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Abstract: This paper offers the first proof that the minimal solution of the n x n dots puzzle, 
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given. 

Keywords: Graph theory, Topology, Nine dots puzzle, Creative thinking, Segment, 
Connectivity, Inside the box, Point, Game. 

2010 Mathematics Subject Classification: 91A43, 05C57. 

 
1 Introduction 

The classic nine dots problem by Samuel Loyd [2] states that we have to “(…) draw a 
continuous line through the center of all the eggs so as to mark them off in the fewest number 
of strokes” (see [1, 3]). 

We can naturally extend the puzzle to a generic n x n points grid, asking: “How many 
straight lines connected at their end-points we need to join n x n points arranged in a regular 
grid, formed by n equidistant rows and n equidistant columns?”. 

Since 2013, Ripà and others have investigated this problem and its extensions to a 
multidimensional space, but a strict proof of the best solution, for any 𝑛 ∈ ℕ − 0 , have not 
been given yet [4, 5]. 

The aim of this paper is to show that, for any n > 2, the n x n points problem cannot be 
solved using less than 2n-2 lines, providing a fixed pattern to solve every n x n puzzle with 
exactly 2n-2 lines [6]. 
 



2 Trivial cases: n < 5 

Let ℎ 𝑛  represent the minimum number of straight lines connected at their end-points to join 
the n x n points of the grid, it is trivial to see that ℎ 1 = 1 and ℎ 2 = 3. In fact, we need 
one line to fit a single point and 3 lines to join two pairs of points laying on two parallel 
segments. 

In this section, our goal is to prove that ℎ 𝑛 = 2 ∙ 𝑛 − 1, for 𝑛 = 3 and 𝑛 = 4. 
We know [4] that it is impossible to join more than 

𝑛 + 𝑛 − 1 ∙ (ℎ 𝑛 − 1)  	(1) 

points using ℎ straight lines connected at their end-points. Since the points are 𝑛3, it follows 
that 

𝑛 + 𝑛 − 1 ∙ (ℎ 𝑛 − 1) ≤ 𝑛3   	(2) 

Thus, 

ℎ 𝑛 = 5675
578

+ 1  (3) 

Assume that 𝑛 ≠ 1, the (3) can be simplified as 

ℎ 𝑛 = 𝑛 + 1 (4) 

 
The (3) ensures that we cannot solve the 3 x 3 puzzle using less than 4 lines: ℎ 3 = 3 + 1. 
In order to show that ℎ 4 > 5, let we assume 𝑟 ≥ 2: we count how many patterns of  

𝑟 + 1 consecutive lines fit a total of 𝑛 + 𝑟 ∙ 𝑛 − 1  points. It is trivial to observe how exist 
only 3 patterns such that 𝑟 ≥ 2, because a perfect 2-dimensional pattern cannot include 
segments which do not lay on the four sides of the perimeter of the square, since (at least one 
of) them would join 𝑛 − 2 unvisited points (at most), and this is unacceptable if we want to 
join 𝑛 + (ℎ − 1) ∙ 𝑛 − 1  points with 𝑟 + 1 lines connected at their end-points. 

The same rule implies that we cannot use “diagonal” lines different from the 6 shown in 
Figure 1. 

 
Figure 1. Let 𝑟 ≥ 2, there are only 10 lines that are able to join 𝑛 + 𝑟 ∙ 𝑛 − 1  

unvisited points. 
 



It follows that, for any 𝑛 ≥ 3, ∃! pattern such that 𝑟 = 3 (out of 3 patterns with 𝑟 ≥ 2). 
The only exception to this rule implies 𝑛 = 5, as shown by Figure 2. 

 

 
 

Figure 2. The special case for 𝑛 = 5, 𝑟 = 2: it is impossible to spend less than 5 connected lines 
to join 12 points which are equally distributed along 3 parallel segments contained in a 2x4 box. 

 
𝑟 = 3 only if 𝑛 is an odd value (formally, 𝑛 = 2 ∙ 𝑚 + 1, 𝑚 ∈ ℕ − 0 ). In this case, the 

related pattern is the same one we use to solve the classic 3 x 3 puzzle (see Figure 3). 

 
Figure 3. The only pattern with 𝑟 = 3 implies 𝑛 = 2 ∙ 𝑚 + 1, 𝑚 ∈ ℕ − 0 . 

The consideration above (𝑟?@A = 3) is sufficient to prove that ℎ 4 = 6. 
Let 𝑟 = 3 and	𝑛 = 4 (even if we already know that this cannot happen, since 4 is an even 

number), there is no way to join more than 𝑛 + 𝑟 ∙ 𝑛 − 1 + 𝑛 − 2 = 15 points with 5 
straight lines connected at their end-points. Thus, ℎ?C5 4 = ℎ 4 = 6, and a solution is 
shown in Figure 4. 

  
Figure 4. Solving the 4 x 4 points problem with 6 lines.    £	

 



3 Proof for any n ≥ 5 

We are finally ready to prove the general case: 𝑛 ≥ 5. 
First of all, we provide a general criterion to solve any 𝑛	x	𝑛 grid (𝑛 > 2) using exactly 

2𝑛 − 2 lines [4]. The pattern to achieve our goal (solving the puzzle inside the box too) is 
shown in Figure 5. 

 
Figure 5. The square-spiral pattern solves any 𝑛	x	𝑛 grid with 2𝑛 − 2 lines, for any 𝑛 ≥ 5. 
 
Taking a look at Figure 6, we study the 3 basic patterns with 𝑟 ≥ 2 starting from the worst-

case scenario: 𝑛 = 2 ∙ 𝑚 + 1, 𝑚 ∈ ℕ − 0, 1 . 

 
Figure 6. These are the only 3 patterns with	𝑟 ≥ 2, for any 𝑛 = 2 ∙ 𝑚 + 1, 𝑚 ∈ ℕ− 0, 1, 2 . 

If 𝑛 = 5,	there would be also the pattern shown in Figure 2 (already discharged). 
 
The basic idea is to start from each one of the 3 patterns above, extending them from the 

ends, with the aim to maximize the number of new dots visited by small sets of connected 
lines. In this way, by comparison, it is possible to write down the corresponding series which 
maximize the number of visited points after 2n-3 lines, showing that this value is < 𝑛3, for 
any 𝑛 ≥ 5. 

Taking into account the pattern 1 by Figure 6, we have the following scheme: 



 
Figure 7. Best development of the first pattern shown in Figure 6: new visited dots are indicated. 

 
Following the pattern above, we have the series: 
 

𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 2 ∙ 𝑛 − 3 + 2 ∙ 𝑛 − 4 +⋯  (5)  

 
Thus, in order to prove that the square-spiral pattern (spending 2 ∙ 𝑛 − 2 lines) is the best 

approach at all, we have to show that 𝑛 − 𝑖I 5 78
CJ8 < 𝑛3 ↔ 𝑛 − 𝑖357L

CJ8 < 𝑛3, for any 
𝑛 ≥ 5. Since 𝑛 − 𝑖357L

CJ8 = 𝑛3 − 𝑛 − 2, this is true for any 𝑛 ≥ 5, the first pattern cannot 
improve the general 2 ∙ 𝑛 − 2 lines solution based on the square-spiral pattern (e.g., ℎ 5 = 7 
iff 7 ∙ 5 − 12 < 53 is false, hence ℎ 5 = 8).  

 
Considering the second scheme by Figure 6, we derive a few equivalent patterns. 
 
Lemma 1: Let	𝑛 = 2 ∙ 𝑚 + 1, ∄ pattern with at least 10 straight lines connected at their 

end-points which improves the result described in (7), as shown in Figures 7, 8 and 9. 
 
It easy to understand the Lemma 1 looking at the comparison between the two best patterns 

available: the first one is the best pattern for 7 ≤ ℎ 𝑛 ≤ 9, while the second one cannot be 
improved for any ℎ 𝑛 ≥ 10. Thus, it is sufficient to calculate how many “new” points it is 
possible to visit with the first 7 lines by the pattern 2a (given that 𝑛 is odd by hypothesis): if 
the value is < 53 we are allowed to consider the pattern 2b only. 



 
Figure 8. Best developments of the pattern 2 by Figure 6: new visited dots are indicated. 

 
The series related to the pattern 2a is as follows: 
 
𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 3 ∙ 𝑛 − 3 + 4 ∙ 𝑛 − 5 +⋯   (6) 

 
The series related to the pattern 2b is as follows: 

 
𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 𝑛 − 3 + 4 ∙ 𝑛 − 4 + 2 ∙ 𝑛 − 5 +⋯  (7) 

 
Let 𝑛 = 5, from the (6) we get ℎ 5 = 7 iff 7 ∙ 5 − 12 ≥ 53. 
As (6) ≤ (7), it is sufficient to verify that 
 
𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 𝑛 − 3 + 4 ∙ 𝑛 − 4 + 2 ∙ 𝑛 − 5 +⋯ < 𝑛3 (8) 

 
For any	𝑛 ≥ 7, the (8) is true since 1 + 𝑛 − 𝑖573

CJ8 < 𝑛3 ↔ 1 + 𝑛3 − 𝑛 − 2 + 𝑛 < 𝑛3 
(e.g., ℎ 7 = 11 iff 1 + 11 ∙ 7 − 30 < 73 is false, hence ℎ 7 = 12), therefore neither the 
pattern 2a nor the pattern 2b improves the square-spiral solution. 

 
Now, let us consider the last pattern introduced in Figure 6; the final scheme is as follows 

(Figure 9): 



 
Figure 9. Best development of the pattern 3 by Figure 6: new visited dots are indicated. 

 
The related series is: 

 𝑛 + 3 ∙ 𝑛 − 1 + 4 ∙ 𝑛 − 3 + 4 ∙ 𝑛 − 5 +⋯ = 

   = 1 + 4 ∙ 𝑛 − 1 + 4 ∙ 𝑛 − 3 + 4 ∙ 𝑛 − 5 +⋯  (9) 
 

It is easy to note that, for any ℎ(𝑛) ≥ 10, (9) ≤ (8), while the first 7 segments joins only 
7 ∙ 5 − 12 < 25 points. 

This concludes the proof that, for any odd value of 𝑛, ∄ a pattern such that 
 ℎ 𝑛 < 2 ∙ 𝑛 − 1 . 

 
It is necessary to study also the 3 patterns with 𝑟 = 2 (see Figure 6), for any 

𝑛 = 2 ∙ 𝑚, 𝑚 ∈ ℕ − 0, 1, 2  (since 𝑟 < 3 for any even value of 𝑛), in order to prove that 
ℎ?C5 𝑛 = ℎ 𝑛 = 2 ∙ 𝑛 − 2 for any 𝑛 > 2. 



 
Figure 10. Best developments of the 3 patterns with 𝑟 > 1, for any 𝑛 = 2 ∙ 𝑚, ∀𝑚 > 2. 

 
Following the 3 patterns represented in Figure 10, we get the series (10), (11), (12). 

 
Pattern 1:  	𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 2 ∙ 𝑛 − 3 + 2 ∙ 𝑛 − 4 + 2 ∙ 𝑛 − 5 + 2 ∙ 𝑛 − 6 + ⋯	(10) 
 
Pattern 2: 𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 2 ∙ 𝑛 − 3 + 3 ∙ 𝑛 − 4 + 4 ∙ 𝑛 − 6 + 4 ∙ 𝑛 − 8 …   11  
 
Pattern 3:  𝑛 + 2 ∙ 𝑛 − 1 + 2 ∙ 𝑛 − 2 + 2 ∙ 𝑛 − 3 + 3 ∙ 𝑛 − 4 + 𝑛 − 5 + 2 ∙ 𝑛 − 6 + ⋯          (12) 

 
Let ℎ(𝑛) ≥ 11, by comparison, we see that (11) ≤ (12) and (10) ≤ (12) ≤ (7), for any 

𝑛 = 2 ∙ 𝑚, 𝑚 ∈ ℕ − 0, 1, 2, 3 , since we assume ℎ 𝑛 ≔ 2 ∙ 𝑛 − 3. 

In order to complete the proof, it is necessary to check that ℎ 6 > 9. This is clear, since 
9 ∙ 6 − 20 < 36, by the (10), (11) and (12). 

Finally, we can conclude that, for any 𝑛 ∈ ℕ − 0 , ∄ a pattern such that 
 ℎ 𝑛 < 2 ∙ 𝑛 − 2. Therefore, assuming 𝑛 ≥ 5, the spiral-square solution uses the minimum 
number of straight lines connected at their end-points to solve any n x n grid.   £	
 

In conclusion, we observe that the best pattern shown on these pages (the pattern 2b 
associated to the (7)) is isomorphic to the square-spiral scheme, represented in Figure 5. 

These two patters are indeed the same one, as shown in Figure 11. 



 
Figure 11. The best pattern we have considered in these pages corresponds to the well known 

square-spiral scheme: the solution cannot involve less than 2 ∙ 𝑛 − 2 connected lines. 
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