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Abstract

This paper represents a concise introduction to the quantum theory
of point particles in a time orientable curved spacetime part of which was
presented in the DICE conference in Castiglioncello, Italy.

1 Introduction.

There is only one quantum theory on Minkowski and that is the one pre-
sented by Weinberg proceeding upon work started by Wigner and Von
Neumann. It is axiomatic, starts from a clear definition of a particle and
constrains the dynamics as such that the notion of a field becomes use-
ful. Weinberg wrote his summary after all the Evil happened and the
beast was babtised “quantum field theory” instead of relativistic particle
dynamics. Often, it is useful to attribute the correct name to something
as it must reflect its deepest inner workings such as man, woman and
hermaphrodite although it is kind of embarrasing to see the last one as a
convex combination of the previous extremal cases (it is much more sey
than both of them).

The idea of this paper is to give two distinct proper introductions to RQT
(relativistic quantum theory), a Weinbergian one - which we will end with
and was not presented on the conference - and a divine one, starting from
the most simple of considerations, having nothing to do a priori with prob-
ability theory and Hilbert bundles (instead of spaces). Both approaches
provide one with a different view on classical and quantum mechanics;
they are geometrical and entirely devoid of a coordinatised language as
well as symplectic approaches due to globally hyperbolic foliations.

I thank the organizers of the conference for the opportunity to present my
viewpoint on the matter -as well as other things- and will return in due
time with further elaborations on this work.

2 Foundational arguments.

In this section, I see nature as a communist reflects upon society; the foun-
dational quantity of everything is contained in an action signifying “work”
or “rabota”. That is, consider φ(γ(s), p(γ(s))) ∈ B where γ : [a, b] →M
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is a curve joining an event x to an event y in spacetime M in affine
parametrization with respect to a Lorentzian or Riemannian metric where,
moreover, p is a field on that line associated with the physical quantity
of “momentum”. We do not really know yet what momentum is but it
represents a kind of weight or importance given to that motion, p must
not be proportional to γ̇ as weight might sometimes be disfavourable to
the current motion. Given that rednecks love calculus, B is a division
algebra over the real numbers with standard operations +, ., that is R,C
or Q disregarding the non-associative octonions.

A frictionless theory is a dreamworld as no waste is produced. Math-
ematically, this translates as follows: there exists an involution † and
operation ? such that φ(γ(b − s), p(γ(b − s))) ? φ(γ(s), p(γ(s)) = 1? and
φ(γ(b − s), p(γ(b − s))) = φ(γ(s), p(γ(s)))†. It is worthwile to comment
upon these; the first one means that that reversing the process is arith-
metically equivalent to taking the inverse whereas the second one says
that the inverse has a metrical significance. This last stance is useful as
inverting two processes must preserve the distance between them. No dis-
cussion about this is allowed for.

As a consequence, the constant curve γe(s) = x = y satisfies

φ(γe(s), p(γe(s)))
2 = 1?

which for ? = + and B = R gives φ(γ(b−s), p(γ(b−s)) = −φ(γ(s), p(γ(s))
and φ(γe(s), p(γe(s))) = 0. These simple observations give rise to the
notion of work and classical physics. For, B = C, we have that

φ(γ(b− s), p(γ(b− s)) = φ(γ(s), p(γ(s))

and |φ(γ(s), p(γ(s))|2 = 1 what leads to the U(1) Fourier waves in quan-
tum theory.

2.1 The classical theory.

The idea is to write down a first order differential equation for the quantity
of labour. Reparametrization invariance forces d

ds
φ(γ(s), p(γ(s)) to be

proportional to d
ds
γ(s). Furthermore, the reversion property implies that

d

ds
φ(γ(s), p(γ(s))

contains only even powers of φ(γ(s), p(γ(s)). Concretely,

d

ds
φ(γ(s), p(γ(s)) =

∞∑
n=0

(
d

ds
γ(s) · Fn(γ(s), p(γ(s)))

)
(φ(γ(s), p(γ(s))))2n

where the Fn are fields. Dimensional analysis reveals that the dimension
of φ must equal that of Fn times meter (or time in relativistic theories).
This gives a very different meaning to the higher fields Fn and universal-
ity demands a definite choice; however, the stronger principle that work
should be additive leads to

d

ds
φ(γ(s), p(γ(s)) =

d

ds
γ(s) · F(γ(s), p(γ(s)))

which is the old Newtonian expression with F having the meaning of force.
Theories with radiative effects do not satisfy this expression but never-
theless the more complicated one. To complete the dynamics, Newton
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supposed that p(γ(s)) must maximally stimulate the direction in which
the particle is moving and that, therefore

p(γ(s)) = mγ̇(s)

where m > 0 and expresses the weight attached to persistance of motion,
called physical mass. Another observation was of an Einsteinian nature,
namely that the change of work should reflect the change in an inherent
physical property of the particle and not depend upon external forces at
all. This would mean that, in a way, a particle is free infinitesimally; the
lowest order, in the derivatives of the worldline, such invariant is given by
the momentum squared

h(p(γ(s)), p(γ(s)))

which suggests something like

d

ds

(
m

2

(
d

ds
γ(s)

)2
)

=
d

ds
φ(γ(s),

d

ds
γ(s))

and bestowes φ(γ(s), d
ds
γ(s)) with the dimension of mass which it should

be given that the notion of force must be associated to something intrinsic
which is change of momentum

F(γ(s), p(γ(s))) :=
d

ds
p(γ(s)).

This is the simpelest idea possible, given that the kinetic term is the lowest
order invariant and m can be thought of as some material based constant.
This leads to

m

2

(
d

ds
γ(b)

)2

− m

2

(
d

ds
γ(a)

)2

= φ(γ(b), p(γ(b)))− φ(γ(a), p(γ(a)))

and in a way generalizes a concerved quantity given that φ depends upon
the entire path and not just the endpoints in general.

One could make higher derivative theories also in this way and allow for
Newtonian laws with third order derivatives. These naturally appear in
the context of backreactions in electromagnetism for example and allow
for “unphysical” solutions with causality going backwards in time. For
example, an electron would accelerate prior to turning on a lightbulb.
Note also that the interpretation of γ as the physical path of the particle
natually emerges given that Newtons law fixes it entirely given two “initial
data”.

2.2 Quantum theory.

Now, we derive quantum theory, as well as the probability interpretation,
in the same vein. One notices that the obvious, but not only, candidate
for an equation of motion is given by

~ d
ds
φ(γ(s), p(γ(s))) = ig(p(γ(s)), γ̇(s))φ(γ(s), p(γ(s)))

where p is the energy momentum vector and γ̇(s) dimensionless. Notice
that ~ is needed for dimensional reasons to get a nontrivial theory given
that φ must be dimensionless as any physical quantity is a real and not
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unitary number. On flat spacetimes φ(γ(s), p(γ(s))) is topological as it
just depends upon the homotopy class or winding number. That is,

φ(γ(b), p(γ(b))) = eip.(y−x)

which is the standard Fourier wave in y with base point, or origin x. Given
that eip.(y−x) provides for a trivial unitary mapping between eip.(z−y) and
eip.(z−x), the waves are identical up to a momentum dependent constant
multiplicative U(1) factor. In traditional RQT, this is precisely the impact
of the translation symmetry in Minkowski QFT. To arrive at the QFT
propagator for a quantum field on Minkowski, we notice that the total
“propagator”

D(x, y) = α

∫
R4

d4pθ(p0)δ(g(p, p)−m2)φ(γ(b), p)

is the expression we are looking after. Indeed, in φ(x,w, p), as well w
as p are uncertain, which is kind of logical given that the momentum is
not necessarily the maximal forward one but is dragged over the curve
as to indicate the initial direction of preference. In order to recuperate
the classical bi-functional way of thinking, we have to integrate over p
on mass-shell. It utters nothing but the Heisenberg uncertainty principle
that if the positions x, y are known sharply, then the momentum is totally
uncertain apart from the fact that it needs to be forwards pointing in
time and have mass energy mc2. Actually, what this integration says
is that all preferences are taken into account democratically unless some
higher intelligence, due to a spiritual interaction, desires differently. This
is actually a classical Bayesian way of thinking except that the weights or
probabilities are here given by complex numbers. In this vein, quantum
theory is one of reality w and desire p which do not need to coincide as
happens in the classical case; the theory may get more psychological than
this by having more complex “momenta” and Einsteinian constraints as
happens in (an appropriate version of) string theory. x is here interpreted
as the point of birth of a particle and y as the point of dissapearance, death
or annihilation. Actually, this is all there is to free QFT on Minkowski;
we dispose of no Hamiltonian operator but the Wightman function, from
which the Feynman propagator can be uniquely defined, has the standard
singularity structure which makes implementation of interactions difficult.

To arrive at the full expression in curved spacetime, we notice that

D(x, y) ∈ R

if x is spacelike to y written by x ∼ y and given that D(x, y) = D(y, x)
in general we arrive at the conclusion that for spacelike separated events,
the creation and annihilation processes at x and y can be swapped with-
out altering the “propagator”. This is the expression of Bose-Einstein
statistics, a desirable property in the general theory. In a general curved
spacetime, φ depends upon curve and not just the homotopy class due to
the existence of local gravitational degrees of freedom. In light of Bose
statistics, only geodesics count given that the scalar product is preserved.
In the light of constructing regularized propagators with a smooth struc-
ture, consider the “Schroedinger” equation,

d

ds
φ(x, y = expx(w);w, k, s) =

4



(ig(w(s), k(s))−κ
√
h(w(s), w(s))− 2

L2σ3(x, expx(ws))
σα′(x, expx(ws))wα

′
(s))φ(x, y = expx(w);w, k, s)

where s ∈ [0, 1] and w, k ∈ TxM, h is a Riemannian metric delivering an
energy µ and L is a huge mass smoothening out the lightcone. Finally,

D

ds
k(s) =

D

ds
w(s) = 0.

Notice that violation of unitarity occurs by means of κ, L: they represent
irreducible imaginary friction terms, meaning that every process has a
“cost” which cannot be undone -no perfect “Carnot cycle”. It endows
spacetime with a kind of effective granularity in the metrics determined
by h and σ2. The solution to the equation reads

φ(x, y = expx(w);w, k) := φ(x, y = expx(w);w, k, 1) = eik.we
−κ

∫ 1
0

√
h(w(s),w(s))ds− 1

L2σ2(x,expx(w))

whivh produces a generalized wave given by

φ(x, y; k) :=
∑

w∈TxM:expx(w)=y

φ(x, y = expx(w);w, k).

This calls for the following definition of the propagator

D(x, y) = α
∑

w∈TxM:expx(w)=y

∫
R4

d4pθ(p0)

e−µh(p(0),p(0))−µh(p(1),p(1))−µ(1−θ(g(w,w)))(h(Rw(0)p(0),Rw(0)p(0))−h(R−w(1)p(1),R−w(1)p(1)))

δ(g(p, p)−m2)φ(x, y;w, p)

where the µ terms express that the creation and annihilation processes
come at a cost.

Under reasonable conditions, this regularized propagator is smooth every-
where and has exponential falloff behavior towards infinity. The Feynman
propagator gets the following universal prescription:

∆F,µ,κ,L(x, y) =
∑

w:expx(w)=y and w is in the future lightcone of x

Dµ,κ,L(x,w) +

∑
w′:expy(w′)=x and w’ is in the future lightcone of y

Dµ,κ,L(y, w′) +
∑

w:expx(w)=y and w is spacelike at x

Dµ,κ,L(x,w)

meaning that all “information” has to travel towards the future which
constitutes clearly the right function to study interactions with.

This theory has been worked out in a book [1] published on Amazon. It
turns out that all Feynman diagrams are finite in all known interaction
theories for particles of spin less than 5

2
. Moreover, they are suitably

bounded and show “exponential falloff behavior” even on Riemannian
spaces with negative sectional curvature when friction κ is large enough.
All theories need a modification of the standard Dyson expression for
diagrams with a large number of internal vertices in order to procure
analytical results and make the whole power series well defined. The
interested reader is referred to that book for an entire elaboration of this
theory.
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3 Haute Weinbergian cuisine.

Whereas this previous section procured extremely deep connections be-
tween different branches of physics from an elementary point of view, this
section is somewhat more traditional but no less profound. It is just so
that in the end, the same formalism is recovered in all known cases but
a different looking avenue is opened up. The latter might be completely
isomorphic to the previous one however.

3.1 Classical physics revisited.

Consider a particle moving in a bundle E over a Lorentzian spacetime
(M, g) where the fibres are equipped with a metric field and the associated
connection preserves the total metric (which is usually a product metric).
Regard the wordline as an immersion γ : R → E and the momentum as
its the push forward of ∂t with equals

D

dt
:= ∇ d

dt
γ(t)

where ∇ is the bundle connection. Given that we shall only work with
functions f : E → R, the latter expression can be taken for (∂t)? as an
ordinary vectorfield instead of a general derivative operator. To every
curve γ and function f we can attach a function γf : R→ R : t→ f(γ(t)).
We can now define a C∞(R) algebra of operators L on the function space
f : E → R mappping them to functions from R to R. Concretely

[(γf )(g)](t) := f(γ(t))g(γ(t))

and

[pγf ](t) :=
d

dt
f(γ(t)).

We have moreover,
γf (gh) = γf (g)γf (h)

and
[(∂t)(γfg)](t) := [(∂t)?f ](t)g(γ(t)) + f(γ(t))[(∂t)?(g)](t).

This suggests to extend the definition of the momentum in this way to
functions R→ R. The same comment holds for γf . In this vein,

[γgγfh](t) = g(γ(t))f(γ(t))h(γ(t))

and
[pγγfh](t) := ∂t(f(γ(t))h(γ(t)))

as well as
[γfpγh](t) := f(γ(t))∂th(γ(t)).

Finally,
[pγpγh](t) = (∂t)

2h(γ(t))

which induces a real algebra generated by

γg, pγ

where γ varies over all immersions. This algebra is represented by means
of linear operators on the function algebra

B := C∞(R)⊗ C∞(E)
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which may be given the structure of an Hilbert algebra in the usual L2

sense by introducing an einbein on the “time line” R. Concretely

[γf , γh] (g) = 0 = [pγ , pγ ] (g), [pγ , γf ] (g) = pγ(f)γ?(g) = γpγ(f)(g)

where γ? is the pull back defined by the immersion γ. Here, the commu-
tation relations employ the full B action but are understood to apply on
f, g, h ∈ C∞(E) and result in an element of C∞(R).

Covariant dynamics requires dynamics without potential energy terms;
therefore, any force has to be implemented in the momentum what ex-
plains the bundle E . Moreover, according to Einstein himself, every force,
including the gravitational one, can be gauged away in some point so that
locally and physically every particle is a free one meaning that the correct
equation is the geodesic bundle equation. Therefore, the classical Hamil-
tonian is a constraint and moreover, commuting it with a vector leaves a
covector if it were an invariant energy so that

[H(γf , pγ), pγ ]

cannot represent D
dt
pγ unless we would make an extra metric contraction.

Actually, the whole Hamiltonian edifice is kind of meaningless as we shall
see now. Indeed, taking H(γf , pγ) to be pγ with equations of motion given
by

[
D

dt
4γf ](g) := [pγ , γf ](g) = γpγ(f)(g)

and

[
D

dt
(∂t)?](g) = [

D

dt
4pγ ](dg) := [pγ , pγ ](dg) = [pγ , pγ ](g) = 0

where

[
D

dt
4ζ](g) = [

D

dt
, ζ](g).

There is nothing more to say really apart from the constraint g(pγ , pγ) =
m2c4

~2 which is the mass energy relation. This is all what is allowed in
classical physics of point particles really and we now proceed to quantum
theory. Notice that the dynamical content is completely implied by the
commutator algebra which constitutes a total unision between dynamics
and kinematics. Physically, this is entirely trivial and completely justified
given that the momentum just corresponds to the energy in a rest frame.
Note also the presence of ~ in the latter formula which is there for dimen-
sional reasons; alas, it does not do anything else apart from setting a time
scale given that the covariant derivative does not depend upon it.

3.2 Relativistic Quantum Theory.

As we have shown in the previous section, the Poisson Bracket really is
a commutator and the Hamiltonian formulation is rather void given that
the total free momentum, constrained by the quantum mechanical mass
formula is the only real quantity of interest. Unlike in classical physics,
quantum mechanics cannot use an external time in a sense given that
a particle is not specified anymore by a worldline but by a wave. In a
way, it is the complex dual of the classical situation where “worldlines”
correspond to functions ψ : E → C which are C∞. The operators γf and
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pγ are replaced then by xf and i∇V where V is a real vectorfield over E
and f is a real valued function over E . Here, [xf ](g)(x) = f(x)g(x) and

P (V )(g) := i∇V (g) = iV (g).

They obey the algebra

[xf , xh] = 0, [i∇V , i∇W ] = −R(V,W )(·)−∇[V,W ]

and finally
[i∇V , xf ] = xiV (f).

The momentum commutation relations have been put in this exotic form
because the covariant derivative can work on vectorfields and higher ob-
jects too. The i is just there to ensure that the momentum operator is
real given that the commutator of two real operators is imaginary. The
situation here is very different as one cannot just pick a Hamiltonian linear
in the momenta given that one would as thus preselect a nondynamical
arrow of time. Hence our only choice is given by

H =

n∑
i,j=1

ηij∇Ei∇Ej

where the Ei correspond to loical vielbeins and ηij is the inverse of the
standard flat metric. In order for this to work ∇ must be extended to the
spin connection to digest local boost transformations. Furthermore, one
has

H = m2

as constraint. It is clear one has no Heisenberg type dynamics here as the
vectorfields really are spacetime vectorfields; hence, the entire theory is
encapsulated by the constraint and the geometry of the bundle E . It has
been shown by Ashtekar and Magnon that this theory only works out fine
in stationary spacetimes with Minkowski as the prime example due to the
existence of scalar products on leafs of a foliation for which the latter is
preserved in “time”.

In 2011, I wrote a book about an operational approach to quantum the-
ory with local vacua delineating a Fock-Hilbert bundle ⊗x∈MHx over the
space-time manifold M. However, the approach was troublesome and
muddled with two “fundamental errors” of mine, not due to a lack of
mathematical precision, but being the consequence of a poor understand-
ing of what curved spacetime really signifies. This error found a natural
solution in [1] written on generally covariant quantum theory from the
point of view of the Feynman series.

Concretely, we assumed Hx to be constructed by means of a cyclic quasi-
free vacuum state |0〉x and multiparticle states showing Bose or Fermi
statistics constructed in the Fock way. The dynamical object was a uni-
tary bi-field U(x, y) mapping Hy → Hx and obeying a Schroedinger like
differential equation

d

dt
U(t, s) = iHU(t, s)

but then with the times t, s replaced by x, y. The two errors in the book
originated from the mathematical implementation of this idea I conceived;
first of all U(t, s) = U(t)U†(s) and moreover the only covariant first order
differential operator homogeneous in the spacetime coordinates is given
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by the covariant Dirac operator D. The first condition is equivalent to a
“cohomology” condition

U(x, y)U(y, z)U(z, x) = 1

which turns out to hold in Minkowski or any maximally symmetric space-
time only and reflects the absence of local gravitational degrees of freedom.
Consequently, the only solution I was able to find of my field equations
was free quantum field theory on Minkowski in a way I shall explain later.
The Dirac operator gives all sorts of trouble meaning we have to replace
the complex numbers by an appropriate Clifford algebra of signature (1, 3)
or (3, 1). This gives rise to negative probabilities and huge problems with
the spectral theorem even for finite dimensional Clifford bi-modules. The
approach was clearly dead as it stood which I realised later on.

3.3 Taking bi-fields seriously.

As pointed out in [1], the idea of a Hilbert bundle is adequate, but the
correct differential equation for U(y, x) needs to run over geodesics con-
necting x with y in a fully reparametrization invariant way. The obvious
candidate is given by

d

ds
U(γ(s), x) = iγ̇(s)aPaU(γ(s), x)

where γ(s) is the unique geodesic connecting x with y and Pa equals the
free momentum generator, given by the expression

Pa =
∑

particles j, internal degreesσj

∫
d3k√
k0
kaa
†
k;j,σj

ak,j,σj

at the point z with respect to the dragged vierbein in x along the geodesic.
The coincidence limit is fixed by U(x, x) = 1; this suggests one to enlarge
the notation to U(y, x; ea(y), eb(x)) as well as a unitary action T (Λ, eb(z))
of the orthochronous Lorentz group Λ ∈ O+(1, 3) on U(z, x; e′b(z), ea(x))
by means of conjugation TUT †. All this has been explained in [2]; in
order for T (Λ(s), ea(γ(x)) to shift through d

ds
we need a Lorentz covariant

derivative and, henceforth, an antihermitian connection Lµ(z, eb(z)) such
that(
d

ds
+ γ̇µ(s)Lµ(γ(s),Λba(s)eb(γ(s)))

)
T (Λ(s), eb(γ(s)))U(γ(s), x; eb(γ(s)), ea(x))T †(Λ(s), eb(γ(s)))

−T (Λ(s), eb(γ(s)))U(γ(s), x; eb(γ(s)), ea(x))T †(Λ(s), eb(γ(s)))γ̇µ(s)Lµ(γ(s),Λba(s)eb(γ(s))) =

T (Λ(s), eb(γ(s)))

[(
d

ds
+ γ̇µ(s)Lµ(γ(s), eb(γ(s)))

)
U(γ(s), x; eb(γ(s)), ea(x))

]
T †(Λ, eb(γ(s)))

−T (Λ, eb(γ(s)))U(γ(s), x; eb(γ(s)), ea(x))γ̇µ(s)Lµ(γ(s), eb(γ(s)))T †(Λ(s), eb(γ(s))).

In case we dispose of multiple geodesics connecting x with y, we just mul-
tiply the corresponding unitary operators in the same vierbein at y, the
order of which does not matter given that all Pa commute and because the
action of the Lorentz group acts by boosting the momenta. Therefore, we
can just sum up the momenta which can accomodate for topology change
of Minkowski into a flat spacelike cylinder giving rise to the correct field
picture.

There is however a small caveat here in case multiple geodesics connect
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x and y in the sense that the gauge field might acquire a nontrivial sig-
nificance due to multivaluedness of ea(y), where the latter is the dragged
vielbein from x to y. Hence, it is better to replace the argument y by a
tangent vector V in TMx and take the x perspective where expx(v) = y.
In that case, we set Lµ(sv,Λba(s)eb(expx(sv))) to zero in case

D

ds
eb(expx(sv)) = 0

for s = 0 . . . 1. In other words, the vielbein in the warped point in that
direction must be the dragged one; this makes both formalisms entirely
equivalent what the free theory is concerned. Notice that by construction,
U(y, x) = U†(x, y) due to the minus sign caused by flipping γ̇µ(s). Given
that the connection Lµ(v, eb(expx(v))) is a new object defined on

TMx(v)× VMg(expx(v))

where VMg(expx(v)) is the nonlinear space of g vierbeins overM, which
is equivalent to the group manifold O+(1, 3) regarded as a homogeneous
space with a hyperbolic Cartan metric of signature (3, 3); it might be
opportune to make it more dynamical and invent a new type of non abelian
Yang-Mills theory over TMx. This author tried this also in 2011 but
failed to recognize the bundle perspective as well was stuck with Clifford
modules for replacements of Hilbert spaces. The easiest thing is to see Lµ
as L∂

vj
expx(v)

(v, eb(expx(v))) where eb varies independently and refers to
y = expx(v) and subsequently write out a Yang-Mills equation of the kind(
DvL∂

vj
expx(v)

(v, eb(expx(v)))
)
kl

=
(
∂v[k − L[k

)
Ll] = (dL)kl−(L∧L)kl = 0

where d is the Hodge operator on flat tangent space. Life could be more
exciting as to pick out the zero solution in parallel transport gauge and
we leave this new piece of physics for further examination of the bored
ones.

So far, we have determined only our quantum connection; now, we develop
bi-fields which are nothing but the warps of coincidence fields meaning

Φ(y, x) :

 ∏
v∈TMx:expx(v)=y

U(y = expx(v), x; (expx(v))?ea(x), ea(x))

Φ(x, x)

 ∏
v∈TMx:expx(v)=y

U(y = expx(v), x; (expx(v))?ea(x), ea(x))

† .
Here,

Φ(x, x) =
∑

particles j with internal quantum numbersσj

∫
R3

d3k

k0
(vσj
√
k0a
†
k,j,σj

+vσj
√
k0ak,j,σj )

where vσj is an internal field vector associated to the internal particle de-
grees of freedom. They are needed to obtain different physical behaviour,
d3k
k0

is the on shell relativistic measure in Fourier space on Minkowski and

finally,
√
k0ak,j,σj is relativistic normalization of the creation annihilation

algebra. I leave it as an elementary excercise to find out principles de-
termining vσj . So Φ(x, x) is the proper democratic relativistic expression
taking into all matter degrees of freedom in the universe.
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3.4 Interaction theory.

So far, we have delineated the free theory from an operational bi-field
formalism which reduces in Minkowski to a single field formalism due to
the remarkable “cohomology” property

U(x, y)U(y, z)U(z, x) = 1

where we have dropped the vielbeins and assumed dragging allalong which
is logical given that dragging is trivial and hence consistent along closed
paths due to the vanishing of the Riemann tensor. The trick now is to
work directly into an interaction picture and forget about a closed bi-field
equation. That is, we write down spacetime interaction densities of the
kind

iλ

∫
M

√
g(y)Φ(y, x)Φ(y, z)Φ(y, p)Φ(y, q).

This is an obvious excercise leading to a completely equivalent formalism
as in the 2016 book.
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