Proof that there are no odd perfect numbers

Kouji Takaki

April 30th, 2019

#### 1. Abstract

For *y* to be a perfect number, if one of the prime factors is *p*, the exponent of *p* is an integer  $n(n \ge 1)$ , the prime factors other than *p* are  $p_1, p_2, p_3, \dots p_r$  and the even exponent of  $p_k$  is  $q_k$ ,

$$y/p^{n} = (1+p+p^{2}+\dots+p^{n})\prod_{k=1}^{r} (1+p_{k}+p_{k}^{2}+\dots+p_{k}^{q_{k}})/(2p^{n}) = \prod_{k=1}^{r} p_{k}^{q_{k}}$$

must be satisfied. Let m and q be non-negative integers,

$$n = 4m + 1$$
$$p = 4q + 1$$

Letting b and c be odd integers, satisfying following expressions,

$$b = \prod_{k=1}^{r} p_k^{q_k}$$

$$c = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k})/p^n$$

$$2b = c(p^n + \dots + 1)$$

is established. This is a known content. By the consideration of this research paper, since it turns out that contradiction arises from the n order equation of p, we have obtained the conclusion that there are no odd perfect numbers.

#### 2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$1 + 2 + 3 = 6$$

It is 6. Whether an odd perfect number exists or not is currently an unsolved problem.

#### 3. Proof

An odd perfect number is y, one of them is an odd prime number p, an exponent of p is an integer n  $(n \ge 1)$ . Let  $p_1, p_2, p_3, \dots p_r$  be the odd prime numbers of factors other than p,  $q_k$  the index of  $p_k$ , and variable a be the sum of product combinations other than prime p.

$$a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k}) \dots (1)$$

The number of terms N of variable a is

$$N = \prod_{k=1}^{r} (q_k + 1) \dots @$$

When y is a perfect number,

$$y = a(1 + p + p^2 + \dots + p^n) - y (n > 0)$$

is established.

$$a \sum_{k=0}^{n} p^{k} / 2 = y$$
$$a \sum_{k=0}^{n} p^{k} / (2p^{n}) = y / p^{n} \dots (3)$$

## 3.1. If $q_k$ has at least one odd integer

Letting the number of terms where  $q_k$  is an odd integer be a positive integer u, because  $y/p^n = \prod_{k=1}^r p_k^{q_k}$  is an odd integer, the denominator on the left side of expression ③ has a prime factor 2, from expression ② variable a has more than u prime factor 2 and variable a is an even integer. Therefore  $\sum_{k=0}^n p^k$  must be an odd integer, n is an even integer and u is 1.

## 3.2. When all $q_k$ are even integers

 $y/p^n$  is an odd integer, the denominator on the left side of expression ③ is an even integer, and since N is and odd integer when  $q_k$  are all even integers, variable a is and odd integer. Therefore  $\sum_{k=0}^{n} p^k$  is necessary to include one prime factor 2,  $\sum_{k=0}^{n} p^k \equiv 0 \pmod{2}$  is established, and n must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of y must be an odd integer and variable a must be an odd integer. We consider the case of 3.2 below.

In order for y to be a perfect number, the following expression must be established.

$$y/p^{n} = (1+p+p^{2}+\dots+p^{n})\prod_{k=1}^{r} (1+p_{k}+p_{k}^{2}+\dots+p_{k}^{q_{k}})/(2p^{n}) = \prod_{k=1}^{r} p_{k}^{q_{k}}$$

However,  $q_1, q_2, \dots, q_r$  are all even integers.

Here, let b be an integer

$$b = \prod_{k=1}^{r} p_k^{q_k} \dots \textcircled{4}$$

$$y/p^{n} = a(1+p+p^{2}+\dots+p^{n})/(2p^{n}) = b$$
  
$$a(p^{n+1}-1)/(2(p-1)p^{n}) = b$$
  
$$(a-2b)p^{n+1}+2bp^{n}-a = 0 \dots 5$$

Because it is an n+1 order equation of p, the solution of the odd prime p is n+1 at most.

 $(ap - 2bp + 2b)p^n = a$ Since ap - 2bp + 2b is an odd integer,  $a/p^n$  is an odd integer, which is c.  $ap - 2bp + 2b = c \ (c > 0) \dots 6$ (2b - a)p = 2b - c

Since variable a is an odd integer, 2b - a is an odd integer and  $2b - a \neq 0$ p = (2b - c)/(2b - a)

```
Since n \ge 1

a - c = cp^n - c \ge cp - c > 0

a > c

is.
```

```
From equation (6)

2b(p-1) - (ap - c) = 0

2b - c(p^{n+1} - 1)/(p-1) = 0

(p^n + \dots + 1)/2 is an odd integer, n = 4m + 1 is required with m as an integer.

2b(p-1) = c(p^{n+1} - 1)

2b = c(p^n + \dots + 1)

2b = c(p + 1)(p^{n-1} + p^{n-3} + \dots + 1) \dots (7)

b is an odd integer when p + 1 is not a multiple of 4. It is necessary that p - 1 be a

multiple of 4. A positive integer is taken as q.

p = 4q + 1

is established.
```

When p > 1  $p^n - 1 < p^n$   $(p^n - 1)/(p - 1) < p^n/(p - 1)$  $p^{n-1} + \dots + 1 < p^n/(p - 1) \dots \otimes$ 

Since p is an odd prime number satisfying p = 4q + 1 and  $p \ge 5$   $p^{n-1} + \dots + 1 < p^n/4$   $2b - a = c(p^n + \dots + 1) - cp^n = c(p^{n-1} + \dots + 1)$   $2b - a < cp^n/4 = a/4$  2b < 5a/4 $a > 8b/5 \dots @$  Let  $a_k$  and  $b_k$  be integers and if  $a_k = 1 + p_k + p_k^2 + \dots + p_k^{q_k}$ ,  $b_k = p_k^{q_k}$ 

$$\begin{aligned} a_{k} &= 1 + p_{k} + p_{k} + r + p_{k}, \ b_{k} &= p_{k}, \\ a_{k} &= b_{k} < b_{k} / (p_{k} - 1) \\ a_{k} &< b_{k} p_{k} / (p_{k} - 1) \end{aligned}$$
$$a &= \prod_{k=1}^{r} a_{k} < \prod_{k=1}^{r} b_{k} p_{k} / (p_{k} - 1) = b \prod_{k=1}^{r} p_{k} / (p_{k} - 1) \\ a / b &< \prod_{k=1}^{r} p_{k} / (p_{k} - 1) \end{aligned}$$

When r = 1, since a/b < 3/2 is established, it becomes inappropriate contrary to inequality (9).

From  $a = cp^{n}$  and expression (7),  $2bp^{n} = a(p^{n} + \dots + 1)$   $a(p^{n} + \dots + 1)/(2bp^{n}) = 1 \dots (A)$ When r = 1,  $a = (p_{1}q_{1}+1 - 1)/(p_{1} - 1)$  $b = p_{1}q_{1}$ 

Equation (A) does not hold since there is no odd perfect number when r = 1.

Let R be a rational number,  $R = a(p^{n} + \dots + 1)/(2bp^{n})$ Let b' be a rational number and let A and B to be an integer,  $b' = (p_{t}^{q_{t}+1} - 1)/(p_{t}^{q_{t}}(p_{t} - 1)) > 1$   $A = (p_{t}^{q_{t}+1} - 1)/(p_{t} - 1)$   $B = p_{t}^{q_{t}}$  Multiplying R by b', there are both cases that  $p_r$  increases p or does not change. When multiplied by b', the rate of change of R is  $Ap^n(p'^n + \dots + 1)/(Bp'^n(p^n + \dots + 1))$ , if p after variation is p'. If the rate of change of R is 1,

$$Ap^{n}({p'}^{n} + \dots + 1)/(B{p'}^{n}(p^{n} + \dots + 1)) = 1$$
$$Ap^{n}({p'}^{n} + \dots + 1) = B{p'}^{n}(p^{n} + \dots + 1)$$

This expression does not hold, since the right side is not a multiple of p when p' > p, and A > B holds when p' = p. Due to this operation, R may be larger or smaller than the original value, since the rate of change of R does not become 1.

 $\begin{array}{l} {\rm From} \ \ R \neq 1 \ \ and \ \ a = cp^n \ \ for \ \ some \ \ r, \ \ also \ \ multiplying \ \ fractions \ \ b' = A_1/B_1 \ , \\ b'' = A_2/B_2, \ \cdots b''^{\dots'} = A_x/B_x, \ if \ \ R = 1 \ \ holds \ finally, \\ , \ if \ a(p^n + \cdots + 1)/(2bp^n) \times A_1p^n(p_1^{\ n} + \cdots + 1)/(B_1p_1^{\ n}(p^n + \cdots + 1)) \times A_2p_1^{\ n}(p_2^{\ n} + \cdots + 1)/(B_2p_2^{\ n}(p_1^{\ n} + \cdots + 1)) \ \ldots A_xp_{x-1}^{\ n}(p_x^{\ n} + \cdots + 1)/(B_xp_x^{\ n}(p_{x-1}^{\ n} + \cdots + 1)) = 1 \\ a/(2b) \times A_1/B_1 \times A_2/B_2 \ \ldots A_x(p_x^{\ n} + \cdots + 1)/(B_xp_x^{\ n}) = 1 \\ a(p_x^{\ n} + \cdots + 1)A_1A_2 \ \ldots A_x = 2bp_x^{\ n}B_1B_2 \ \ldots B_x \\ cp^n(p_x^{\ n} + \cdots + 1)A_1A_2 \ \ldots A_x = 2bp_x^{\ n}B_1B_2 \ \ldots B_x \end{array}$ 

When  $p_x > p$ , it becomes inconsistent since the right side of this expression does not include p as a factor.

When  $p_x = p$ ,  $cp^n(p^n + \dots + 1)A_1A_2 \dots A_x = c(p^n + \dots + 1)p^n$  $A_1A_2 \dots A_x = 1$ 

It becomes contradiction, since this expression is not established. Therefore,  $a = cp^n$  holds at one point where R = 1.

Assuming that R = 1 in some r by multiplying fractions  $b' = A_1/B_1$ ,  $b'' = A_2/B_2$ ,  $\cdots$  $b'' = A_x/B_x$ , if R = 1 holds,

$$1 \times A_{1}p^{n}(p_{1}^{n} + \dots + 1)/(B_{1}p_{1}^{n}(p^{n} + \dots + 1)) \times A_{2}p_{1}^{n}(p_{2}^{n} + \dots + 1)/(B_{2}p_{2}^{n}(p_{1}^{n} + \dots + 1)) \dots A_{x}p_{x-1}^{n}(p_{x}^{n} + \dots + 1)/(B_{x}p_{x}^{n}(p_{x-1}^{n} + \dots + 1)) = 1$$
  
$$A_{1}A_{2} \dots A_{x}p^{n}(p_{x}^{n} + \dots + 1) = B_{1}B_{2} \dots B_{x}p_{x}^{n}(p^{n} + \dots + 1)$$

When  $p_x > p$ , it becomes inconsistent since the right side of this expression does not include p as a factor.

When  $p_x = p$ ,

 $\mathbf{A_1}\mathbf{A_2} \dots \mathbf{A_x} = \mathbf{B_1}\mathbf{B_2} \dots \mathbf{B_x}$ 

is established. It becomes contradiction. Therefore, when n is fixed, the number of values of r for which R = 1 is one or less.

Assuming that R = 1 in some r by multiplying fractions  $b' = A_1/B_1$ ,  $b'' = A_2/B_2$ ,  $\cdots$  $b'' = A_x/B_x$  and reciprocal of fraction previously multiplied , if R = 1 holds. At this time, assuming that n also changes, the change rate when multiplying by  $A_1/B_1$  is  $A_1p^n(p_{r+1}^{n_{r+1}} + \cdots + 1)/(B_1p_{r+1}^{n_{r+1}}(p^n + \cdots + 1))$ 

The rate of change when multiplying  $p_{r+2}^{q_{r+2}}/(p_{r+2}^{q_{r+2}}+\dots+1)$  after this is  $p_1^{q_1}p_{r+1}^{n_{r+1}}(p_{r+2}^{n_{r+2}}+\dots+1)/((p_1^{q_1}+\dots+1)p_{r+2}^{n_{r+2}}(p_{r+1}^{n_{r+1}}+\dots+1))$ 

$$\begin{split} 1 \times A_1 p^n (p_{r+1}{}^{n_{r+1}} + \dots + 1) / (B_1 p_{r+1}{}^{n_{r+1}} (p^n + \dots + 1)) \times p_1{}^{q_1} p_{r+1}{}^{n_{r+1}} (p_{r+2}{}^{n_{r+2}} + \dots \\ &+ 1) / ((p_1{}^{q_1} + \dots + 1) p_{r+2}{}^{n_{r+2}} (p_{r+1}{}^{n_{r+1}} + \dots + 1)) \dots = 1 \end{split}$$

When  $A_z$  and  $B_z$  are reduced when multiplied by the reciprocal, if the products excluding the reduced variable are expressed as  $A_1A_2 \dots A_x$  and  $B_1B_2 \dots B_x$ ,

 $A_1A_2 \dots A_x p^n (p_x^{n_x} + \dots + 1) = B_1B_2 \dots B_x p_x^{n_x} (p^n + \dots + 1)$ 

Since it becomes contradiction like above proof, when n is arbitrary, the number of combinations (a, b, p, n) of solutions with R = 1 is 1 or less.

Assuming that R = 1 in some r and by multiplying R = 1 holds by the reciprocal of the fraction multiplied until then. At this time, it is assumed that n changes, and the changed p is p'<sub>x</sub>, and the change rate when multiplied by  $p_r^{q_r}/(p_r^{q_r} + \dots + 1)$  is  $p_r^{q_r}p^n(p'_{n-1}{}^{n_{n-1}} + \dots + 1)/((p_r^{q_r} + \dots + 1)p'_{n-1}{}^{n_{n-1}}(p^n + \dots + 1))$ Since when r = 0 and n<sub>0</sub> = 1, R = 1, a = 1, b = 1 and p'\_0 = 1 hold finally,  $1 \times p_r^{q_r}p^n(p'_{n-1}{}^{n_{n-1}} + \dots + 1)/((p_r^{q_r} + \dots + 1)p'_{n-1}{}^{n_{n-1}}(p^n + \dots + 1))$  $\times p_{r-1}{}^{q_{r-1}}p'_{n-1}{}^{n_{n-1}}(p'_{n-2}{}^{n_{n-2}} + \dots + 1)/((p_{r-1}{}^{q_{r-1}} + \dots + 1)p'_{n-2}{}^{n_{n-2}}(p'_{n-1}{}^{n_{n-1}} + \dots + 1)) \dots = 1$  $p^n(p'_0{}^{n_0} + \dots + 1)a/((p^n + \dots + 1)p'_0{}^{n_0}b) = 1$  $p^n = p^n + \dots + 1$ 

It becomes contradiction since there are no real solution where p > 0. From the above, there are no odd perfect numbers.

## 4. Complement

From equation (5),  

$$\begin{aligned} &2bp^{n}(p-1) = a(p^{n+1}-1) \\ &2 = a(p^{n+1}-1)/(bp^{n}(p-1)) \\ &2 = (p_{1}^{q_{1}+1}-1)(p_{2}^{q_{2}+1}-1) \dots (p_{r}^{q_{r}+1}-1)(p^{n+1}-1) \\ & /(p_{1}^{q_{1}}p_{2}^{q_{2}} \dots p_{r}^{q_{r}}p^{n}(p_{1}-1)(p_{2}-1) \dots (p_{r}-1)(p-1)) \\ &2(p_{1}^{q_{1}+1}-p_{1}^{q_{1}})(p_{2}^{q_{2}+1}-p_{2}^{q_{2}}) \dots (p_{r}^{q_{r}+1}-p_{r}^{q_{r}})(p^{n+1}-p^{n}) \\ &= (p_{1}^{q_{1}+1}-1)(p_{2}^{q_{2}+1}-1) \dots (p_{r}^{q_{r}+1}-1)(p^{n+1}-1) \end{aligned}$$

We consider when 
$$r = 2$$
.  
 $(p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1)(p^{n+1} - 1) = 2(p_1^{q_1+1} - p_1^{q_1})(p_2^{q_2+1} - p_2^{q_2})(p^{n+1} - p^n)$   
Let s, t, u be integers,  
 $s = p_1^{q_1+1} - 1$   
 $t = p_2^{q_2+1} - 1$   
 $u = p^{n+1} - 1$   
are.  
 $stu = 2(p_1^{q_1+1} - 1 - (p_1^{q_1} - 1))(p_2^{q_2+1} - 1 - (p_2^{q_2} - 1))(p^{n+1} - 1 - (p^n - 1))$   
 $stu = 2(s - (s + 1)/p_1 + 1)(t - (t + 1)/p_2 + 1)(u - (u + 1)/p + 1)$   
 $p_1p_2stu = 2((s + 1)p_1 - (s + 1))((t + 1)p_2 + (t + 1))((u + 1)p + (u + 1))$   
 $p_1p_2stu = 2(s + 1)(p_1 - 1)(t + 1)(p_2 - 1)(u + 1)(p - 1)$ 

$$\frac{tu}{(s+1)(t+1)(u+1)} = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)$$

# Since stu/((s + 1)(t + 1)(u + 1)) is a monotonically increasing function for variables s, t and u, if $s \ge 3^{2+1} - 1 = 26$ , $p_1 = 3$ , $q_1 = 2$ $t \ge 7^{2+1} - 1 = 342$ , $p_2 = 7$ , $q_2 = 2$ $u \ge 5^2 - 1 = 24$ , p = 5, n = 1holds, stu/((s + 1)(t + 1)(u + 1)) \ge 26 \times 342 \times 24/(27 \times 343 \times 25) = 7904/8575 $2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35$

Since stu/((s + 1)(t + 1)(u + 1)) is limited to 1 when s, t and u are infinite, stu/((s + 1)(t + 1)(u + 1)) < 1

If  $f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$  holds, it is sufficient to consider a combination where  $f(p_1, p_2, p) < 1$ .

$$\begin{split} f(3,7,5) &= 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35 \\ f(3,11,5) &= 2 \times 2 \times 10 \times 4/(3 \times 11 \times 5) = 32/33 \\ f(3,13,5) &= 2 \times 2 \times 12 \times 4/(3 \times 13 \times 5) = 64/65 \\ f(3,17,5) &= 2 \times 2 \times 16 \times 4/(3 \times 17 \times 5) = 256/255 \\ f(3,7,13) &= 2 \times 2 \times 6 \times 12/(3 \times 7 \times 13) = 96/91 \\ f(3,5,17) &= 2 \times 2 \times 4 \times 16/(3 \times 5 \times 17) = 256/255 \end{split}$$

From the above, when r = 2, a combination  $(p_1, p_2, p) = (3,7,5), (3,11,5), (3,13,5)$  can be considered.

Let  $q_k$  be 2 and n = 1, if  $g(p_1, p_2, p) = (p_1^3 - 1)(p_2^3 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2)$ ,  $g(3,7,5) = 26 \times 342 \times 24/(3^3 7^3 5^2) = 7904/8575 > 32/35$   $g(3,11,5) = 26 \times 1330 \times 24/(3^3 11^3 5^2) = 55328/59895$  $g(3,13,5) = 26 \times 2196 \times 24/(3^3 13^3 5^2) = 3904/4225$ 

Since the function g is the minimum in the case of  $q_k = 2$  and n = 1, there is no solution  $q_k$  and n when g > f, so the case of  $(p_1, p_2, p) = (3,7,5)$  becomes unsuitable.

 $stu/((s + 1)(t + 1)(u + 1)) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$  $(p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1)(p^{n+1} - 1)/(p_1^{q_1+1}p_2^{q_2+1}p^{n+1})$  $= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$ 

If  $F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)$ ,  $F(p_1^{q_1+1}, p_2^{q_2+1}, p^{n+1}) = 2F(p_1, p_2, p)$ 

# 5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

# 6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017 Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015