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Abstract  

The beautiful Titius–Bode law (𝜉 = 0.4 + 0.3 × 2n) discovered 250 years ago, is considered to be a 

mathematical coincidence rather than an "exact" law, because it has not yet been proved physically. 

However, considering the disturbance reparation and stability of the asteroid belt orbit, there must be 

some underlying logical necessity.  

Planetary orbits are often computed by Newtonian mechanics calculating the kinetic energy and the 

universal gravitation energy. But applying the principle of energy-minimum to the Newtonian mechanics 

leads that the stable orbital radius is only one value, and this result disagrees perfectly with actual 

phenomena. The cause of this difference must be an extraction shortage of elements which rule over the 

planetary orbits. Other elements are the electric charge energy and the rotation energy which are guided 

by the Kerr-Newman solution discovered in 1965 of the general relativity theory. That is, I applied the 

principle of energy-minimum and Newtonian methods to the complicated energy equation which adopts 

mass, electric charge and rotation elements of the central core star as the Sun. Herewith, the Titius–Bode 

law is demonstrated mathematically and the number of Saturn’s rings, maximum 31 is calculated. 
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1.  Introduction 

The Titius–Bode law, discovered 250 years ago, is considered to be a mathematical coincidence rather 

than an "exact" law [1], because it has not yet been proved physically. However, considering the 

disturbance reparation and stability of the asteroid belt orbit, there must be some underlying logical 

necessity. Here by Newtonian methods using the Kerr-Newman solution of the general relativity 

theory, I demonstrate the Titius-Bode law and apply its solution method to Saturn’s rings. This is a 

mathematical equation calculation. The detailed analysis processes are provided in a separate paper [2]. 

 

2.  Methods 

The following is an outline of the solution method used and the key equations in the text.  

1) The equation for energy in the space-time field is obtained from the Kerr-Newman solution, a strict 

solution of the Einstein equations of general relativity. 

                         f 1(ρ, θ, dρ/dt, dθ/dt, dφ/dt, ε) = 0           (eq. 3） 

2) This energy equation is partially differentiated by θ to the minimum energy. The result is θ=π/2, so that, 

the calculation below proceeds at θ=π/2, i.e., in the equatorial plane. 

f 2(ρ, π/2, dρ/dt, 0, dφ/dt, ε) = 0  
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3) Applying the variational principle to the Kerr-Newman solution to calculate dφ/dt leads to the angular 

momentum equivalent J. 

   ξ(ρ, dφ/dt, J) = 0                           (eq. 6) 

4) Because of an additional radius dρ＝0 at the aphelion and perihelion distance R, the calculation below  

is performed at distance R. 

f 3(R, π/2, 0, 0, dφ/dt, ε) = 0                 (eq. 7) 

5) Substituting dφ/dt from ξ = 0 into f 3= 0 results in a relation for the radius, the angular momentum 

equivalent, and the energy. 

f 4(R, π/2, 0, 0, J, ε) = 0                       (eq. 9) 

6) The orbital distance R is determined by the energy and the angular momentum equivalent, i.e., 𝑅 =

𝑅(𝜀, 𝐽). R is partially differentiated by ε , that is, f 4  is partially differentiated by ε. 

                 g (R, J, ε, 𝜕𝑅/𝜕𝜀) = 0                         (eq. 10) 

7) Taking the angular momentum equivalent J from f 4(R, π/2, 0, 0, J ,ε) = 0 and substituting it into 

  g (R, J, ε, 𝜕𝑅/𝜕𝜀) = 0 gives an important differential equation composed of the radius and the energy. 

                 h(R, ε, dε/dR) = 0                            (eq. 11) 

8) Solving the differential equation h results in a complicated set of arctan, log, and power functions, plus 

an integration constant K. 

                 H(R, ε, K) = 0                               (eq. 14)  (eq. 15) 

9) Using that the minimum energy is 𝑑𝜀/𝑑𝑅 = 0 in h(R, ε, dε/dR) = 0, the following simultaneous 

equations are obtained and solved.                             ε 

                h(r, εmin , 0) = 0  ①      H(r, εmin , K) = 0  ②    (eq. 16)     

10) Because the integration constant K is common to all orbits, the Titius–Bode law is demonstrated and 

the number of Saturn’s rings is calculated. 

                 I (r, K) = 0                                  (eq. 22)  (eq. 23) 

 

2.1.  The Energy Equation  

2.1.1.  Introduction to the Energy Equation  

  There are two preconditions for the following analysis.  

1) The analysis object must be sufficiently far from the center of mass. 

2) The rotation speed of the center of mass must not be too fast. The characteristic Boyer-Lindquist 

coordinates in the Kerr solution are equal to general polar coordinates in the first-order term 𝑎/𝜌[3]. 

 

The strict Boyer-Lindquist metric of the Kerr-Newman geometry [4] is 

   ds2 = −
R2Δ

ρ2
(dt − asin2θdφ)

2
+

ρ2

R2Δ
dr2 + ρ2dθ2+ 

R4sin2θ

ρ2
  (dφ−

a

R2
dt)

2

               

At large radius r, the Boyer-Lindquist metric is 

  ds2 → −(1 −
2M

r
)dt2

 

−
4aMsin2θ 

 

r
dtdφ+ (1 +

2M

r
)dr2 + r2(dθ2 + sin2θ dφ)

 
     

Symbols are changed from the Boyer-Lindquist metric to the general polar coordinates below.   

R 
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The Kerr-Newman solution of general relativity is given by (eq.1). In this expression, 𝑚, 𝑎 and e are the 

mass, rotation and electric charge elements respectively. 

    (1)    𝑑𝑠2 = (1 −
2𝑚𝜌 − 𝑒2

𝜌2 + 𝑎2cos2𝜃
) (𝑐𝑑𝑡)2 −

𝜌2 + 𝑎2 cos2 𝜃

𝜌2 + 𝑎2 − 2𝑚𝜌 + 𝑒2
𝑑𝜌2 − (𝜌2 + 𝑎2cos2𝜃)𝑑𝜃2 

     − [ (𝜌2 + 𝑎2)  +
(2𝑚𝜌−𝑒2)𝑎2sin2𝜃

𝜌2 + 𝑎2 cos2 𝜃
] sin2𝜃 𝑑𝜑2 −

2(2𝑚𝜌 − 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
𝑐𝑑𝑡 ∙ 𝑑𝜑 

Dividing ds by the time elements (c dt), Γ gives the form: 

    
1

𝛤2
= (

𝑑𝑠

𝑐𝑑𝑡
)
2

 

The Lorentz transformation factor γ (= c dt/ds) in the Minkowski space-time of special relativity is an 

important component to the energy E = M c2 = M0 γ c2 . Γ (= c dt/ds) in the Kerr-Newman solution of 

general relativity is analogous to γ. 

On this occasion, following the principle of minimum energy, the sign of m is changed to −𝑚 , the sign of 

𝑎 is +𝑎, and the sign of e is +e, and therefore, the energy equation is Ｅ＝Γ ( ρ, θ, φ, t, −𝑚, 𝑎, e). 

     (2)    
1

𝐸2
= (1 +

2𝑚𝜌 + 𝑒2

𝜌2 + 𝑎2cos2𝜃
) −

𝜌2 + 𝑎2 cos2 𝜃

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

− (𝜌2 + 𝑎2cos2𝜃) (
𝑑𝜃

𝑐𝑑𝑡
)
2

 

         − [(𝜌2 + 𝑎2)  −
(2𝑚𝜌+𝑒2)𝑎2sin2𝜃

𝜌2 + 𝑎2 cos2 𝜃
] sin2𝜃 (

𝑑𝜑

𝑐𝑑𝑡
)
2

+
2(2𝑚𝜌 + 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
(
𝑑𝜑

𝑐𝑑𝑡
) 

Since E has a decisive massive energy M0c 2, it is converted into ε    1/𝐸2 = 1 − 2𝜀  in (eq.3).       

      (3)    − 2ε =
2𝑚𝜌 + 𝑒2

𝜌2 + 𝑎2cos2𝜃
−

𝜌2 + 𝑎2cos2𝜃

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

− (𝜌2 + 𝑎2cos2𝜃) (
𝑑𝜃

𝑐𝑑𝑡
)
2

 

          − [(𝜌2 + 𝑎2)  −
(2𝑚𝜌+𝑒2)𝑎2sin2𝜃

𝜌2 + 𝑎2 cos2 𝜃
] sin2𝜃 (

𝑑𝜑

𝑐𝑑𝑡
)
2

+
2(2𝑚𝜌 + 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
(
𝑑𝜑

𝑐𝑑𝑡
) 

Partial differentiation is used to minimize the energy ε(ρ，θ，φ，t) using 𝜕𝜀/𝜕𝜃 = 0.  

        
(2𝑚𝜌 + 𝑒2)𝑎2

(𝜌2 + 𝑎2cos2𝜃)2
+

𝑎2

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

+ 𝑎2 (
𝑑𝜃

𝑐𝑑𝑡
)
2

 

        − [(𝜌2 + 𝑎2) −
(2𝑚𝜌 + 𝑒2)2𝑎2sin2𝜃

𝜌2 + 𝑎2cos2𝜃
−
(2𝑚𝜌 + 𝑒2)𝑎4sin4𝜃

(𝜌2 + 𝑎2cos2𝜃)2
] (
𝑑𝜑

𝑐𝑑𝑡
)
2

 

        + [
2(2𝑚𝜌 + 𝑒2)𝑎

𝜌2 + 𝑎2 cos2 𝜃
+
2(2𝑚𝜌 + 𝑒2)𝑎3sin2𝜃

(𝜌2 + 𝑎2 cos2 𝜃)2
] (
𝑑𝜑

𝑐𝑑𝑡
) 

That is, the energy E and ε are minimized at θ=π/2 and the planets gather on the equatorial plane where 

the energy is steady.  

 

2.1.2.  Time component from the variational principle 

When the rotation speed of the center of mass is not too fast, the Kerr-Newman solution expanded in the 

first order of a/ρ takes the form given in (eq.4): 

     (4)    (
𝑑𝑠

𝑑𝑠
)
2

= 1 = (1 −
2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
)
2

−
1

1 −
2𝑚
𝜌 +

𝑒2

𝜌2

(
𝑑𝜌

𝑑𝑠
)
2

− 𝜌2 (
𝑑𝜃

𝑑𝑠
)
2

− 𝜌2sin2𝜃 (
𝑑𝜑

𝑑𝑠
)
2

 

          −
2𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
) sin2𝜃 (

𝑐𝑑𝑡

𝑑𝑠
) (
𝑑𝜑

𝑑𝑠
) 

・sin 2θ ＝ 0 
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Applying the variational principle to the Kerr-Newman solution, the Euler–Lagrange equation [5] is  

adopted . 

         δ∫  (1 −
2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
)
2

−
1

1 −
2𝑚
𝜌
+
𝑒2

𝜌2

(
𝑑𝜌

𝑑𝑠
)
2

− 𝜌2 {(
𝑑𝜃

𝑑𝑠
)
2

+ sin2𝜃 (
𝑑𝜑

𝑑𝑠
)
2

}

−
2𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
) sin2𝜃 (

𝑐𝑑𝑡

𝑑𝑠
) (
𝑑𝜑

𝑑𝑠
)     𝑑𝑠 = 0 

Eventually, (eq.5) is obtained at the equatorial plane of the rotating center of mass where the energy is 

stable. Hereafter, I perform the calculation at the equatorial plane (θ＝π/2) of the rotating center of 

mass. 

          
𝑑

𝑑𝑠
[(1 −

2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
) −

𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
)(
𝑑𝜑

𝑑𝑠
)] = 0                   time component             

          
𝑑

𝑑𝑠
[𝜌2 (

𝑑𝜑

𝑑𝑠
) +

𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
)(
𝑐𝑑𝑡

𝑑𝑠
)] = 0                                           𝜑 component               

 
The two equations in (eq.5) are integrated over ds. Using the resulting pair of simultaneous equations, 

𝑑𝜑/𝑑𝑡 (eq. 6) with an integration variable J is obtained. 

   (6)    
𝑑𝜑

𝑑𝑡
=
(
𝑑𝜑
𝑑𝑠
)

(
𝑑𝑡
𝑑𝑠)

=  
𝐽 (𝜌 − 2𝑚 +

𝑒2

𝜌 ) + 𝑎 (
𝑒2

𝜌 − 2𝑚)

𝜌3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝜌 )
∙ 𝑐 

𝐽 ∶ the angular momentum equivalent  

  （a kind of Carter constant in relativity theory）
  

The distance variables are defined as follows: 

ρ：An arbitrary orbital distance in two- or three-dimensional coordinates.  

R：An aphelion and perihelion distance at the equatorial plane of the rotating center of mass. 

r：An aphelion and perihelion distance, energetically stable at the equatorial plane.  

 

2.1.3.  Introduction of the angular momentum equivalent   

Because of an additional ρ at the aphelion and perihelion distance, dρ＝0, the energy equation is given by 

(eq.7).   

     (7)      0 = 2𝜀 +
2𝑚

𝑅
+
𝑒2

𝑅2
− 𝑅2 (

𝑑𝜑

𝑐𝑑𝑡
)
2

+
4𝑎

𝑅
(𝑚 +

𝑒2

2𝑅
)(

𝑑𝜑

𝑐𝑑𝑡
) 

dφ/cdt (eq. 6) is composed of the angular momentum equivalent and is substituted into (eq.7). J is 

obtained as in (eq.8) by adopting the secondary order R. 

     (8)      𝐽 =
4𝑎𝑚 + 𝑅𝛿√𝑅(2𝜀𝑅 + 2𝑚 + 𝐶)

𝑅2(𝑅 − 2𝑚 + 𝐶) − 𝑎(2𝑚 − 𝐶)𝛿√𝑅(2𝜀𝑅 + 2𝑚 + 𝐶)
𝑅2 

Here 𝛿 = ±1  and 𝐶 = 𝑒2/𝑅 . δ is related to the orbital rotation direction. 

 

 

2.2.  The Space Fantasy Differential Equation 

2.2.1.  Introduction of the Space Fantasy differential equation 

Changing the angular momentum equivalent J (eq. 8), the relation of R , ε, and J is as given in (eq.9) at the 

aphelion and perihelion distances. (eq.9) is more complicated than the Kepler-Newton equation 2𝜀𝑅2 +

2𝑚𝑅 − 𝐽2 = 0  

    
(

2𝑚
𝜌 )

(
2𝑚𝑎
2𝑚𝑎)

      (5) 
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     (9)     0 = 2𝜀 +
2𝑚

𝑅
+
𝑒2

𝑅2
−𝑅2 [

𝐽 (𝑅 − 2𝑚+
𝑒2

𝑅
) + 𝑎 (

𝑒2

𝑅
− 2𝑚)

𝑅3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝑅
)

]

2

 

          +
4𝑎

𝑅
(𝑚 +

𝑒2

2𝑅
)[
𝐽 (𝑅 − 2𝑚 +

𝑒2

𝑅 ) + 𝑎 (
𝑒2

𝑅 − 2𝑚)

𝑅3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝑅
)

] 

  Since the orbital distance R is determined by the energy ε and the angular momentum equivalent J, i.e.  

𝑅 = 𝑅(𝜀, 𝐽). Partially differentiating R by ε, then substituting in J, and adopting the reciprocal of 𝜕𝑅/𝜕𝜀,  

a new differential equation is given by (eq.10). 

     (10)     
𝜕𝜀

𝜕𝑅
[𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)]2 

         =
(𝑚 + 𝐶)[𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)]2

𝑅2
+
[𝐽(𝑅 − 2𝑚 + 𝐶) − 2𝑎𝑚 + 𝑎𝐶] [𝐽(𝑅 − 2𝑚+ 𝐶) + 3𝑎𝐶] ∙ 𝑅

1
 

               +
2𝑅2[𝐽(𝑅 − 2𝑚 + 𝐶) − 4𝑎𝑚] [𝐽2𝑎(𝑚 − 𝐶) − 𝐽𝑅2(𝑅 − 3𝑚+ 2𝐶) + 𝑎𝑅2(3𝑚 − 2𝐶)]

𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)
 

Here, substituting (eq. 8) for J into (eq.10), the second order R is obtained.  

By way of extensive calculations, the relation between ε and R is obtained as in (eq.11).  

    (11)    
𝒅𝜺

𝒅𝑹
𝑹𝟒(𝑹𝟐 − 𝟒𝒎𝑹+ 𝟐𝑪𝑹 + 𝟒𝒎𝟐) 

              = 𝒎𝑹𝟐(−𝑹𝟐 + 𝟖𝒎𝑹− 𝟒𝑪𝑹− 𝟏𝟐𝒎𝟐) + 𝜺 ∙ 𝟐𝑹𝟑(−𝑹𝟐 + 𝟔𝒎𝑹− 𝟒𝑪𝑹− 𝟖𝒎𝟐) 

              +𝟐𝒂𝒎(𝟐𝑹𝟐 + 𝟐𝒎𝑹− 𝑪𝑹− 𝟏𝟐𝒎𝟐)𝜹√𝑹(𝟐𝜺𝑹+ 𝟐𝒎+ 𝑪) 

              +𝜺 ∙ 𝟒𝒂𝑹(𝟑𝒎𝑹− 𝟐𝑪𝑹− 𝟔𝒎𝟐 + 𝟕𝑪𝒎)𝜹√𝑹(𝟐𝜺𝑹 + 𝟐𝒎+ 𝑪)         𝐶 = 𝑒2/𝑅   (𝑅  2ry order) 

 

This second order equation (eq. 11) is called the Space Fantasy differential equation. 

Solving the SF differential equation for S, a change of variables is performed. The result is (eq.12).   

            𝑆 = 𝑅√𝑅(2𝜀𝑅 + 2𝑚+ 𝐶) 

    (12)    
𝒅𝑺

𝒅𝑹
=
𝟐𝒆𝟐(𝒆𝟐 + 𝟐𝒎𝟐)

𝑺𝑹
+
𝟒𝒂𝜹𝒎+ 𝑺

𝑹
+
𝟔𝒂𝜹𝒎𝑺𝟐

𝑹𝟓
                                           ( 𝑅  0 order) 

 

The form of the differential equation in (eq.12) is more complicated than Riccati's differential equation, 

which never has an exact general solution [6]. Since 6𝑎𝛿𝑚𝑆2/𝑅5 is smaller than S/R , 4𝑎𝛿𝑚/𝑅, and is 

treated as a constant θ, an approximate differential equation is obtained as in (eq.13).  

       
𝑑𝑆

𝑑𝑅
=
1

𝑆
[
2𝐸4

𝑅
+
4𝑎𝛿𝑚𝑆

𝑅
(1 +

6𝑆2

4𝑅4
) +

𝑆2

𝑅
]               𝐸4 = 𝑒2(𝑒2 + 2𝑚2) 

           ≒
1

𝑆
[
2𝐸4

𝑅
+
4𝑎𝛿𝑚𝑆

𝑅
(1 + 𝜃) +

𝑆2

𝑅
]                      𝜃 =

3𝑆0
2

2𝑅0
4    (𝑆0

2 , 𝑅0
4  are centroids  𝑆2/3  , 𝑅4/5) 

    (13)        
𝑆𝑑𝑆 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4
=
𝑑𝑅

𝑅
       

 

The quadrature formulae [7] solve (eq.13) and give in (eq.14) and (eq.15).  

http://ejje.weblio.jp/content/centroid
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In the case that the discriminant 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0: 

          
1

2
log[𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4] −

4𝑎𝛿𝑚(1 + 𝜃)

2√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

2S + 4𝑎𝛿𝑚(1 + 𝜃)

2√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
) 

                          = log𝑅 + 𝐾 

     (14)     𝐾 =
𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4

𝑅2
∙ EXP [

−4𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
)] 

 

In the case that the discriminant 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＜0: 

         log[𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4] 

             −
2𝑎𝛿𝑚(1 + 𝜃)

√4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
∙ log [

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
 ] =  2 log𝑅 + 𝐾 

     (15)     𝐾 =  log

[
 
 
 
 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑅2

[
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

]
 
 
 
 
   

 

2.2.2.  Conditions of the energy minimum orbit 

  Since the minimum energy is 𝑑𝜀/𝑑𝑅 = 0 in the SF differential equation (eq. 11), it is a cubic equation in ε.  

             0 =  𝜀3 ∙ 32𝑎2𝑟3(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)2 

                      + 𝜀2 ∙ 𝑟2   16𝑎2(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)2(2𝑚 + 𝐶) 

                          +32𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚) 

                          −4𝑟3(−𝑟2 + 6𝑚𝑟 − 4𝐶𝑟 − 8𝑚2)2 
 

                      + 𝜀 ∙ 4𝑚𝑟   2𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2 

                       +4𝑎2(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)(2𝑚 + 𝐶) 

                        −𝑟3(−𝑟2 + 8𝑚𝑟 − 4𝐶𝑟 − 12𝑚2)(−𝑟2 + 6𝑚𝑟 − 4𝐶𝑟 − 8𝑚2) 
 

                       +𝑚2[4𝑎2(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2(2𝑚 + 𝐶) − 𝑟3(−𝑟2 + 8𝑚𝑟 − 4𝐶𝑟 − 12𝑚2)2] 

Solving this cubic equation, a solution  𝜀𝑚𝑖𝑛  (eq. 16) very close to 0 is adopted in accordance with the 

principle of the energy minimum. 

              −𝑚    𝑟3(𝑟2 − 8𝑚𝑟 + 4𝐶𝑟 + 12𝑚2)2 − 4𝑎2(2𝑚 + 𝐶)(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2   

              4𝑟       𝑟3(𝑟2 − 8𝑚𝑟 + 4𝐶𝑟 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝐶𝑟 + 8𝑚2) 

                 −4𝑎2(2𝑚 + 𝐶)(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚) 

                 −2𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2 
 

                           ≒  
−𝑚

4𝑟
                     ( 𝑟  0 order)                      

     𝜀𝑚𝑖𝑛 (eq. 16)  is substituted to the change of variables S = 𝑟√𝑟(2𝜀𝑟 + 2𝑚 + 𝐶) (eq. 12).  

     −𝑚𝑟4     𝑟4(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)2 − 4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 

      2    𝑟5(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝑒2 + 8𝑚2) 

        −4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)(3𝑚𝑟2 − 2𝑒2𝑟 − 6𝑚2𝑟 + 7𝑚𝑒2) 

        −2𝑎2𝑚𝑟2(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 
 

                             + 𝑟2(2𝑚𝑟 + 𝑒2)  

(16)  εmin =     ・ 

 

S2 =    ・ 
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                        =
 𝑟4 × [𝑟8 polynomial ]  + 𝑟2(2𝑚𝑟 + 𝑒2) × [𝑟9 polynomial ]

[𝑟9polynomial ]
 =  

 𝑟2 ×  𝑃

 𝑄
 

                        ≒
3𝑚

2
𝑟3                             ( 𝑟  0 order)               

   Here, P and Q are given by (eq.17) and (eq.18). 

      (17)      𝑃 = −𝑚𝑟2/2 〔 𝑟4(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)2 − 4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 〕     

                                +(2𝑚𝑟 + 𝑒2)  × 𝑄                                             [𝑟10 polynomial ] 

      (18)     𝑄 =  𝑟5(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝑒2 + 8𝑚2) 

                                  −4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)(3𝑚𝑟2 − 2𝑒2𝑟 − 6𝑚2𝑟 + 7𝑚𝑒2) 

                                  −2𝑎2𝑚𝑟2(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2                             [𝑟9 polynomial ] 

And for 𝜃,    

           𝜃 =
3𝑆0

2

2𝑅0
4 =

5𝑆2

2𝑟4
=

5𝑃

2𝑄𝑟2
   ≒   

15𝑚

4𝑟
     ( 𝑟 at  0 order)             

 

 

2.3.  The Titius–Bode Law 

In the case of the discriminant 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0 of the SF differential equation, the function 

𝑓(θ) is given in (eq.14) and is subjected to a Maclaurin series expansion. Terms above 𝜃2 are neglected. 

The result is given in (eq.19). 

   𝑓(θ) =
𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4

𝑅2
 EXP [

−4𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
)] 

      −𝐾 = 0 

           𝑓(θ) = 𝑓(0) +
1

1!
∙
𝜕𝑓(0)

𝜕𝜃
𝜃 +

1

2!
∙
𝜕2𝑓(0)

(𝜕𝜃)2
𝜃2 +⋯ = 0 

 

   (19)       𝑓(θ) =
3𝑚𝑟

2
EXP [

−4𝑎𝛿𝑚

√2𝐸4 − 4𝑎2𝑚2
arctan(

𝑟√3𝑚𝑟

2√𝐸4 − 2𝑎2𝑚2
)] × 

           × [1 −
30𝑎𝛿𝑚2𝐸4

𝑟[2𝐸4 − 4𝑎2𝑚2]
3
2

× arctan(
𝑟√3𝑚𝑟

2√𝐸4 − 2𝑎2𝑚2
)] − 𝐾 = 0 

  Since r is very large, it is given as arctan (
𝑟√3𝑚𝑟

2√𝐸4−2𝑎2𝑚2
) = 𝜋/2 + 𝜋𝑁. This is substituted into (eq.19). 

     𝐾 =
3mr

2
EXP [

−2𝑎𝛿𝑚𝜋(1 + 2𝑁)

√2𝐸4 − 4𝑎2𝑚2
] ∙ [1 −

30𝑎𝛿𝑚2𝐸4

𝑟[2𝐸4 − 4𝑎2𝑚2]
3
2

∙
𝜋(1 + 2𝑁)

2
]         

The integration constant K is common to all planets that orbit the center of mass. For the base planet they 

are r1 , N1 , N－N1 ＝𝑛 − 1, and the distance ratio 𝜉 = 𝑟/𝑟1. The result is given in (eq.20). 

 

    (20)    𝑛 − 1 =
√2𝐸4 − 4𝑎2𝑚2

4𝑎𝛿𝑚𝜋
∙ log

[
 
 
 
 𝜉 −

15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 2𝑛 − 1)

𝑟1[2𝐸4 − 4𝑎2𝑚2]
3
2

1 −
15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 1)

𝑟1[2𝐸4 − 4𝑎2𝑚2]
3
2 ]

 
 
 
 

 

For the other side, the Titius-Bode law is changed into (eq.21). 

    𝜉
𝐸𝑎𝑟𝑡ℎ

＝ 0.4 + 0.3 × 2𝑛  ＝ 0.4 + 0.6 × 2𝑛−1       ( 𝜉
𝐸𝑎𝑟𝑡ℎ

：the Earth basis 𝝃)    

     (21)    𝑛 − 1 = 
1

log 2
∙ log

𝜉
𝐸𝑎𝑟𝑡ℎ

− 0.4

1 − 0.4
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The Titius-Bode law (eq. 21) is remarkably similar to the solution (eq. 20) of the approximate SF 

differential equation. If the two coefficients are same, the two equations are almost equal. 

(The Earth is the base planet, n =1.) 

      
1

log 2
 =  

√2𝐸4 − 4𝑎2𝑚2

4𝑎𝛿𝑚𝜋
        0.4 =  

15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 1)

𝑟1[2𝐸
4 − 4𝑎2𝑚2]

3
2

 

     Since   𝑟1 = 1.5 × 108𝑘𝑚 for the Earth, 𝑚＝1.476𝑘𝑚 and  𝑎＝0.32𝑘𝑚 [8]  for the Sun,   

we have 𝑒 = 2.1𝑘𝑚, 𝑁1 = 1.5 × 107. The 2n on the right side of (eq.20) is neglected because of the very 

large 𝑁1. Thus 

     (22)       𝝃 = [𝟏 −
𝟑𝟎𝒂𝜹𝒎𝟐𝑬𝟒𝝅𝑵𝟏

𝒓𝟏[𝟐𝑬
𝟒 − 𝟒𝒂𝟐𝒎𝟐]

𝟑
𝟐

] ∙ 𝐄𝐗𝐏 [
𝟒𝒂𝒎𝝅(𝒏 − 𝟏)

√𝟐𝑬𝟒 − 𝟒𝒂𝟐𝒎𝟐
]  + 

𝟑𝟎𝒂𝜹𝒎𝟐𝑬𝟒𝝅𝑵𝟏

𝒓𝟏[𝟐𝑬
𝟒 − 𝟒𝒂𝟐𝒎𝟐]

𝟑
𝟐

        

                    𝜉
𝐸𝑎𝑟𝑡ℎ

= (𝟏 − 𝟎. 𝟒) ∙  𝟐𝒏−𝟏  +  𝟎. 𝟒 

𝛿 = ±1 is related to the orbital rotation direction. 

(Eq.22) is now exactly equal to (eq.21). The Titius-Bode law has therefore been demonstrated. 

 

 

2.4.  The Saturn’s Rings 

Since the autorotation of Saturn is fast, the discriminant 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0 of the SF 

differential equation (eq. 15) is as follows. 

                     𝐾 =  log

[
 
 
 
 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑅2

[
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

]
 
 
 
 
   

 

Since the power number [
2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4
]  is nearly 1, the denominator is expressed as ( 1 − 𝜆). 𝜆  is 

very small, but not zero. The solution of the SF differential equation is (eq.23).  
 

           1 − 𝜆 = [
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

 

(23)       𝐾 =  
𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑟2
∙

1

(1 − 𝜆)
 

The integration constant K is common to all the rings that belong to Saturn. For the base ring, the 

variables are r1 and F =K, and the polynomial of S is (eq.24). 

    (24)       𝑆4 − 2𝑆2[𝐹(1 − 𝜆)𝑟2 − 2𝐸4 + 8𝑎2𝑚2(1 + 𝜃)2] + [𝐹(1 − 𝜆)𝑟2 − 2𝐸4]2 = 0 

 

𝑃 (eq. 17) and 𝑄 (eq. 18) are substituted into (eq.24) to give S and 𝜃. Finally, the polynomial of r is 

(eq.25). 

    (25)       𝑷𝟐𝑸𝒓𝟐 − 𝟐𝑷{〔𝑭(𝟏 − 𝝀)𝒓𝟐 − 𝟐𝑬𝟒〕𝑸𝟐 + 𝟐𝒂𝟐𝒎𝟐 (𝟐𝑸 +
𝟓𝑷

𝒓𝟐
)
𝟐

} 

                                           + [ 𝑭𝟐(𝟏 − 𝝀)𝟐𝒓𝟐 − 𝟒𝑭(𝟏 − 𝝀)𝑬𝟒 ]𝑸𝟑 = 𝟎                                     

http://ejje.weblio.jp/content/is
http://ejje.weblio.jp/content/remarkably
http://ejje.weblio.jp/content/similar+to
http://ejje.weblio.jp/content/denominator
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The degree of (eq.25) is the highest for the first term,  𝑃2𝑄𝑟2, and is 𝑟 to the 31st〔+10×2+9+2〕power. 

So (eq.25) is a polynomial of  𝑟31 with λ high degree coefficients. Thus, planets with rings such as Saturn 

have a maximum of 31 rings. The real number of rings decreases by roots of complex number, minus 

roots, equal roots and swelling of the center core. 

 

 

3.  Discussion 

In summary, the Titius-Bode law, discovered 250 years ago, is considered to be a mathematical 

coincidence rather than an "exact" law. But I have proved the law and that Saturn can have a maximum of 

31 rings physically. The 250-year-mystery of astronomy is resolved by not computer analysis but 

theoretical analysis. 

About the Kerr-Newman solution of the Einstein’s equation , the no-hair theorem postulates that all black 

hole solutions of the Einstein-Maxwell equations of gravitation and electromagnetism in general 

relativity can be completely characterized by only three externally observable classical parameters: mass, 

electric charge, and angular momentum. All other information (for which "hair" is a metaphor) about the 

matter which formed a black hole or is falling into it, "disappears" behind the black-hole event horizon 

and is therefore permanently inaccessible to external observers. [9], [10]  

In this manner, on the ground of that this theory is based on the steady state Kerr-Newman solution in a 

mature space-time, it cannot be applied to a still young, unstable and transitional state space-time. Three 

important equations can be summarized as follows.  

(eq.11) is a fundamental approximate differential equation, based on the steady state Kerr-Newman 

solution and can be applied to Solar system, other planets and rings in universe at stable state. There 

must be many solutions of (eq.11).   

(eq.22) is one of approximate solutions of (eq.11). This is energy stable and applicable to Solar system 

planets and some of around 4000 extrasolar planets in universe. However, it is not applicable to still 

young, unstable and transitional state planets like comets.  

(eq.25) is one of approximate solutions of (eq.11). This is energy stable and applicable to Saturn’s rings 

and other some extrasolar planets’ rings. 

This theory is applied to planets, which belong to one center of mass in universe, but it is not available to 

a bulge space near center of mass. And it cannot be applied to galaxies, which should be considered to be 

under influences of dark matter and dark energy. 
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