, and Z26, 2 is the pseudo primitive element for these semigroups.

We leave it as an open problem to find the number of such pseudo primitive elements of
K = {2, 4, 6, . . . , 2(p− 1)} of Z2p.

We have the following theorem.

Theorem 3. Let S = {Z2p,×} be the semigroup under product modulo 2p, where p is an odd prime.

1. K = {2, 4, . . . , 2p− 2} ⊆ Z2p has a pseudo primitive element x ∈ K with xp−1 = p + 1, where p + 1 is
the multiplicative identity of K.

2. K is a cyclic group under × of order p− 1 generated by that x, and p + 1 is the identity element of K.
3. S is a Smarandache semigroup.

Proof. Consider Z2p, where p is an odd prime. Let K = {2, 4, 6, . . . , 2p− 2} ⊆ Z2p. For any x ∈ K,
(p + 1)x = px + x = x ispx = 0(mod 2p), where x is even. Thus, p + 1 is the identity element of Z2p.
There is a x ∈ K such that xp−1 = p + 1 using the principle of 2p ≡ 0, where x is even. This x is the
pseudo primitive element of K.

This x ∈ K proves part (2) of the claim.
Since K is a group under × and K ⊆ {Z2p,×}, by the definition of Smarandache semigroup [4],

S is an S-semigroup, so (3) is true.

Next, we prove that the following theorem for our research pertains to the classical group of
neutrosophic triplets and their structure.

Theorem 4. Let S = {Z2p,×} be the semigroup. Then

H = {(a, neut(a), anti(a)) |a ∈ 2Z2p \ {0}},

is the classical group of neutrosophic triplets, which is cyclic and of the order p− 1.

Proof. Clearly, from the earlier theorem, K = 2Z2p \ {0} is a cyclic group of the order p− 1, and p + 1
acts as the identity element of K.

H = {(a, neut(a), anti(a)) |a ∈ K} is a neutrosophic triplet groups collection and neut(a) = p + 1
acts as the identity and is the unique element (neutral element) for all a ∈ K.

(neut(a), neut(a), neut(a)) = (p + 1, p + 1, p + 1) acts as the unique identity element of every
neutrosophic triplet group h in H.

Since K ⊆ Z2p \ {0} is a cyclic group of order p − 1 with p + 1 as the identity element of K,
we have H = {(a, neut (a) , anti (a)) |a ∈ K}, to be cyclic. If x ∈ K is such that xp−1 = p + 1, then that
neutrosophic triplet group element (x, p + 1, anti(x)) in H will generate H as a cyclic group of order
p− 1 as a× anti(a) = neut(a).
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Hence, H is a cyclic group of order p− 1.

Next, we proceed to describe the semi-neutrosophic triplets in the following section.

4. Semi-Neutrosophic Triplets and Their Properties

In this section, we define the notion of semi-neutrosophic triplet groups and trivial neutrosophic
triplet groups and show some interesting results.

Example 8. Let {Z26,×} = S be the semigroup under product modulo 26.
We see that 13 ∈ Z26 is an idempotent, but 13× 25 = 13, where 25 is a unit of Z26. Therefore, for this

25, we cannot find anti(13), but 13× 13 = 13 is an idempotent, and (13, 13, 13) is a neutrosophic triplet
group. We do not accept it as a neutrosophic triplet, as it cannot yield any other nontrivial triplet other than
(13, 13, 13).

Further, the authors of [10] defined (0, 0, 0) as a trivial neutrosophic triplet group.

Definition 4. Let S = {Z2p,×} be the semigroup under product modulo 2p. p ∈ Z2p is an idempotent
of Z2p. However, p is not a neutrosophic triplet group as p × (2p− 1) = 2p − p = p. Hence,
(p, neut(p), anti(p)) = (p, p, p) is defined as a semi-neutrosophic triplet group.

Proposition 1. Let S = {Z2p,×} be the semigroup under product modulo 2p. (p, p, p) is the
semi-neutrosophic triplet group of Z2p.

Proof. This is obvious from the definition and the fact p2 = p in Z2p under product modulo 2p.

Example 9. Let S = {Z46,×} be the semigroup under product modulo 46. T = {(23, 23, 23) , (0, 0, 0)} is the
semi-neutrosophic triplet group and the zero neutrosophic triplet group. Clearly, T is a semigroup under ×, and
T is defined as the semigroup of semi-neutrosophic triplet groups of order two as (23, 23, 23)× (23, 23, 23) =

(23, 23, 23). K = {(a, neut (a) , anti (a)) |a ∈ 2Z46 \ {0} = {2, 4, 6, 8, 10, 12, 14, 16, . . . , 42, 44}} is a classical
group of neutrosophic triplets.

Let P = 〈K ∪ T〉 = K ∪ T. For every x ∈ K and for every y ∈ T, x× y = y× x = (0, 0, 0).
Thus, P is a semigroup under product, and P is defined as the semigroup of neutrosophic triplets.
Further, we define T as the annihilating neutrosophic triplet semigroup of the classical group of

neutrosophic triplets.

Definition 5. Let S = {Z2p,×}, where p is an odd prime, be the semigroup under product modulo
2p. Let K = {(a, neut (a) , anti (a)) |a ∈ 2Z2p \ {0},×} be the classical group of neutrosophic triplets.
Let T = {(p, p, p) , (0, 0, 0)} be the semigroup of semi-neutrosophic triplets (as a minomer, we call the trivial
neutrosophic triplet (0, 0, 0) as a semi-neutrosophic triplet). Clearly, 〈T ∪ K〉 = T ∪ K = P is defined as the
semigroup of neutrosophic triplets with o (P) = o (T) + o (K) = p− 1 + 2 = p + 1.

Further, T is defined as the annihilating semigroup of the classical group of neutrosophic triplets K.

We have seen examples of classical group of neutrosophic triplets, and we have defined and
studied this only for Z2p under the product modulo 2p for every odd prime p.

In the following section, we identify open problems and probable applications of these concepts.

5. Discussions and Conclusions

This paper studies the neutrosophic triplet groups introduced by [10] only in the case of {Z2p,×},
where p is an odd prime, under product modulo 2p. We have proved the triplets of Z2p are contributed
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only by elements in 2Z2p \ {0} = {2, 4, . . . , 2p− 2}, and these triplets under product form a group of
order p− 1, defined as the classical group of neutrosophic triplets.

Further, the notion of pseudo primitive element is defined for elements K1 = 2Z2p \ {0} =

{2, 4, 6, . . . , 2p− 2} ⊆ Z2p. This K1 is a cyclic group of order p− 1 with p + 1 as its multiplicative
identity. Based on this,

K = {(a, neut(a), anti(a)) |a ∈ K1,×}

is proved to be a cyclic group of order p− 1.
We suggest the following problems:

1. How many pseudo primitive elements are there in {Z2p,×}, where p is an odd prime?
2. Can {Zn,×}, where n is any composite number different from 2p, have pseudo primitive

elements? If so, which idempotent serves as the identity?

For future research, one can apply the proposed neutrosophic triplet group to SVNS and develop
it for the case of DVNS or TRINS. These neutrosophic triplet groups can be applied to problems
where neut(a) and anti(a) are fixed once a is chosen, and vice versa. It can be realized as a special
case of Single Valued Neutrosophic Sets (SVNSs) where neutral is always fixed. For every a in K1,
the other factor anti(a) is automatically fixed, thereby eliminating the arbitrariness in determining
anti(a); however, there is only one case in which a = anti(a). The set 2Z2p \ {0} can be used to model
this sort of problem and thereby reduce the arbitrariness in determining anti(a), which is an object of
future study.
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SVNS Single Valued Neutrosophic Set
DVNS Double Valued Neutrosophic Set
TRINS Triple Refined Indeterminate Neutrosophic Set
IFS Intuitionistic Fuzzy Set
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