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We provide a characterization of maps which are colourable with two colours.

1 Introduction

Since the paper [1] of two US Americans Kenneth Appel and Wolfgang Haken it is well known
that the ‘Four Colour Theorem’ is true. It was proven 1976 by the aid of computers, which
have to consider nearly 2000 subcases. The four mathematicians Neil Robertson, Daniel P.
Sanders, Paul Seymour and Robin Thomas in the year 1996 presented a new proof [2], where
they reduced the number of subcases to ca. 600, but still it lacks an elementary proof without
the aid of a computer. The following paper arose by the futile attempts to prove the Four
Colour Theorem.

Let Map be a map of N elements, Map = {S1, S2, S3, . . . , SN−1, SN}, N ∈ N. First
we have to make something clear. An element Sk ∈ Map is called a country . Each country
is a subset of R2 with finite but positive surface. Every country is confined by its border or
boundary, a subset of R2 with no surface. We assume that each country is homeomorphic to a
square. This means that a country is connected, and that it has a trivial fundamental group,
i.e. it has no holes. This means further that each country Sk is homeomorphic to the whole
closed unit circle {(x, y) ∈ R2 | x2 +y2 ≤ 1}, and that the border of a country is homeomorphic
to {x2 + y2 = 1} for x, y ∈ R. Every circle with a center in the border of a country contains a
point from that country. Two countries are neighboring if and only if they have some common
border homeomorphic to {x ∈ R | 0 < x < 1}. If A and B are neighboring countries, then
A is called a neighbor of B and B is a neighbor of A, or {A,B} is a neighboring pair . Two
neighboring countries are also topological neighboring. Note that two countries which meet in
a finite sets of points are not neighboring. A colouring of the map means that each country has
a colour, and neighboring countries get different colours. In this case we call the map stainable.

We mention the following trivial propositions although we do not need them, since
we read them nowhere, but we think they are important.

Proposition 1. Let Map be any map. This map is stainable with four colours if and only if
Map is the union of Map1 and Map2, i.e. Map = Map1 ∪Map2, and both Map1 and Map2 are
stainable with just two colours.
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Proposition 2. Let Map be any map. This map is stainable with three colours if and only if
Map is the union of Map1 and Map2, i.e. Map = Map1 ∪Map2, and Map2 is stainable with two
colours, while Map1 is stainable with one colour.

Remark 1. In both propositions we can choose disjoint sets Map1 and Map2.

The entire calculations occurs on the usual Euclidian plane = R2. A connected set
of countries is called a continent . We assume that all contries have neighbors, and there is a
single continent.

We need additional definitions.
We say that a triple are three countries such that each country have some common border to
the two others. We call a way an ordered set (L1, L2, L3, . . . , LK−1, LK) of countries such that
Li−1 and Li are neighboring for 2 ≤ i ≤ K. The country L1 is the beginning , and LK is called
the end . We call a circle an ordered set (L1, L2, L3, . . . , LK−1, LK) of countries such that Li−1

and Li are neighboring for 2 ≤ i ≤ K, and L1 and LK are neighbors, too. Every circle is also
a way. We call the set {L1, L2, L3, . . . , LK−1, LK} the used countries of the way or the circle,
respectively. Note that the number of used countries in a way may be less than K. We declare
that the number of used countries in each way or circle is at least three. This avoids ways and
circles like (A,B,A,B, . . .) with a neighboring pair {A,B}. We say the circle is odd or it is an
odd circle if the number of the used countries of the circle is odd.

2 The Theorem

Since we have a single continent, all countries are on this continent.

Theorem 1. Any map is stainable with two colours if and only if it contains neither a triple
nor an odd circle.

Proof. As abbreviations we define the assertions H := A map is stainable with two colours, and
J := A map contains no triple and no odd circle.

We want to prove: H⇐⇒ J. Instead this we show J⇒ H and J⇒ H, where J means
the negation of J. If a map contains a triple or an odd circle it is not possible to colour it with
two colours, i.e. J ⇒ H. Let us assume J, i.e. we assume a map without a triple or an odd
circle. We shall colour each connected component CC with just two colours, which we call r
(red) and g (green). We start with an arbitrary country X ∈ CC. We colour it with r. Assume
two neighbors of X. We call them Y and Z. The pair {Y,Z} cannot be neighboring, otherwise
{X,Y, Z} would be a triple, which is forbidden by J. We colour Y and Z with g. All neighbors
of Y and Z are coloured with r, and so on. We colour each country in CC alternating with r
and g.

Assume a country W which should be coloured both with r and g. We show that
this is not possible. We have two ways Way1 := (A1, A2, A3, . . . , Ak−1, Ak) and Way2 :=
(B1, B2, B3, . . . , Bj−1, Bj), where X = A1 = B1 and W = Ak = Bj and both Way1 and Way2
are ways, the beginning is X, the end is W . Since the country W should be coloured both with
r and g, one number of the used countries of the ways Way1 and Way2 is odd and the other is
even. We glue both ways in W together and we get a circle

(X,A2, A3, . . . , Ak−2, Ak−1,W,Bj−1, Bj−2, . . . , B3, B2)

which is an odd circle, since we count the contries X and W of Way1 and Way2 twice. An odd
circle is not possible due to J. Hence there can not occur a contradiction during the colouring
of CC.
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Assume a neighboring pair {S, T} of countries, which are both coloured with the same
colour. We show that this is not possible. There are two ways (X,C2, C3, . . . , Cm−2, Cm−1, S)
and (X,D2, D3, . . . , Dn−2, Dn−1, T ). Since the two countries S and T have the same colour,
either the numbers of used countries of both ways are even or both numbers are odd. We put
the two ways together into an odd circle

(X,C2, C3, . . . , Cm−2, Cm−1, S, T,Dn−1, Dn−2, . . . , D3, D2)

which is not possible due to J.

We show an example of a triple.

A triple is not stainable with two colours.

We need three colours.

We show another example of a triple.

E

I

G

H

F

On the left hand side is an odd circle

with countries {E,F,G,H, I}.

It is not stainable with two colours.
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