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1 Abstract

In this study we answer questions that have to do with finding out the to-
tal number of ways of arranging a finite set of symbols or objects directly
under a single line constraint set of finite symbols such that common sym-
bols between the two sets do not repeat on the vertical positions. We go
further to study the outcomes when both sets consist of the same symbols
and when they consist of different symbols. We identify this form of permu-
tation as ’second-order permutation’ and show that it has a corresponding
unique factorial which plays a prominent role in most of the results obtained.
This has been discovered by examining many practical problems which give
rise to the emergence of second-order permutation. Upon examination of
these problems, it becomes clear that a directly higher order of permutation
exist. Hence this study aims at equipping mathematics scholars, educators
and researchers with the necessary background knowledge and framework
for incorporating second-order permutation into the field of combinatorial
mathematics.
Keywords
Second-order Permutation, Permutation and Combination, Latin square,
Bassey triangle, Factorial.

2 Introduction

According to Dike and Oyah[1], permutation is the different arrangements
which can be made out of a given number of objects/symbols by taking some
or all at a time.
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However, in this study we introduce a more complex form of permutation
known as ”second-order permutation”. Second-order permutation involves
permutation carried out under the influence of a single line external con-
straint set of the same size as the permutation set but with the condition
that common elements between the two sets do not repeat on the vertical
positions.
Second-order permutation has a corresponding unique factorial denoted by
the symbol n!2

′
, this symbol has an apostrophe sign attached to the index

number and should not be confused for (n!)2. This second-order permutation
symbol might just be the newest mathematical symbol and this study makes
a case for its universal adoption and acceptance. By applying the method of
mathematical induction, it will be shown how to derive the general notation
for n!2

′
and its various real life applications.

Conditional cases of second-order permutation where different symbols make
up the constraint set and permutation set is analyzed in detail in this paper.
In addition, we explore the relationship between second-order permutation
factorial (n!2

′
) and what should now be known as first-order permutation

factorial (n!) using a new mathematical triangle known as Bassey triangle.
Previous work on second-order permutation took the form of enumerating
the size of Latin squares [4].
A central problem in the theory of Latin squares is to determine how many
Latin squares of each size exist. This problem is difficult because there is no
definite formula for determining the total number of reduced Latin squares of
all orders[24]. This explains the reason why the actual size of Latin squares
has only been known to the order 11 [3]. However, in this study, we show that
this problem can be solved for all Latin squares in the category of (2,n) us-
ing the second-order permutation factorial n!2

′
along with the already known

factorial n!. Hence, by so doing we provide an insight on the way to go in
attempting to solve this problem on a larger scale which is to stimulate more
research in the area of higher order permutations.
Therefore, what this study aims to achieve is to establish a basic framework
upon which we can prove the existence of second-order permutation problems
and to provide a systematic mathematical approach for tackling such prob-
lems including real life applications and its application to the Latin square
theory.

3 Permutation

The different arrangements which can be made out of a given number of
objects/symbols by taking some or all at a time are called permutations.
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For instance:
All permutations/arrangements made with the letters ABC taking all at a
time are ABC, ACB, BAC, BCA, CAB and CBA.
Instead of listing them like this, we can work it out.
There are 3 choices for the first alphabet and for each choice there are a
further 2 choices for the second alphabet. That is, there are 3 x 2 = 6
choices of first and second alphabets combined. The third alphabet is then
the one that is left.
So, how many four-digit numbers can be constructed using the numerals 1234
once each?
Like we did previously; the first numeral can be selected in one of 4 ways,
each selection leaving 3 ways to select the second numeral. So there are:
4 x 3 = 12ways of selecting the first two numerals.
Each combination of the first two numerals leaves two ways to select the
third numeral. So there are now:
4 x 3 x 2 = 24ways of selecting the first three numerals.
The last numeral is the one that is left.
This enumeration gives us a pattern such that if we have ”n” different items
then we can form:
n(n-1)(n-2)x. . . . . . . . . . . . .. x2x1.
This type of product of decreasing natural numbers is known as factorials.
[23, 2]

3.1 The Factorial Notation

Let n be a positive integer. Then, the continued product of first n natural
numbers is called factorial n, denoted by n!.
Hence, n! = n(n-1)(n-2)(n-3). . . . . . . . . . . . ..3.2.1.
For instance:
5! = 5 x 4 x 3 x 2 x 1 = 120
4! = 4 x 3 x 2 x 1 = 24

4 Second-order permutation

Permutations involving two finite sets of the same size containing the same
elements or in some cases not the same elements, where one set is a constraint
set while the other set is the permutation set. The aim is to determine the
number of valid arrangements of the permutation set that is possible under
the influence of the constraint set. Validity is determined on second-order
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permutations when objects common to both sets do not repeat on a corre-
sponding vertical line.
The two sets are usually positioned in rows such that elements in correspond-
ing positions are all in line with each other. The constraint set elements are
usually fixed while the permutation set elements are arranged to find out the
total number of valid arrangements that will result from such permutation
under the influence of the constraint set.
For example:

1. A B C——constraint set
B C A——permutation set(valid)

2. A B C——constraint set
C B A——permutation set(invalid)

The permutation set in 1, is valid because none of the elements are re-
peated on any of the vertical lines while the permutation set in 2, is invalid
because of the repetition of the element B, on the second column.

4.1 Types of second-order permutation

Second-order permutation usually occur in two general forms namely:

1. Homogeneous form

2. Non-homogeneous form

4.1.1 Homogeneous form

This form occurs when the same type of elements makes up the constraint
set and the permutation set respectively.
See examples below:

1.
A B C
C A B

2.
RED BLUE GREEN
BLUE GREEN RED
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4.1.2 Non-Homogeneous form

This form occurs when both constraint and permutation sets contain ele-
ments that are not common to each other.
See examples below.

1.
A B C
C D A

2.
RED BLUE
GREEN RED

Non-homogeneous forms can also occur when both sets contain entirely dif-
ferent elements. In such cases, the constraint set has no influence over the
permutation set.
See examples below.

1.
P Q R
F G H

2.
YELLOW BLUE PURPLE
GREEN RED BROWN

4.2 Derivation of the general formula for second-order
permutation

In order to derive the general formula for second-order permutations, we will
examine three second-order permutation cases.
Case 1: A B C —– (constraint set)
Our task is to find the total number of valid sets from elements (ABC) that
will fit the constraint above.
ABC can be arranged in 3 x 2 ways without considering the constraint set.
See fig 1.

A B C A B C A B C A B C A B C A B C
A B C A C B B C A B A C C A B C B A

Fig 1: Arrangement of ”ABC” without considering the constraint set.

If we now take into consideration the constraint set, we will only have 2
valid permutation sets: (BCA) and (CAB). See fig 2.

A B C A B C
B C A C A B
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Fig 2: Showing the 2 valid sets.
Therefore, the total number of ways of arranging 3 elements under the same
3 elements to obtain valid sets is 2 ways.
Case 2:
A B —– (constraint set)
Our task is to find the total number of valid sets from elements (AB) that
will fit the constraint above. AB can be arranged in 2 x 1 ways without
considering the constraint set. See fig 3.

A B A B
A B B A

Fig 3: Arrangement of ”AB” without considering the constraint set.

If we now take into consideration the constraint set, we will only have 1
valid set: (BA). See fig 4.

A B
B A

Fig 4: Showing the only valid set.
Therefore, the total number of ways of arranging 2 elements under the same
2 elements to obtain valid sets is 1 way.
Case 3:
A —– (Constraint set)
Our task is to find the total number of valid sets from element (A) that will
fit the constraint above. A can be arranged in 1 way without considering the
constraint. See fig 5.

A
A

Fig 5. Arrangement of ”A” without considering the constraint set.
If we now take into consideration the constraint set, we will have no valid
set. This is because, A under A, is invalid. Therefore, the total number of
ways of arranging 1 element under the same 1 element to obtain valid sets is
0.
Let us consider case 3: single element (A)

1− 1 = 0

Case 2: double element (AB)
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2− 1 = 2(1− 1) + 1 = 1

Case 1: triple element (ABC)

6− 4 = 3{2(1− 1) + 1} − 1 = 2

Can you see the pattern developing here?
It means, if we have a constraint set (ABCD)
We will obtain the following valid sets:

4{3[2(1− 1) + 1]− 1}+ 1 = 9

Let us count to confirm if the answer above is correct.
A B C D
A B C D
A B D C
A C B D
A C D B
A D C B
A D B C
B A C D
B A D C valid 1
B C D A valid 2
B C A D
B D A C valid 3
B D C A
C A B D
C A D B valid 4
C B D A
C B A D
C D A B valid 5
C D B A valid 6
D A B C valid 7
D A C B
D B C A
D B A C
D C A B valid 8
D C B A valid 9
This confirms the validity of our answer, meaning that there are 9 valid sets
of (ABCD) that can be arranged under (ABCD).
The result obtained here is very exciting because we can now apply the same
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method for (ABCDE) thus:

5{4[3(2(1− 1) + 1)− 1] + 1} − 1 = 44

Therefore, there are 44 ways of arranging (ABCDE) under any order of
(ABCDE).
We can now use this relationship to formulate a general term thus: If we
have “n” different elements, then we obtain a general term:

n{n− 1(n− 2(n− 3(. . . . . . . . . ..(2(1− 1) + 1)− 1) + 1}. . . . . . . . . . . . ± 1

4.3 Second-Order Permutation Factorial (n!2
′
)

The second-order permutation factorial is denoted by the symbol n!2
′
.

Note: We add the apostrophe sign to the index number to distinguish it from
(n!)2 or n!2, which has been used in other works as the square of n!.

n!2
′
= n(n− 1(n− 2(n− 3(. . . ..(2(1− 1) + 1)− 1) + 1). . . ..± 1 (1)

Therefore.
The second-order permutation of 1 is given by:
1!2

′
= 1− 1 = 0

The second-order permutation of 2 is given by:
2!2

′
= 2(1− 1) + 1 = 1

The second-order permutation of 3 is given by:
3!2

′
= 3{2(1− 1) + 1} − 1 = 2

The second-order permutation of 4 is given by:
4!2

′
= 4{3[2(1− 1) + 1]− 1}+ 1 = 9

4.4 Deduction

1!2
′
= (0!2

′
)− 1 (2)

2!2
′
= 2(1!2

′
) + 1 (3)

3!2
′
= 3(2!2

′
)− 1 (4)

n!2
′
= n(n− 1)!2

′ ± 1 (5)

Note: In equation (5), the (±) sign is (+) when ”n” is an even integer and
(-) when ”n” is an odd integer.
from (2)

0!2
′
=

1!2
′
+ 1

1
(6)
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from (3)

1!2
′
=

2!2
′ − 1

2
(7)

from (4)

2!2
′
=

3!2
′
+ 1

3
(8)

n!2
′
=

(n + 1)!2
′ ± 1

n + 1
(9)

Theorem 1.

n!2
′
+ (n + 1)!2

′
=

(n + 2)!2
′

n + 1
(10)

Proof. equating (3) and (8)

2(1!2
′
) + 1 =

3!2
′
+ 1

3
(11)

1!2
′
=

3!2
′
+ 1

6
− 1

2
(12)

n!2
′
=

(n + 2)!2
′ − 1

(n + 1)(n + 2)
− 1

n + 1
(13)

sum (12) and (8)

1!2
′
+ 2!2

′
=

3!2
′
+ 1

6
− 1

2
+

3!2
′
+ 1

3
=

3(3!2
′
)

6
(14)

1!2
′
+ 2!2

′
=

3!2
′

2
(15)

Remark 1. Interestingly, Theorem 1 also holds for permutations without
external constraint. For example:

1! + 2! = 1 + 2 =
3!

2

2! + 3! = 2 + 6 =
4!

3

Therefore

n! + (n + 1)! =
(n + 2)!

n + 1
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Theorem 2. Prove that:
0!2

′
= 1 (16)

Proof. According to theorem 1.

0!2
′
+ 1!2

′
=

2!2
′

1

0!2
′
=

2!2
′

1
− 1!2

′

Therefore
0!2

′
= 1− 0 = 1

4.5 Applications

1. A marriage counselor is to hold a counseling session with 4 couples in
his office. She plans to sit the husbands on the first row of 4 chairs
while the wives are to sit on the second row of 4 chairs. However, he
doesn’t want any of the wives to sit directly behind their husbands. In
how many ways can she achieve this position?
Solution
Since the constraint set is not ordered, it implies that the husbands can
be positioned on the first row in 4! Ways = 4 x 3 x 2 x 1 = 24 ways.
In each of the 24 ways the husbands can sit, the wives can be positioned
in 4!2

′
= 4{3[2(1 − 1) + 1] − 1} + 1 = 9 ways on the second row such

that no wife sits directly behind her husband.
Hence the marriage counselor can achieve her target position in 24 x 9
ways = 216 ways.

2. If the counselor plans to position the husbands on the front row on first-
come first-sit basis, how many ways can she still achieve her objective
of not sitting wives directly behind their husbands on the second row.
Solution.
Here the constraint set is ordered because they will be positioned on
first-come first-sit basis, meaning that there is one way of positioning
the husbands on the front row.

10



Wives on the second row can be positioned in 4!2
′
= 4{3[2(1−1) + 1]−

1}+ 1 = 9ways.
Therefore, the marriage counselor can achieve her target in 9 x 1 ways
= 9 ways.

3. An examination officer is given the task of positioning six sets of twins
for two examinations. He is to position them on two rows of six chairs
each. The eldest of each set of twins are to sit on the front row in
the alphabetical order of their initials for the first examination and
the roles are reversed for the second examination. What is the total
number of ways he can position them for the two papers?
Solution
Total number of ways for the two exams = number of ways for exam 1
+ number of ways for exam 2
For exam 1: the constraint set is ordered hence there is one way of
positioning older twins on the front row according to their initials.
Number of ways for positioning the 6 younger twins not to sit directly
behind their twin brothers is
6!2

′
= 6{5[4(3(2(1− 1) + 1)− 1) + 1]− 1}+ 1 = 265

For exam 2: the roles are reversed hence constraint set is ordered.
Number of ways for positioning the 6 older twins not to sit directly
behind their twin brothers is.
6!2

′
= 6{5[4(3(2(1− 1) + 1)− 1) + 1]− 1}+ 1 = 265

Therefore, total number of ways for the two exams = 265 + 265 = 530
ways.

4. An artist intends to paint a wall in his room with 4 different colors. To
do this he must divide the wall surface into equal horizontal and ver-
tical segments. He plans to use the colors red, blue, green and yellow
in that order for the first row. For subsequent rows he doesn’t want
any of the colors on the constraint set to repeat on the columns and
each combination of colors on the rows must be unique. If he must
divide the wall surface into 4 equal vertical segments, how many equal
horizontal segments will he require in order to achieve his aim?
Solution.
The constraint set is ordered and is equal to 1 row.
The next thing we have to find is the number of rows that can be placed
under the constraint set to form valid sets.
The number equals 4!2

′
= 4{3[2(1− 1) + 1]− 1}+ 1 = 9

Hence the artist requires 9 + 1 = 10 equal horizontal segments. See fig
6.
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Red Blue Green Yellow

Blue Green Yellow Red
Blue Red Yellow Green
Blue Yellow Red Green
Green Yellow Red Blue
Green Red Yellow Blue
Green Yellow Blue Red
Yellow Green Blue Red
Yellow Green Red Blue
Yellow Red Blue Green

Fig 6: The appearance of the wall.

5 Conditional second-order permutation

Conditional second-order permutation exist in situations where the elements
in the constraint set are not exactly the same as the elements in the permuta-
tion set. In that case the aim is to arrange the permutation set such that the
common elements in the two sets do not repeat on any of the vertical lines;
also, the constraint set has no effect over any element in the permutation set
that is not contained in the constraint set.
Example.
ABC – constraint set
BAD
only 2 elements in the constraint set are contained in the permutation set.
Our task is to figure out the number of ways BAD can be arranged under
ABC such that common elements A and B will not be repeated on any ver-
tical line.
We can represent this problem as nEr where n is the number of elements in
the constraint set and r is the number of elements in the permutation set
that is not in the constraint set.
Let r and n be positive integers such that 0 ≤ r ≤ n ( n ≥ r, r ≥ 0 )
Then, the number of all arrangements of the permutation set including r
under the influence of the constraint set n is denoted by nEr.
Hence, in the example above, we are to solve for 3E1.
Note:

1. When r = 0, it implies that
nE0 = n!2

′
(all elements in constraint set are contained in permutation
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set)

2. When r = n, it implies that
nEn = n! (all elements in permutation set are not contained in con-
straint set)

Putting them all together according to their respective orders, we obtain the
shape of a triangle. See fig 7.

0E0
1E0

1E1
2E0

2E1
2E2

3E0
3E1

3E2
3E3

4E0
4E1

4E2
4E3

4E4
5E0

5E1
5E2

5E3
5E4

5E5
6E0

6E1
6E2

6E3
6E4

6E5
6E6

Fig 7: Triangle showing the several representations of nEr.
This triangle can be built-up in this order to infinity; however, the major
aim is to evaluate the cell values.
By inputting the values we already know into the triangle.
The triangle becomes. See fig 8.

1
0 1
1 2e1 2
2 3e1

3e2 6
9 4e1

4e2
4e3 24

44 5e1
5e2

5e3
5e4 120

265 6e1
6e2

6e3
6e4

6e5 720

Fig 8: Triangle with values of n!2
′

and n! inputted.
By manually counting 2E1,

3E1, and 4E1.
The following relationship can be observed:
0E0 + 1E0 = 1E1
1E0 + 2E0 = 2E1
2E0 + 3E0 = 3E1

This implies that; by adding corresponding values on column 1 we obtain the
values on column 2.
Therefore.
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1E1 = 1 + 0 = 1
2E1 = 0 + 1 = 1
3E1 = 1 + 2 = 3
4E1 = 2 + 9 = 11
5E1 = 9 + 44 = 53
6E1 = 44 + 265 = 309
This kind of relationship is observed on all the columns of the triangle; hence,
a general assumption of the values on the triangle can be made thus:

Theorem 3. The values of two corresponding cells on a column sum up to
give the value of the cell adjacent to the bottom cell of the two corresponding
cells of the triangle. The theorem can be represented pictorially as seen on
fig 9.

A
B A + B

Fig 9.

Mathematically.

nEr +n+1 Er =n+1 Er+1 (17)

By applying theorem 3, we can complete the triangle as seen on fig 10.

1
0 1
1 1 2
2 3 4 6
9 11 14 18 24
44 53 64 78 96 120
265 309 362 426 504 600 720

Fig 10. Bassey triangle

The resulting triangle is known as BASSEY triangle, it highlights the
relationship between n! and n!2

′
.

It can be clearly seen from the triangle the transformation that occurs as n!2
′

moves towards n! on each row of the triangle.
Notice that the values on the first cells of each row are all n!2

′
while the

values on the last cells of each row are all n!
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5.0.1 Application of Bassey triangle

1. How many ways can a British girl, a Swedish girl and a Chilean girl
be paired at the same time with a British Boy, a Jamaican boy and a
Nigerian boy, if a boy and girl from the same country cannot be paired.
Solution.
B S C.......... Constraint set
J B N.......... permutation set

n = 3, r = 2

Hence, we are to find 3E2 on the triangle.
check answer on the 4th row and 3rd column.
3E2 = 4

B S C B S C B S C B S C
J B N J N B N B J N J B

Fig 11: Shows total number of pairings.

2. How many ways can the alphabets that make up the word ”freak” be
arranged under the word ”claim”, if the common alphabets must not
be directly under each other.
Solution.
C L A I M.......... Constraint set
F R E A K.......... permutation set

n = 5, r = 4

Hence, we are to find 5E4 on the triangle.
check answer on the 6th row and 5th column.

5E4 = 96
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5.1 Mathematical evaluation of (nEr)

It is possible to directly evaluate nEr without having to construct Bassey
triangle or counting directly. First; we refer to theorem 1, which states that:

n!2
′
+ (n + 1)!2

′
=

(n + 2)!2
′

n + 1

. Let’s denote this as an

Example 1.

0!2
′
+ 1!2

′
=

2!2
′

1
= a0

Example 2.

1!2
′
+ 2!2

′
=

3!2
′

2
= a1

Example 3.

2!2
′
+ 3!2

′
=

4!2
′

3
= a2

and so on.

By applying Theorem 3 from the first column to the last column in each
of the rows of Bassey triangle, we arrive at the following mathematical rela-
tionships.

1! =1 E1 =
1(2!2

′
)

1

2! =2 E2 =
1(2!2

′
)

1
+

1(3!2
′
)

2
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3! =3 E3 =
1(2!2

′
)

1
+

2(3!2
′
)

2
+

1(4!2
′
)

3

4! =4 E4 =
1(2!2

′
)

1
+

3(3!2
′
)

2
+

3(4!2
′
)

3
+

1(5!2
′
)

4

5! =5 E5 =
1(2!2

′
)

1
+

4(3!2
′
)

2
+

6(4!2
′
)

3
+

4(5!2
′
)

4
+

1(6!2
′
)

5

6! =6 E6 =
1(2!2

′
)

1
+

5(3!2
′
)

2
+

10(4!2
′
)

3
+

10(5!2
′
)

4
+

5(6!2
′
)

5
+

1(7!2
′
)

6

Notice that the coefficients are all combinations, same as what obtains on
Pascal triangle. Re-writing the relationship in terms of an and nCr, produces
the following result.

1! =1 E1 =0 C0a0

2! =2 E2 =1 C1a0 +1 C0a1

3! =3 E3 =2 C2a0 +2 C1a1 +2 C0a2

4! =4 E4 =3 C3a0 +3 C2a1 +3 C1a2 +3 C0a3

5! =5 E5 =4 C4a0 +4 C3a1 +4 C2a2 +4 C1a3 +4 C0a4

6! =6 E6 =5 C5a0 +5 C4a1 +5 C3a2 +5 C2a3 +5 C1a4 +5 C0a5

From the relationships above, it can be deduced that:

nEr =r−1 Cr−1an−r+
r−1Cr−2an−r+1+

r−1Cr−3an−r+2+.......r−1Cr−ra{(n−r)+(r−1)}
(18)

Example 4. Find 5E3

5E3 = 3−1C3−1a5−3 +3−1 C3−2a5−3+1 +3−1 C3−3a5−3+2

= 2C2a2 +2 C1a3 +2 C0a4
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=
(2!)

(2!0!)

4!2
′

3
+

(2!)

(1!1!)

5!2
′

4
+

(2!)

(0!2!)

6!2
′

5

=
(1)

(1)

9

3
+

(2)

(1)

44

4
+

(1)

(1)

265

5
= 3 + 22 + 53 = 78

This answer can be confirmed on Bassey triangle.

Example 5. Find 6E2

6E2 = 2−1C2−1a6−2 +2−1 C2−2a6−2+1

= 1C1a4 +1 C0a5

=
(1!)

(1!0!)

6!2
′

5
+

(1!)

(0!1!)

7!2
′

6

=
(1)

(1)

265

5
+

(1)

(1)

1854

6
= 53 + 309 = 362

Example 6. How many ways can A B C D be arranged under A B C D, if
B must always be directly under A.
Solution.
Because B must always be under A, we now have to evaluate the total number
of ways of arranging DAC under BCD such that the common elements do
not repeat. See fig 12.

A B C D
B D A C

Fig 12.

The problem becomes 3E1

3E1 = 1−1C1−1a3−1

= 0C0a2

=
(1)

(1)

9

3
= 3
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5.2 Transposed Bassey Triangle

Bassey triangle is transposed when the contents of all the diagonals are moved
to the corresponding columns as shown in figure 13 below.

0E0
1E1

1E0
2E2

2E1
2E0

3E3
3E2

3E1
3E0

4E4
4E3

4E2
4E1

4E0
5E5

5E4
5E3

5E2
5E1

5E0
6E6

6E5
6E4

6E3
6E2

6E1
6E0

Fig 13: Transposed Bassey triangle showing the new positions of nEr.
The resulting triangle with values inputted is shown in figure 14 below.

1
1 0
2 1 1
6 4 3 2
24 18 14 11 9
120 96 78 64 53 44
720 600 504 426 362 309 265

Fig 14: Transposed Bassey triangle.
The following relationship is observed along the columns.

1E1 −0 E0 =1 E0

2E1 −1 E0 =2 E0

In general.

nEr −n−1 Er−1 =n Er−1 (19)

Also.
(n + 1)!− n! = n(n!)
we denote this as bn
Therefore.
1!− 0! = 0(0!) is denoted as b0
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2!− 1! = 1(1!) is denoted as b1
3!− 2! = 2(2!) is denoted as b2
and so on.

By applying equation (20) from the first column to the last column in
each of the rows of the triangle, we arrive at the following mathematical re-
lationships.

1!2
′
=1 E0 =0 C0b0

2!2
′
=2 E0 =1 C0b1 −1 C1b0

3!2
′
=3 E0 =2 C0b2 −2 C1b1 +2 C2b0

4!2
′
=4 E0 =3 C0b3 −3 C1b2 +3 C2b1 −3 C3b0

5!2
′
=5 E0 =4 C0b4 −4 C1b3 +4 C2b2 −4 C3b1 +4 C4b0

6!2
′
=6 E0 =5 C0b5 −5 C1b4 +5 C2b3 −5 C3b2 +5 C4b1 −5 C5b0

From the relationships above, it can be deduced that:

nEr =r−1 Cr−1bn−r−r−1Cr−2bn−r+1+
r−1Cr−3bn−r+2−.......r−1Cr−rb{(n−r)+(r−1)}

(20)
This relationship offers an alternative means of evaluating the values of nEr

Theorem 4.
nE0

n−1E1

= n− 1 (21)

Proof.
n!2

′

0C0an−1−1
=

n!2
′

an−2

an−2 =
(n + 2− 2)!2

′

n− 1

=
n!2

′

n− 1

Therefore.
(n!2

′
)(n− 1)

n!2′
= n− 1
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So, according to the theorem.

2E0

1E1

= 2− 1

3E0

2E1

= 3− 1

This theorem is useful in computing the total number of home and away
league fixtures in league format competitions.

Example 7. The total number of home and away matches in a 5 team league
=

5(44)

11

Example 8. The total number of home and away matches in a 6 team league
=

6(265)

53

The total number of home and away matches in ”n” team league =

n(nE0)
n−1E1

= n(n− 1)

The total number of pairings =

n(n− 1)

2

6 The Size of all (2,n) Latin rectangles (L2,n)

Definition 1. Latin square is a natural generalization of a permutation.
More concretely, a nth order Latin square is an n by n grid in which the
numbers 1,2......n(often called symbols) are each used exactly once in each
row and column[3].

We readily know that there are n! permutation and so it comes as a
surprise that the number of Latin squares of order n is only known up to n =
11 [4]. If we let Ln be the number of nth order Latin squares, then the best
known bounds of Ln are very far apart. For example, van Lint and Wilson
[22] give upper and lower bounds which differ asymptotically by a factor of
nn.
Here we aim to show that the number of all distinct (2,n) Latin rectangles
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can be solved. This is made possible by the discovery of the general term
for n!2

′
. This would give us a good idea on how to approach the problem

generally and open up a wide area of further research on higher-order per-
mutations.
Example of Latin squares.

1.
A B
B A

Fig 15: Order 2 Latin square

2.
A B C
B C A
C A B

Fig 16: Order 3 Latin square

Definition 2. Latin rectangle is a k x n array L, with symbols such that each
row and column contains only distinct symbols. If k = n then L is a Latin
square of order n[4].

Latin rectangles can also be described as incomplete Latin squares. For
example (2,3) Latin rectangle is an incomplete order 3 Latin square. (3,4),
(2,4) are all incomplete forms of an order 4 Latin square and so on. All (2,n)
Latin squares are incomplete except (2,2).

A B C
B C A

Fig 17: (2,3) Latin rectangle
Lk, n denotes the number of distinct Latin rectangles.

Definition 3. A Latin square of order n is said to be reduced if its first row
and first column are in the standard order 0, 1,....,n-1.

Example.

0 1 2

1 2 0
2 0 1
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Figure 18: Reduced Latin square of order 3.
The use of the term ”reduced” goes back at least to MacMahon[6], and was
adopted, for example by Fisher and Yates[7], Denes and Keedwell[8, 9] and
Laywine and Mullen[10]. Euler[11] instead used the term ”regular square”.
Some authors use ”normalized” [14, 12], ”standardized” [15], ”standard”
or ”in standard form”[13] in place of what we call ”reduced.” Similarly,
our definition of ”normalized” also has some alternative names; for example
”standardized” [16] ”in the standard form” [17], ”semi-normalised” [12] and
”reduced” [19, 18], which can be confusing. Some authors avoid this problem
by not assigning names to reduced or normalized Latin squares, for example
[20, 21, 22, 5].
Rn denotes the number of distinct reduced latin squares of order n.
Rk,n denotes the number of distinct reduced k x n Latin rectangles.

Theorem 5.
L2,n = n!(n!2

′
) (22)

Proof. If we define L2,n as the total number of distinct Latin rectangles with
2 rows and n columns such that n ≥ 1. Then the total number of arrange-
ment(s) of row 1 = n!; hence, for every single arrangement of row 1, there
are n!2

′
arrangement(s) of row 2 under row 1. Therefore, total number of

arrangement(s) of row 2 under the total number of arrangements of row
1 = n!(n!2

′
)

Example 9. L2,2 = 2!(2!2
′
) = 2(1) = 2

Example 10. L2,3 = 3!(3!2
′
) = 6(2) = 12

Example 11. L2,4 = 4!(4!2
′
) = 24(9) = 216

Example 12. L2,12 = 12!(12!2
′
) = 479001600(176214841) = 84407190782745600

Here we see for the first time the value of L2,12 that has not been counted
exhaustively using a computer.

Remark 2. Clearly this relationship solves all cases of L2,n. From here we
can see that to solve all cases L3,n it is essential to find n!3

′
. This is an area

of further research.
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6.1 Reduced size of all (2,n) Latin rectangles (R2,n)

Theorem 6.

R2,n =
n!2

′

n− 1
(23)

Proof. From Bassey triangle, we observe that:

R2,n =n−1 E1 (24)

Therefore.
R2,2 =1 E1

R2,3 =2 E1

R2,4 =3 E2

Applying equation (24) to theorem 4, we obtain:

nE0

n−1E1

=
n!2

′

R2,n

= n− 1 (25)

Therefore.

R2,n =
n!2

n− 1
(26)

R2,2 =
2!2

′

2− 1
=

1

1
= 1

R2,3 =
3!2

′

3− 1
=

2

2
= 1

R2,4 =
4!2

′

4− 1
=

9

3
= 3

R2,12 =
12!2

′

12− 1
=

176214841

11
= 16019531

We can also deduce from equation (25) that:

n!2
′
= (n− 1)R2,n
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Therefore, from theorem 5:

L2,n = n!(n− 1)R2,n (27)

This formula is almost the same as the already established formula for Ln.

Ln = n!(n− 1)!Rn (28)

Notice that the two equations (27) and (28) are equal when n = 2
Therefore.

Rn = R2,nfor(n = 2) (29)

7 Higher Order Permutations

We have so far been able to find the general term for second-order permu-
tation, however other higher orders of permutation exist, like third-order,
fourth-order etc. Below is a table showing values of higher order permuta-
tions obtained by counting manually.

5! = 120 4! = 24 3! = 6 2! = 2 1! = 1

5!2
′
= 44 4!2

′
= 9 3!2

′
= 2 2!2

′
= 1

5!3
′
= 12, 13 4!3

′
= 2, 4 3!3

′
= 1

5!4
′
= 2, 4 4!4

′
= 1

5!5
′
= 1

Fig 19: Table showing higher permutation values.

From the table, it can be observed that the value of the permutation of
a number which is the same as the order of permutation is 1. This implies
that the first-order permutation of 1 is 1, the second-order permutation of 2
is 1, the third-order permutation of 3 is 1 and so on.

Proposition 1.
n!n

′
= 1 (30)

Therefore.

1! = 1

2!2
′
= 1

3!3
′
= 1
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4!4
′
= 1

and so on.
The implication of proposition 1, can be seen in the following corollary.

Corollary 1. The size of all complete Latin squares above the first order is
equal to the size of the largest corresponding incomplete Latin square.
This implies that:

Ln = L(n−1),n (31)

for (n ≥ 2)

Therefore.

L2 = L1,2

L3 = L2,3

Proof. Ln = L(n−1),n(n!n
′
)

But from equation (30) n!n
′
= 1

Therefore.

Ln = L(n−1),n

Example 13.
L2 = L1,2(2!2

′
)

L2 = L1,2

Example 14.
L3 = L2,3(3!3

′
)

L3 = L2,3

26



8 Result Summary

n n!2
′

R2,n L2,n

1 0 0 0
2 1 1 2
3 2 1 12
4 9 3 216
5 44 11 5280
6 265 53 190800
7 1854 309 9344160
8 14833 2119 598066560
9 133496 16687 48443028480
10 1334961 148329 4844306476800
11 14684570 1468457 586161043776000
12 176214841 16019531 84407190782745600
13 2290792932 190899411 14264815236056985600
14 32071101049 2467007773 2795903786354347468800
15 481066515734 34361893981 629078351928420506112000

Fig 20: Values of n!2
′
, R2,n, and L2,n up to n = 15

9 Conclusion

This study makes a strong case for the existence of second-order permutation
and its corresponding second-order permutation factorial (n!2

′
). For the first

time, we now know the general expression for n!2
′

and can now apply it to
solve second-order permutation problems in real life.
The relationship between the second-order permutation factorial (n!2

′
) and

what should now be known as first-order permutation factorial (n!) has
been clearly elaborated using a revolutionary mathematical triangle known
as Bassey triangle. With this triangle, we could clearly see the mathematical
process involved in the transformation from n!2

′
to n! and vice versa.

However, further research work is required to find the general expression for
other higher order permutation forms from third-order and above. This work
has shown that Latin squares are actually complex permutation structures
which will be better understood as advances are made on the study of higher
order permutations.
Thanks to this study, we have now cracked the Latin square code for accu-
rately computing the sizes of all (2,n) Latin rectangles for the first time in
the history of mathematics, this would not have been possible without the
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discovery of n!2
′

and it’s general expression.
It is my hope that this work has provided sufficient evidence to prove the
existence of n!2

′
and for it to be adopted worldwide by mathematics scholars

and educators as a valid mathematical symbol and phenomenon.
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