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As it follows from Gödel's incompleteness theorems, any consistent formal system of axioms 

and rules of inference should imply a true unprovable statement. Actually this fundamental 

principle can be efficiently applicable in Computational Mathematics and Complexity Theory 

concerning the computational complexity of problems from the class NP, particularly and 

especially the NP-complete ones. While there is a wide set of algorithms for these problems 

that we call heuristic, the correctness or/and complexity of each concrete algorithm (or the 

probability of its correct and polynomial-time work) on a class of instances is often too difficult 

to determine, although we may also assume the existence of a variety of algorithms for NP-

complete problems that are both correct and polynomial-time on all the instances from a given 

class (where the given problem remains NP-complete), but whose correctness or/and 

polynomial-time complexity on the class is impossible to prove as an example for Gödel's 

theorems. However, supposedly such algorithms should possess a certain complicatedness of 

processing the input data and treat it in a certain algebraically “entangled” manner. The same 

algorithmic analysis in fact concerns all the other significant problems and subclasses of NP, 

such as the graph isomorphism problem and its associated complexity class GI.  

The following short article offers a couple of algebraically entangled polynomial-time 

algorithms for the graph isomorphism and clique problems whose correctness is yet to be 

determined either empirically or through attempting to find proofs. 

An heuristic polynomial-time algorithm  

for the graph isomorphism problem. 

For a real-valued matrix B, by Sp(B) let’s denote the set of values its entries are equal to, and by 

MSp(B) the multi-set of those values (including the multiplicity of each value). We’ll call those 

set and multi-set the entry spectrum and the entry multi-spectrum of B correspondingly. 

Given two simple undirected graphs  G1 and G2 with n vertices whose adjacency matrices are 

A1 and A2 correspondingly, we’re going to build two sequences of real-valued matrices A1
(i)

 and 

A2
(i)

 by the following recursive scheme: 

A1
(0)

= A1, A2
(0)

= A2 

Beginning with i = 1, at the step i of our recursive process, first of all we determine whether 

MSp(A1
(i)

) = MSp(A2
(i)). 



If it’s not so then G1 and G2 are definitely non-isomorphic. If, otherwise, the equality holds then 

we create a random |Sp(A1
(i)

)|-vector y and in both matrices A1
(i)

 and A2
(i)

 we replace each entry 

whose value is the j-th element of Sp(A1
(i)

)  by yj . After that, we choose a random polynomial 

p(t) of degree n-1 and calculate A1
(i+1)

= p(A1
(i)

) and A2
(i+1)

= p(A2
(i)

).  

We stop the whole process when either the entry multi-spectrums of the two current matrices 

are different or the cardinality of their common entry spectrum doesn’t increase any more from 

one step to another, i.e. |Sp(A1
(k)

)| = |Sp(A1
(k−1)

)|  (accordingly, the overall number k of 

performed steps can’t exceed n2). 

We hence declare the initial graphs’ non-isomorphism in the former case, and their 

isomorphism in the latter one. 

When the process is stopped, with the overall number of steps equal to k and the final entry 

spectrum {α1, … , αm}, there should exist symmetric 0,1-matrices H1
(1)

, … , H1
(m)

, H2
(1)

, … , H2
(m)

 

such that  

A1
(k)

= ∑ αuH1
(u)

m

u=1

, A2
(k)

= ∑ αuH2
(u)

m

u=1

,  

We can consider, for u = 1,..,m,  H1
(u)

 and H2
(u)

 as the adjacency matrices of some graphs G1
(u)

  

and  G2
(u)

. In case if the initial graphs G1 and G2 are really isomorphic, those two graphs should 

be isomorphic as well. Moreover, due to the entry spectrum’s non-growing at the end of the 

above-described process, for any pair v, w ∈ {1, … , m}, v ≠ w, G1
(v)

 and G1
(w)

 should possess no 

common edges and G2
(v)

 and G2
(w)

 should too; also there should exist a sequence of coefficients 

d1
(v,w)

, … , dm
(v,w)

  such that  H1
(v)

H1
(w)

+ H1
(w)

H1
(v)

= ∑ du
(v,w)

H1
(u)m

u=1  and  H2
(v)

H2
(w)

+

H2
(w)

H2
(v)

= ∑ du
(v,w)

H2
(u)m

u=1  (the latter condition also concerns the case v = w). Verifying these 

additional relations is the proposed algorithm’s final action when declaring the isomorphism of 

G1 and G2. Thus we get a pair of identical commutative algebras that are two linear spaces 

 with the bases H1
(1)

, … , H1
(m)

 and H2
(1)

, … , H2
(m)

 whose elements are X = ∑ xuH1
(u)m

u=1  and X =

∑ xuH2
(u)m

u=1  correspondingly and whose algebra product is defined as  X ∗ Y = XY + YX. 

The above-formulated algorithm can be naturally adjusted for digraphs with absolutely the 

same computational circuit (while, though strange, generating commutative algebras at the 

very end as well). Moreover, it can be generalized for an arbitrary field (instead of ℝ) with all 

the computations performed over that field. In case if the chosen field is of characteristic 2, 

we’ll receive Lie algebras.   

Another type of generalization this algorithm might be subjected to is as follows. Given an n×n- 

matrix B, let’s define a product Br11n×nBr21n×n … Brs−11n×nBrs (where 1n×n is an n×n-matrix 

all whose entries equal unity and r1, … , rs are non-negative integers unexceeding n-1) as its 

meta-power of meta-degree (r1, r2, … , rs) and a linear combination of a set of its meta-powers 

with coefficients taken from a chosen field as a meta-polynomial in B over the field. If an n×n-



matrix can be turned into another one via permuting its rows and columns by a permutation π 

(i.e. if we have a pair of isomorphic matrices) then an arbitrary meta-polynomial computed in 

both of them should give us a pair of isomorphic matrices as well (with the same transitional 

permutation π). Hence the idea of replacing, in the proposed algorithmic approach, random 

polynomials p(t) of degree n-1 by random meta-polynomials may look yet perspective, even 

though it’s still difficult to figure out how the meta-polynomials’ sets of utilized meta-degrees 

could be restricted in such a case. Nevertheless, the principle of stopping the recursive process 

upon getting either different entry multi-spectrums of the two current matrices or their 

common entry spectrum’s cardinality ceasing to grow from one step to another remains intact  

(while the matrices A1
(i)

 and A2
(i)

 generically cease to be symmetric for i > 0 even in the case of 

undirected initial graphs). The final splittings of the two matrices A1
(k)

 and A2
(k)

 (where k is the 

overall number of performed steps) apparently will have nearly the same structure as in the 

case of random polynomials p(t), but with the only additional condition of H1
(u)

1n×n and 

1n×nH1
(u)

 belonging to the first final algebra and  H2
(u)

1n×n and 1n×nH2
(u)

 to the second one for 

u = 1,…,m. As, obviously, such a final algebra doesn’t depend on the chosen random 

polynomials or, generally, meta-polynomials within the algorithmic circuit (as well as the 

random substitution vectors we use for entry spectrums’ replacements), we’ll call it the 

splitting algebra of a graph that is a system of its invariants. And accordingly we can formulate 

the conjecture that the splitting algebra is a complete system of graph invariants.  

A polynomial-time heuristic approach   

to the clique problem 

The general types of techniques and notions that we applied when dealing with the graph 

isomorphism problem could also be applicable in resolving the much more important problems 

of determining a graph’s clique number and finding its maximum clique, i.e. for the clique 

problem which is well-known to be NP-complete, unlike the graph isomorphism one. 

Given a simple undirected graph G with n vertices whose adjacency matrix is A, we’re going to 

build a sequence of real-valued n×n-matrices X(q) = X(q)(G) (whose columns we’ll consider as 

the coordinate-vectors of n points in ℝn , while the j-th point we’ll associate with the vertex j of 

G) by the following recursive scheme: 

X(0) = In 

Beginning with q = 1, at the step q of our recursive process, we define for j =1,…,n 

(*)      xj
(q+1)

= xj
(q)

+ g ∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
) 

where xj
(q)

 is the j-th column of X(q),  h, s, ε  are the proposed algorithm’s parameters (h, s, ε  > 

0), and for two n-vectors y, z  d(y,z) denotes the Euclidean distance between them in ℝn. 



The above recursive relation is, in fact, a computational circuit for numerically solving the 

autonomous system of differential equations 

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t)) 

and the chief idea standing behind it is the conjecture that after a certain period of time since 

the beginning of the initial point system’s contraction under the influence of the introduced 

“gravitational forces” between pairs of points connected, as vertices, by G’s edges the 

smallest distance will always appear between a pair of vertices belonging to a maximum 

clique of G.  

A special interest this conjecture presents for the case of regular and semi-regular graphs, 

particularly for the graph generated by a CNF so that its vertex set is the CNF’s set of literals and 

a pair of literals isn’t to be connected by an edge if and only if either both of them belong to 

one disjunctive clause or they’re the opposite powers of one variable (this graph’s clique 

number equals the CNF’s number of disjunctive clauses if and only if the CNF is satisfiable and is 

smaller otherwise, and the graph becomes close to regular upon bounding by constants the 

CNF’s quantity of literals in a disjunctive clause and the number of times a variable can occur in 

literals, while it’s regular when the two numbers are just constants, i.e. same for all the clauses 

and all the variables correspondingly). It’s actually known that the clique problem is NP-

complete for regular graphs, even when restricted to the case of graphs complimentary to cubic 

planar ones.  

Hence such an algorithm is supposed to perform a certain polynomial (in n) number of steps (*)  

(considered as the algorithm’s functional parameter), determine the pair of vertices (u,v) of the 

smallest distance, and construct the graph GNG(u,v) received from G as the graph induced by the 

set NG(u, v) of common neighbors of u and v in G. After that the whole process is to be 

repeated for GNG(u,v)  etc. until we get either an empty graph or a graph with one vertex.   

An additional idea for enhancing the above approach to the clique problem may be introducing 

“repelling forces” (aka “anti-gravitational”) between pairs of points that aren’t connected, as 

vertices, in G. In such a case we’ll receive the equation 

ẋj(t) = g ∑
ajk

𝐝s (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t)) − 

− g1 ∑
1 − ajk

𝐝s1 (xj(t), xk(t))
(xk

k∈{1,…,n}\{j}

(t) − xj(t)) 

with the corresponding computational circuit for numerical solving 

(**)     xj
(q+1)

= xj
(q)

+ g ∑
εajk

𝐝s(x
j
(q)

,x
k
(q)

)
(xk

(q)
k∈{1,…,n}\{j} − xj

(q)
) − 



− g1 ∑
ε(1 − ajk)

𝐝s1(xj

(q)
, xk

(q)
)

(xk
(q)

k∈{1,…,n}\{j}

− xj
(q)

) 

Let’s call g and g1 the gravitation and anti-gravitation coefficients correspondingly. 

Besides, we can notice that the matrices X(q)(G) are, of course, invariant under any of G’s 

automorphisms and, given two graphs G1 and G2, we accordingly may also use X(q)(G1) and 

X(q)(G2) for determining if they’re isomorphic (via comparing MSp(X(q)(G1)) and 

MSp(X(q)(G2)) and eventually obtaining a pair of final algebras upon their entry spectrums’ 

ceasing to grow), but, nevertheless, in such a case we’re actually supposed to figure out 

whether it’s not a partial case of the initial graph’s adjacency matrix’s modification via a series 

of meta-polynomial and entry spectrum replacement transformations. 

The proposed algorithm for the clique problem had been tested (via computer modeling) on 

graphs received (as described above) from random CNF samples with several hundred Boolean 

variables whose maximal number of literals in a clause and maximal number of a variable’s 

occurrence was 3 and showed correctness and polynomial-time performance in finding, in case 

of the CNF’s satisfiability, a satisfying Boolean vector.  

And, at last, it would be worth noting that any kind of approach to the clique problem can be 

further enhanced with a randomization parameter via embedding the given graph G with n 

vertices whose clique number we need to determine into the graph received from G through 

bipartitely gluing it with a random graph G1 with n1 vertices whose clique number we know, -- 

while we define the bipartite gluing of two graphs G = (V, E), G1 = (V1, E1) for disjoint V, V1 

as the graph G ⊘ G1 = (V ∪ V1, E ∪ E1 ∪ KV,V1
) where KV,V1

 is the complete bipartite graph on 

the parts V, V1 . The clique number of G ⊘ G1 obviously equals the sum of the clique numbers 

of G and G1 and this gluing is (k + n1)-regular when G is k-regular, G1 is k1-regular and  n +

k1 = n1 + k. Hence, in case if our algorithm works out on a certain sufficiently large fraction of 

q-regular graphs with m vertices for a certain set of values of the ratio q:m (containing NP-

complete cases), we can also conjecture that such a random gluing may be quite capable of 

resolving, via the proposed “gravitational” algorithm, the most hard cases of instances with a 

sufficiently high (for being a polynomial-time randomized computational circuit) probability of 

success. However, the general direction of research regarding the above-stated gravitation 

contraction model may, of course, be rather related to attempting to understand the behavior 

of its differential equation’s solution and even trying, on the basis of such understanding, to 

reduce the algorithm’s polynomial-time complexity through modifying its vertex selection 

criterion for to take, at each global step, not just one pair, but a much bigger set of vertices as 

supposedly belonging to a maximum clique.    
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