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1. Abstract.

This article refers to the paper http:/ /vixra.org/abs/1801.0037, 'Turbulence as structured Route of Energy
from Order into Cha,os", published by Udo E. Steinemann (vixra.org, Category: Physics, Classical Physics,
1801[2]). Within Conclusion of the referenced text a statement was made: "This way a picture about an eddy's
decay can be drawn as a well structured route of energy from order into chaos, similar to those of many other
dynamical systems too". The current text will give additional explanations to this statement.

The current text will sketch the way entrance to chaos is shown for the quadratic iterator and how the major
outcomes from this perception can be used in addition to the above mentioned article.

2. Introduction.

What are the signs of chaos? There a,re many dynamical systems that can produce chaos. But in the
following focus is on quadratic transformation, which comes in different forms, one of them is for example:

2.1, n - a,,n{l-n)

It has turned out that the qualitative phenomena of the quadratic transforrnation are in fact the paradigm of
chaos in dyna.rnical systems. Moreover, for the quadratic transformation the properties of chaos can be
observed and completely analyzed mathematically.

The next figure shows the computed time-series of r-values stating at some value e6 with the parameter
set at a -- 4, tbe parabola is the graph of the iteration function a.x(L-r) and is the locus of points (n,, rr*r)t

p.2.1.

This is called the orbit of rs. On horizontal axis the number of iterations is marked, on vertical axis the
amplitudes for the iterations are given. The points are connected by segments. It is obvious that graph cannot
escape the bounds 0 and 1.

In following figure not only one initial point zs but an entire interval is iterated. It can be observed that all
values in the interval are attracted by the same final state.

F.2.2.

The phenomenon of sensitivity on the initial conditions magnifies even the smallest error, an effect that is
demonstrated in the next figures:
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The initia-l small intervals have already grown considerably a.fter just a few iterations. The property of this
sensivity is central for chaos. In the quadratic iterator r = 4.n(7-r) small errors will roughly double in each
iteration. The concept of LJAPUNOV-exponents quantifies the ayerage growth of infinitesimally small in
the initial point of the iteration. Small error is amplified in the course of iteration, small interval of initial
values finally become spread over whole unit interval this behaviour is called mixing. One can describe the
mixing property of the iterations in the following way: For any two open intervals (which can arbitrarily small,
but must have non-zero length, initial values from one interval can eventrally be found in the other interval.

Cha.os and order have iong tleen viewed as antagonistic, one of the great surprises revealed through the
studies of the quadratic iterator:

2.2. fri+t= a.xi(l* fr), j = 0rl,2r...., a=ll,4l

is that both antagonistic states can be rules by a single law and there is a rnrell defined route which leads from
order into cha,os. Furthermore it was recognized that this route is universal. Route means that there are
abrupt qualitative changes - called bifurcations - which mark the transition from oqler into chaos like a
schedule and universal means that these bifurcations can be found in many natural systems both qualitatively
and quantitatively.

One is interested to explore the long term behaviour of the quadratic iterator for all values of the parameter
a,. This mea.ns one would like to know what will happen to the iterate riwhenthe dependence of the initial
choice 16 is diluted to almost zero. The time-series randomly chosen parameter o and initial value 16 after a
transient phase of a few iterations the orbit will settle down to a fixed point - called final state -. If one
repeats this experiment for different initial values and parameter-values one will reach other final states. If
one enters all these states into the final-state-diagram by drawing them versus the values of appropriate
pararreter-value a € 1L,41, one will come out with the following picture:

F.2.4.

One will note that f.or a> 3 the final state is not a mere point but a collection of 2 ,4, ... ,2k points and at
parameter-value 4 one will find the cha,os discussed previously and the points of the final states fill up the
complete interval densely. Sometimes this image is also called FEIGENBAUM-diagram.

One essential structure seen in this FEIGENBAUM-diagram is that of a branching tree which portrays the
qualitative changes of the iterator r--a.r(l-r). Out of a major stem two branches are bifurcating, out of
these branches another two branches bifurcate again and so on. This is the period-doubling regime of the
scenario.

Where one sees just one branch the long term behaviour of the system tends towards a fixed final state,
which, however, depends on the parameter a. This final state will be reached no matter where - at which
initial state rs - one starts. If one sees two branches this means that the long term behaviour of the_system is
now alternating between two different states. a lower and an upper one. This is called periodic behaviour.
Since there are two states now, one says that the period is two now. With four branches it happens the period
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of final state behaviour as increase from two to four, finally one get a period-doubling-cascades of 7 "-+ 2 -'-+ 4

--' ... --+ 2tu. Beyond this period-doubling cascade at the right of end of the figure one can see a structure with a
lot of detailed and remarkable designs.

FEIGENBAUM-diagram has features that are both of a qualitative nature and quantitative one. The
qualitative feature axe best be analyzed by methodology of fractal geometry. The structure in F.2.4 has self-
similarity properties.

The following figure shows a sequence of close*ups. The sequence starts with a reproduction of picture F.2.3
and magnifies the rectangular windows in the initial diagram, but showing it upside down. It's the first
close-up image, which indeed looks like the whole diagram. A further magnification of the rectangle indicates
and shows the result upside down obtaining the second close-up. The third close-up is the last one in the
demonstration-series. Theoretically, one could go on infinitely often, as indicated by drawing the next
succeeding close-up windows into the bottom image. In other words, the final-state-diagram is as self-
similar structure.

F.2.5.

With respect to the quantitative features it has to noted that the branches in the period-doubling regime
become shorter and shorter if one looks from left to right. Therefore it is imaginable that the lengths of the
branches (in direction of the a-axis) relative to each other might decrease according to some geometric law.
If this is true, it would constitute a threshold, i.e. a value of parameter 6r nerrer fallen beyond. This would
mark the end of period-doubling regime. There is such a threshold named FEIGENBAUM-point
o = s- = 3.5699456..., the value of a where the sequence of rectangles shown in figure F.2.5 converges. The
FEIGENBAUM*point splits the final-state-diagram into two distinct parts, the period-doubling-tree on
the Ieft and an area governed by chaos on the right.

There is a rule that quantifies the way the period-doubling-tree approaches the FEIGENBAUM-point,
This law can be isolated from the branching behaviour and was exactly the same for many different systems.

3.45122
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Actually, in a very precise sense the law can be captured in just one number measured &s d = 4.6602... by
M. J. FEIGENBAUM 1975 and he also found out that d is universal for many different systems.

The meaning of the universal constant ö is: If one measures the lengths two succeeding branches in direction
of the o-axis then their ratio turns out to be approximately ö.

F.2.6.

One possible and very useful interpretation of the universality of ä is by using it for predictions, By
measuring two successive bifurcations one becomes able to predict the bifurcations thereafter and also predict
where the threshold would be. Thus although the quad.ratic iterator in some sense is much to simple to carry
information about real systems. in a very striking and general sense it does carry the essential information
how systems may develop chaotic behaviour.

In figure F.2.5 the self-similarity feature in final state diagram of the quadratic iterator is already
visiable in the first part of the diagram. the period-doubling-tree ranging from a = 1 to the F EIGENBAUM-
point o = s-. However the self-similarity in either case is not strict: Although the branches of the tree look like
small of the whole tree there are parts, like the stem of the tree, which clearly do not. Moreover, even the
branches of the tree ane not exact copies of the entire tree. Here one has to use the term self*similarity in a
more intuitive sense without being precise.

For the period-doubling-tree everything is more complicated. First, one should näte that the sequence of
differences dp between parameter-values of the bifurcation-points is not precisely geometric. In other words,
if one makes close-ups as in figure F.2.5 the scaling-factor slightly changes from close-up to close-up and
only approaching the factor ö = 4.66O2... . But this is only true the scaling in horizontal direction of parameter
a. With respect to the vertical direction one has to scale with a factor of approximately 2.3.

F.2.7.

In figure F.2.7 these scaling factors are used to obtain a schematic representation of the period-doubling-tree
which exhibits these limiting scaling properties in allstages. It should be noted that the leaves of this tree form
a strictly self-simila,r CANTOR-set. By comparing the tree of figure F.2.7 with the original bifurcation-tree,
the non-linear distortion becomes apparent. Here branches of the same stage are exactly the same, In the
original period-doubling-tree, branches have different sizes. Nevertheless, one can identify corresponding
branches. AIso the leaves of the original tree form a CANTOR-set, this happens right at the FEIGENBAUM-
point.
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3. Homeomorphism between final:state diagram of the quadratic iterator and decay-cascade_of an eddJ
in a turbulent fluid.

The finat-state-diagram of the quadratic iterator (as described above) is considered as set X € R2. On X is
a topology -f declared with following qualities:

3.1. {Ar, A*C X, k e (2.,2.+i, j e !L,...,(2' -1)1, i,, € NI*}} €r.

If Ap,Aq€IthenArl-lAo€.l"andif [A,€ l,ne§[*]thenU*q"e.f;also o,Xe_.I-musthold.,4oaselements
of .l- are open sets, opposite to closed sets for which holds: if M C.l" is closed then I - M must be open.

The sets lAne f , r, € §[*] declared in 3.1 contain the branches of the final-state*diagram from quadratic
iterator up to the FEIGENBAUM-point. A branch is considered to end at the bifurcation-point with the
same identification as the proper setA. The left end of any topological element will be open.

F.3.1.

Analog to the quadratic iterator an eddy's decay-cascade - the period-doubling-tree (described in
http:/ /vixra.org/abs/1S01.0037) - shall be declared as set Y € lRz covered with a topology 4:

3.2. {Br,Bncy,ke (2;,2i+j, je 11,...,(2r-1)1, z,re N*)}e Ä.

Set Y finishes to the right with the split-generation corresponding to the FtrIGENBAUM-point in final-state
diagram from the quadratic iterator. Chaos starts beyond this limit because from here eddies are transformed
by friction into heat. What had been declared with respect to An, X and l- shall be valid for Bn, Y and d as well.

For eachA, 6 l- and B, e Aexist steady functions/, and /,-rwith:

3.3. (f*t A**8,) A (f.*'t B*- A*).

The two functions /, and /"-r are steady on A, and B, because for any randomly chosen points rs € A, and
Ao € B.following relations hold:

s.4. il"**oll < ä =+ ll/"(z) - f"@dll < e) n$y-aoll < ,r + llf "-,@)- "f"-,(so)ll < 1).

Because /, is a bijective function and both /, and /,-1as well are steady, one can declare /, as homeomorphism
from Anotr Bn. From a topological point of view spaces like A, and Bn may be considered as equivalent.
Because this is valid for any corresponding A, € -l- and Bn e A one may determine, the tree-structure of the
quadratic iterator and the decay-cascade of an eddy in a turbulent fluid are equivalent, both of them show
qualitatively the same route from order into chaos.
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4. Conclusion.

From the proceeding discussions it becomes obvious, that the text-statement in the paper
http:/ /vixra.ory/ahs/1801.0037, "Turbulence as structured Route of Energy from Order into Cha,os",
published by Udo E. Steinemann (vixra.org, Category: Physics, Classical Physics, 1801[2]): 'This way a
picture about an eddy's decay can be drawn as a well structured route of energSr from order into cha,os, similar
to those of many other dynamical systems too" gets its authorization.
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