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Abstract

In Newtonian particle dynamics, time is invariant under inertial transformations, and speed has no upper
bound. In special relativity, it is the observed particle’s proper time, rather than the arbitrary observer’s
time, which is inertial-transformation invariant, and it is the particle’s proper speed which has no upper
bound. It is thus perhaps not surprising the Newton’s Second Law is also valid in relativistic particle
dynamics presented in terms of the particle’s proper time. This follows from the special-relativistic
dynamical principle that the time derivative of special-relativistic momentum is equal to the applied
force, provided proper force is defined to have an additional factor of gamma. The four-vector fully
Lorentz-covariant completion of proper force is obliged to have zero contraction with the particle’s proper
four-velocity. A special-relativistic particle in either a scalar or a four-vector (electromagnetic) potential
is verified to adhere to the proper-time Newton’s Second Law, and when it is consistently taken into
account that a metric (gravitational) potential’s observed effect on a particle is to alter the rate of change
of its proper time with observer time, that adherence is verified to hold for metric potentials as well.

Proper versus perceived velocity in special relativity

An implicit ingredient in the perceived speed |dx/dt| of a relativistic moving object in one spatial dimension
is its length contraction by the factor γ−1 [1],

γ−1
def
=
(
1− ((dx/dt)/c)2

) 1
2 ; 0 < γ−1 ≤ 1. (1a)

The degree of length contraction is completely dependent on the inertial reference frame, so perceived speed
|dx/dt| is unsuitable for some applications. The effect of length contraction on a moving object’s perceived
speed is removed by multiplying that speed by γ, which produces the higher speed γ|dx/dt|. Multiplication
of the moving object’s perceived speed |dx/dt| by γ is equivalent to replacing |dx/dt| by |dx/dτ |, where
Lorentz-transformation invariant differential proper time dτ is defined as,

dτ
def
=
(
(dt)2 − (dx/c)2

) 1
2 =

(
1− ((dx/dt)/c)2

) 1
2 dt = γ−1dt, so (dt/dτ) = γ and |dx/dτ | = γ|dx/dt|. (1b)

Since it is Lorentz-transformation invariant, the proper time defined by Eq. (1b) is somewhat analogous
to the Galilean-transformation invariant time of Newtonian physics. Also, despite the strict adherence of
perceived speed to |dx/dt| < c, proper speed |dx/dτ | = γ|dx/dt| is unbounded because γ is, so proper speed
is somewhat analogous to the unbounded speed of Newtonian physics.

In three spatial dimensions, differential proper time dτ , γ and proper velocity (dr/dτ) are given by,

dτ
def
=
(
(dt)2 − |dr/c|2

) 1
2 =

(
1− |ṙ/c|2

) 1
2 dt, so (dt/dτ) = γ

def
=
(
1− |ṙ/c|2

)− 1
2, and (dr/dτ) = γṙ. (2)

The Lorentz-transformation invariant proper time defined by Eq. (2) is somewhat analogous to the Galilean-
transformation invariant time of Newtonian physics. Also, despite |ṙ| < c, proper speed |dr/dτ | = γ|ṙ| is
unbounded because γ is, and thus is somewhat analogous to the unbounded speed of Newtonian physics.

The Lorentz-covariant proper-time extension of Newton’s Second Law

The usual presentation of single-particle special-relativistic dynamics is,

(dp/dt) = f , (3a)

where f is the force and the relativistic single-particle momentum p is given by,

p = mγṙ, (3b)

where m is the particle’s rest mass. From Eq. (2) we see that Eq. (3b) can be rewritten,

p = m(dr/dτ), (3c)
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so Eq. (3a) becomes,
m(d(dr/dτ)/dt) = f . (3d)

We now multiply the left side of Eq. (3d) by (dt/dτ) and its right side by γ, as per Eq. (2), which yields,

m(d(dr/dτ)/dt)(dt/dτ) = γf . (3e)

We simplify the left side of Eq. (3e) and denote γf on its right side as the proper force F to obtain,

m
(
d2r/dτ2

)
= F, (3f)

the relativistic extension of Newton’s Second Law via proper time. An example of Eq. (3f) is the proper force
exerted by an electromagnetic field on a particle of charge e, namely,

F = eγ(E + ((ṙ/c)×B)) . (3g)

The fully Lorentz-covariant four-vector completion of Eq. (3f) must of course read ,

m
(
d2xµ/dτ2

)
= Fµ, (3h)

but the nature of proper time ensures that only three of the four components of the proper force Fµ can be
mutually independent . We begin the demonstration of this fact by using Eq. (2) to show that,

(dxµ/dτ) (dxµ/dτ) = (ẋµẋµ)(dt/dτ)2 =
(
c2 − |ṙ|2

)
/
(
1− |ṙ/c|2

)
= c2, (3i)

which furthermore implies that,(
d2xµ/dτ2

)
(dxµ/dτ) = 1

2 (d((dxµ/dτ)(dxµ/dτ))/dτ) = 1
2

(
d
(
c2
)
/dτ
)

= 0. (3j)

Eq. (3h) together with Eq. (3j) implies that,

Fµ(dxµ/dτ) = m
(
d2xµ/dτ2

)
(dxµ/dτ) = 0. (3k)

Therefore only three of the four components of the proper force Fµ can be mutually independent. In greater
detail, Eq. (3k) together with Eq. (2) yields that,

0 = Fµ(dxµ/dτ) = (Fµẋµ)(dt/dτ) =
(
F 0c− F · ṙ

)
/
(
1− |ṙ/c|2

) 1
2, which implies that F 0 = F · (ṙ/c). (3l)

We thus see that F 0 vanishes altogether in the nonrelativistic limit |ṙ/c| → 0, for which it is also true that

(dt/dτ) = γ =
(
1− |ṙ/c|2

)− 1
2 → 1, so in the nonrelativistic limit Eq. (3h) reduces to Newton’s mr̈ = f .

Eq. (3f) shows that the concept of inertial mass, which is the same as rest mass, is just as relevant to
relativistic physics as it is to Newtonian physics. Indeed, the development of Higgs field physics [2] has put
considerable flesh on the bones of the inertial mass concept. An interesting relativistic issue is the existence
of particles, such as photons, which have zero inertial mass (these are asserted to not couple at all to the
Higgs field). According to Eq. (3c), a zero-inertial-mass particle which has nonzero momentum |p| > 0 has
infinite proper speed |dr/dτ | = limm→0(|p|/m) = ∞ that corresponds to perceived speed c. To demonstrate
the last assertion, we invert the Eq. (2) relation of proper velocity (dr/dτ) to perceived velocity ṙ, which is,

(dr/dτ) = γṙ =
(
1− |ṙ/c|2

)− 1
2 ṙ.

This relation’s inverse comes out to be,

ṙ = (dr/dτ)
(
1 + |(dr/dτ)/c|2

)− 1
2 , (3m)

which has the asymptotic form,

ṙ ∼ c ((dr/dτ)/|dr/dτ |) as |(dr/dτ)/c| → ∞. (3n)

This result shows that zero-inertial-mass particles of nonzero momentum |p| > 0, which thus have infinite
proper speed |dr/dτ | = limm→0(|p|/m) =∞, must therefore have perceived speed |ṙ| equal to c.

We shall now work out the explicit forms of the proper force Fµ exerted on a relativistic particle of mass
m by (1) scalar potentials φ(xα), (2) four-vector (electromagnetic) potentials Aµ(xα) and (3) dimensionless
second-rank symmetric-tensor metric (gravitational) potentials gµν(xα), which follow from the equations
of motion generated by the corresponding relativistic-particle Lagrangians. Our first order of business is
therefore the development of the relativistic-particle Lagrangian which corresponds to a given potential.
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Guidelines for the development of special-relativistic particle Lagrangians

The energy of a rest-mass m special-relativistic particle with ṙ = 0 is mc2 plus its “at rest” potential energy ,

Hrest = mc2 + Vrest, (4a)

so the special-relativistic particle’s “at-rest” Lagrangian Lrest is,

Lrest = −Hrest = −
(
mc2 + Vrest

)
, (4b)

since the usual additional term ṙ ·p vanishes entirely for the ṙ = 0 “at-rest” particle. Therefore the “at-rest”
special-relativistic particle’s action Srest is given by,

Srest = −
∫ (
mc2 + Vrest

)
dt. (4c)

The special-relativistic extension of Srest is required to be Lorentz invariant , and therefore is of the form,

Sinv = −
∫ (
mc2 + Vinv

)
dτ = −

∫ (
mc2 + Vinv

)
(dτ/dt)dt, (4d)

where dτ is the particle’s Lorentz-invariant differential proper time, and Vinv is its Lorentz-invariant potential
energy, which must reduce to Vrest in the limit ṙ→ 0. The extension of Vrest to the Lorentz-invariant Vinv is
dealt with case-by-case. Eq. (4d) implies that the full special-relativistic Lagrangian Lrel is given by,

Lrel = −
(
mc2 + Vinv

)
(dτ/dt). (4e)

The proper force exerted by a scalar potential

A relativistic particle of mass m which couples to a scalar potential φ(xα) with dimensionless coupling
strength k has both Vrest and Vinv equal to (kφ), so from Eqs. (4e) and (2),

Lrel = −
(
mc2 + kφ

)
(dτ/dt) = −

(
mc2 + kφ

)
γ−1 = −

(
mc2 + kφ

)(
1− |ṙ/c|2

) 1
2 . (5a)

Since the equation of motion implied by any single-particle Lagrangian L is,

d(∂L/∂ẋi)/dt = (∂L/∂xi), where i = 1, 2, 3, (5b)

it is very useful in the case of the Lagrangian Lrel of Eq. (5a) to note that,(
∂
(
γ−1

)
/∂ẋi

)
= −c−2γẋi = −c−2(dt/dτ)ẋi = −c−2(dxi/dτ). (5c)

From Eqs. (5a)–(5c) we obtain that,

d
((
m+

(
kφ/c2

))
(dxi/dτ)

)
/dt = −k(∂φ/∂xi)(dτ/dt). (5d)

Upon multiplying both sides of Eq. (5d) by (dt/dτ) and noting that xi = −xi, it becomes,

d
((
m+

(
kφ/c2

))
(dxi/dτ)

)
/dτ = k(∂φ/∂xi), (5e)

whose fully Lorentz-covariant four-vector completion clearly is,

d
((
m+

(
kφ/c2

))
(dxµ/dτ)

)
/dτ = k(∂φ/∂xµ). (5f)

After fully carrying out the outer differentiation with respect to τ in Eq. (5f), including noting that ,

(dφ/dτ) = (∂φ/∂xν)(dxν/dτ), (5g)

followed by shifting all terms except
(
m
(
d2xµ/dτ2

))
to the right side of Eq. (5f), we obtain,

m
(
d2xµ/dτ2

)
= Fµ, (5h)

where the proper force Fµ exerted on the particle by the scalar potential φ(xα) is given by,
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Fµ = k
[
(∂φ/∂xµ)−

(
1/c2

)[
(dxµ/dτ)(∂φ/∂xν)(dxν/dτ) + φ

(
d2xµ/dτ2

)]]
. (5i)

By applying the results of Eqs. (3i) and (3j), namely that,

(dxµ/dτ)(dxµ/dτ) = c2 and
(
d2xµ/dτ2

)
(dxµ/dτ) = 0, (5j)

it is readily verified that the proper force given by Eq. (5i) satisfies the requirement of Eq. (3k), i.e.,

Fµ(dxµ/dτ) = 0. (5k)

We also note that if the scalar potential φ(xα) is constant in xα, Eqs. (5h) and (5i) imply that,(
m+

(
kφ/c2

))(
d2xµ/dτ2

)
= 0, (5l)

i.e., the particle’s mass m is effectively modified by the addition to it of the constant term
(
kφ/c2

)
. The Higgs

field is thought of as such a constant scalar potential which is able to give an effective mass to otherwise
zero-mass particles if they have nonzero dimensionless coupling strength k with that scalar potential [2].

The proper force exerted by a four-vector (electromagnetic) potential

A particle of mass m and charge e at rest in a four-vector electromagnetic potential Aµ(xα) has potential
energy Vrest = eA0, with Lorentz-invariant extension Vinv = (e/c)(dxν/dτ)Aν . Thus from Eqs. (4e) and (2),

Lrel = −
(
mc2 + (e/c)(dxν/dτ)Aν

)
(dτ/dt) = −mc2γ−1 − (e/c)ẋνA

ν = −mc2γ−1 − eA0 + (e/c)ṙ ·A. (6a)

Applying Eqs. (5b) and (5c) to this Lagrangian yields,

d
(
m(dxi/dτ) + (e/c)Ai

)
/dt = −(e/c)ẋν

(
∂Aν/∂xi

)
. (6b)

Multiplying both sides of Eq. (6b) by (dt/dτ) and noting that xi = −xi produces,

d
(
m(dxi/dτ) + (e/c)Ai

)
/dτ = (e/c)(dxν/dτ)(∂Aν/∂xi), (6c)

which we reexpress as,

m
(
d2xi/dτ2

)
= (e/c)

[
(dxν/dτ)(∂Aν/∂xi)−

(
dAi/dτ

)]
. (6d)

Since, (
dAi/dτ

)
=
(
∂Ai/∂xν

)
(dxν/dτ), (6e)

we can rewrite Eq. (6d) as,

m
(
d2xi/dτ2

)
= (e/c)(dxν/dτ)

[
(∂Aν/∂xi)−

(
∂Ai/∂xν

)]
, (6f)

whose fully Lorentz-covariant four-vector completion clearly is,

m
(
d2xµ/dτ2

)
= (e/c)(dxν/dτ)[(∂Aν/∂xµ)− (∂Aµ/∂xν)]. (6g)

Therefore the proper force Fµ exerted on a particle of mass m and charge e by Aµ(xα) is,

Fµ = (e/c)(dxν/dτ)[(∂Aν/∂xµ)− (∂Aµ/∂xν)], (6h)

which satisfies the requirement Fµ(dxµ/dτ) = 0 of Eq. (3k) because (dxν/dτ)(dxµ/dτ) is symmetric under
interchange of ν and µ, whereas [(∂Aν/∂xµ)− (∂Aµ/∂xν)] is antisymmetric under that interchange. Eq. (6h)
also implies Eq. (3g), since for µ = i = 1, 2, or 3,

F i = (e/c)(γẋν)
[
(∂Aν/∂xi)−

(
∂Ai/∂xν

)]
=

eγ
[
−
(
∂A0/∂xi

)
− (1/c)Ȧi

]
+ (e/c)γ

3∑
j=1

(
ẋj
)[(
∂Aj/∂xi

)
−
(
∂Ai/∂xj

)]
=

eγ
(
−
(
∇rA

0
)
− (1/c)Ȧ

)i
+ (e/c)γ ((∇r (ṙ ·A))− ((ṙ · ∇r)A))

i
=

eγ (E + ((ṙ/c)× (∇r ×A)))
i

= eγ (E + ((ṙ/c)×B))
i
.

(6i)
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The proper force exerted by a metric (gravitational) potential

A dimensionless second-rank symmetric-tensor metric potential gµν(xα) affects a particle’s observed trajec-
tory via altering the dimensionless rate of change of the particle’s proper time with the observer’s time, i.e.,
via altering the factor (dτ/dt) of the Eq. (4e) basic special-relativistic Lagrangian. Therefore we proceed by
using gµν(xα) to modify that Lagrangian’s (dτ/dt) factor, in lieu of inserting a particle potential energy Vinv.

Up to this point, we have always taken (dτ/dt) to have its basic special-relativistic value implied by
Eq. (2), which depends only on the particle’s speed |ṙ|, namely,

(dτ/dt) = γ−1 =
(
1− |ṙ/c|2

) 1
2 =

(
c2 − |ṙ|2

) 1
2 /c = (ẋµẋµ)

1
2 /c = (ẋµηµν ẋ

ν)
1
2 /c, (7a)

where ηµν is the special-relativistic dimensionless constant diagonal Minkowski metric,

ηµν
def
=

{
+1 if µ = ν = 0,
−1 if µ = ν = 1, 2, or 3,

0 if µ 6= ν.
(7b)

A metric potential gµν(xα) alters (dτ/dt) from its Eq. (7a) basic special-relativistic value to,

(dτ/dt)gµν
= (ẋµgµν ẋ

ν)
1
2/c =

(
ẋ0g00ẋ

0 + 2ẋ0
∑3
j=1 g0j ẋ

j +
∑3
j=1

∑3
k=1 ẋ

jgjkẋ
k
) 1

2

/c, (7c)

where, of course, ẋ0 = c. In general, (dτ/dt)gµν
will depend on the particle’s space-time location xα via

gµν(xα), and it will also depend on the particle’s direction of travel (ṙ/|ṙ|), instead of depending only on the
particle’s speed |ṙ|, as it does in the basic special-relativistic case of Eq. (7a) where gµν(xα) reduces to ηµν .

A key physical restriction on gµν(xα) is that for all values of xα, its four matrix eigenvalues are required
have the same signs as the matrix eigenvalues of ηµν , namely {+,−,−,−} [3]. Therefore for all values of
xα, gµν(xα) has a matrix inverse, which is conventionally denoted as gλκ(xα). Thus, for example,

gλκ(xα)gκν(xα) = δλν . (7d)

For the metric potential gµν(xα), the particle Lagrangian Lgµν
has the same form as that of the special-

relativistic free particle, but the Eq. (7a) (dτ/dt) = (dτ/dt)ηµν
is replaced by the Eq. (7c) (dτ/dt)gµν

, so,

Lgµν
= −mc2(dτ/dt)gµν

. (7e)

Before we work out the particle equation of motion that follows from Lgµν
, we take note of the general-

izations of the proper-velocity and proper-acceleration identities given by Eqs. (3i) and (3j) that ensue when
(dτ/dt) = (dτ/dt)ηµν is replaced by (dτ/dt)gµν . The Eq. (3i) identity’s generalization is easily obtained, i.e.,

(dxµ/dτ)gµν(dxν/dτ) = (ẋµgµν ẋ
ν)/((dτ/dt)gµν )2 = c2, (7f)

where the last equality follows from Eq. (7c). The Eq. (3j) identity’s generalization is then obtained via
differentiation with respect to τ of the Eq. (7f) result,

0 = d
(
c2
)
/dτ = d((dxµ/dτ)gµν(dxν/dτ))/dτ =

2
(
d2xµ/dτ2

)
gµν(dxν/dτ) + (dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ),
(7g)

which implies the following generalization of the Eq. (3j) identity,(
d2xµ/dτ2

)
gµν(dxν/dτ) = − 1

2 (dxµ/dτ)(∂gµν/∂x
κ)(dxκ/dτ)(dxν/dτ). (7h)

In light of the Eq. (7h) identity, any purported proper force Fλ on a particle of mass m that is claimed to
adhere to the equation,

m
(
d2xµ/dτ2

)
= Fµ, (7i)

must be such that it satisfies the consistency requirement ,

Fµgµν(dxν/dτ) = − 1
2m(dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ). (7j)
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We now work out the particle equation of motion that follows from the Eq. (7e) Lagrangian Lgµν
,

(∂Lgµν
/∂ẋi) = − 1

2mc
(

2gi0ẋ
0 + 2

∑3
j=1 gij ẋ

j
)
/(ẋµgµν ẋ

ν)
1
2 =

−mc(giν ẋν)/(c(dτ/dt)gµν
) = −mgiν(dxν/dτ),

(7k)

and,
(∂Lgµν/∂x

i) = − 1
2mc(ẋ

µ(∂gµν/∂x
i)ẋν)/(ẋµgµν ẋ

ν)
1
2 =

− 1
2mc(ẋ

µ(∂gµν/∂x
i)ẋν)/(c(dτ/dt)gµν

) = − 1
2m(ẋµ(∂gµν/∂x

i)(dxν/dτ)).
(7l)

Using the Eq. (7k) and (7l) results, we obtain the following particle equation of motion,

−m(d(giν(dxν/dτ))/dt) = − 1
2m(ẋµ(∂gµν/∂x

i)(dxν/dτ)). (7m)

After dividing both sides of Eq. (7m) by (dτ/dt)gµν , this equation of motion can be reexpressed as,

−m(d(giν(dxν/dτ))/dτ) = − 1
2m((dxµ/dτ)(∂gµν/∂x

i)(dxν/dτ)). (7n)

The four-vector completion of Eq. (7n) clearly is,

−m(d(gκν(dxν/dτ))/dτ) = − 1
2m((dxµ/dτ)(∂gµν/∂x

κ)(dxν/dτ)). (7o)

Fully carrying out the outer τ differentiation on the left side of Eq. (7o) yields two terms,

−mgκν
(
d2xν/dτ2

)
−m((dxµ/dτ)(∂gκν/∂x

µ)(dxν/dτ)) = − 1
2m((dxµ/dτ)(∂gµν/∂x

κ)(dxν/dτ)). (7p)

Because the entity ((dxµ/dτ)(dxν/dτ)) is symmetric under the interchange of µ and ν, Eq. (7p) can be
rewritten as,

−mgκν
(
d2xν/dτ2

)
= 1

2m((dxµ/dτ)[(∂gκν/∂x
µ) + (∂gκµ/∂x

ν)− (∂gµν/∂x
κ)](dxν/dτ)). (7q)

Making use of Eq. (7d), we multiply both sides of Eq. (7q) by −gλκ and sum over the index κ to obtain,

m
(
d2xλ/dτ2

)
= − 1

2mg
λκ(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ) = Fλ, (7r)

where Fλ is the proper force exerted on a particle by a metric potential gµν(xα). To check that Fλ satisfies
the consistency requirement of Eq. (7j), we use the fact that gλκ = gκλ to reexpress it as,

Fλ = − 1
2m(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ)gκλ, (7s)

which, since gκλgλγ = δκγ , yields that,

Fλgλγ(dxγ/dτ) = − 1
2m(dxµ/dτ)[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)](dxν/dτ)(dxκ/dτ) =

− 1
2m(dxµ/dτ)(∂gµν/∂x

κ)(dxκ/dτ)(dxν/dτ),
(7t)

as required by Eq. (7j), where the last equality follows upon appropriately renaming contracted indices.
It is to be noted that Eq. (7r) is conventionally written using the Christoffel symbol Γλµν , i.e. [4],(

d2xλ/dτ2
)

+ (dxµ/dτ)Γλµν(dxν/dτ) = 0 where,

Γλµν = 1
2g
λκ[(∂gκν/∂x

µ) + (∂gκµ/∂x
ν)− (∂gµν/∂x

κ)].
(7u)
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