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Abstract 

One can think of a wave equation for the nucleus based on the Yukawa potential. It is a natural thing to 

do from a mathematical point of view. This paper is a didactic exploration of the physical rationale for 

such wave equation. We relate it to earlier discussions on an oscillator model for the nucleus. 
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Introduction 
In our previous paper1, we re-wrote Yukawa’s potential function for the nuclear force – a hypothetical 

force that is supposed to hold nucleons together – introducing a new permittivity factor υ0, about which 

we will soon say more: 

UN(𝑟) = −
gN

2

4πυ0
∙

1

𝑟
     

υ0 = 𝑒
− 

𝑟
𝑎N ∙

Y2

N ∙ m2
  

The aN factor in υ0 is Yukawa’s parameter for the range of the strong force, and you can just substitute 

υ0 in the UN formula to get Yukawa’s formula in the format that will be more familiar to you: UN(r) = 

−gN2·e-r/a/4πr. The reason why we re-write Yukawa’s formula is because we want to think through the 

physical dimensions here. Why do we want to do that? Because we want to think through the physics. 

We will be analyzing various aspects but let us, indeed, start with a reflection on physical dimensions. 

Before we do so, we should probably remind you of the interpretation of Yukawa’s formula. It is really 

just the same formula as the one we know for the Coulomb force: 

V(𝑟) = −
qe

2

4πε0

1

𝑟
= −e2

1

𝑟
 

We just have a new charge – gN instead of qe – and, of course, we also have the e-r/a factor, so we no 

longer have that easy (inverse) proportionality between the potential and the distance: 

V(r)  1/r 

That is why Yukawa inserted that e−r/a function. To conclude this quick intuitive explanation, we may 

quickly want to think about the minus sign of the potential. Do we have positive and negative nucleon 

charges here? No. We do not. The minus sign is there because of the convention that the force attracts 

and so it is like the potential of a gravitational field: two masses will attract each other. So that’s another 

reason why this gN is different from the electric charge. It is just some positive real number: no plus or 

minus. And it’s a charge that’s common to both protons and neutrons. To make sure you understand 

this correct, we’ll quote Aitchison and Hey on this: “The U(r) potential is the (mutual) potential energy of 

one point-like nucleon of ‘strong charge’ gN due to the presence of another point-like nucleon of equal 

charge gN at the origin, a distance r away.”2  

                                                           
1 Jean Louis Van Belle, The Nature of Yukawa's Nuclear Force and Charge, 19 June 2019 (http://vixra.org/abs/1906.0311). 
2 Aitchison and Hey, Gauge Theories in Particle Physics, 2013, Vol. I, p. 16. 

http://vixra.org/abs/1906.0311
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OK. Let us now think about the physical dimensions in Yukawa’s formula. 

Physical dimensions 
Our new permittivity factor (υ0), which we will refer to as the nuclear permittivity, differs from the 

electric permittivity (ε0) in two ways: 

1. As a physical proportionality constant, it needs to ensure the physical dimension left and right comes 

out alright. We referred to the unit of nuclear charge (gN) as the Yukawa (Y). Why do we need it? You 

may think of it as some kind of placeholder name for the time being but the idea is quite fundamental: if 

you introduce a new force – which is what Yukawa did in his seminal 1935 paper – then you also need to 

introduce a new charge, and so that’s what we’re doing here. The numerical value of υ0 is e−r/a but its 

physical dimension is Y2/N·m2. We just replace the C2 factor from the [ε0] = C2/N·m2 equation.  

2. The nuclear permittivity varies with the distance. That’s weird but it is the price we have to pay for 

the idea of the Yukawa force. I will come back to this. As for now, you just have to swallow this. You 

should note, of course, that υ0 is equal to 1 if r = aN, but what’s aN? Some range parameter, which we 

can determine empirically, but what’s the theory here? Again, just hold this for a while and we will soon 

come back to this.  

Now that we’re here, we should probably say a few words about the redefinition of SI units that came 

into force just recently⎯on 20 May 2019, to be precise! Why? Because it involved the electric constant 

– and some others. 

The 2019 redefinition of SI units and the Zitterbewegung model   
The 2019 redefinition of SI units involves an exact definition of the electron charge: qe is now defined as 

being equal to qe = 1.60217663410−19 C, exactly. It’s not being measured anymore: we define it as the 

mentioned fraction (1.60217663410−19) of the coulomb charge. Nothing more. Nothing less.3 

What’s measured in labs is the magnetic moment of an electron. Labs do this in a one-electron 

cyclotron⎯Penning trap4, which combines magnetic and electric fields to store one single charged 

particle, so that’s one electron in this case. We know the magnetic moment of an electron – of any 

pointlike charged particle, really – is slightly off its theoretical value, and the anomaly is measured in 

terms of the fine-structure constant (). Of course, physicists also have a theory for the anomaly: 

quantum field theory. To be precise, most of the difference (about 99.85%) is given by Schwinger’s /2π 

factor. Schwinger’s is a first-order correction which he gets from calculating “the one loop electron 

vertex function in an external magnetic field using his renormalized QED.”5  

                                                           
3 If you are a philosopher, you may say: what’s the point? We just kicked the can down the road, didn’t we? We 
have an exact fraction now but what is a coulomb? The answer is: a coulomb is a coulomb. It is the unit of electric 
charge. This answer is good enough for physicists – for whom these discussions actually matter – so it should be 
good enough for everyone else. 
4 The Wikipedia article on it (https://en.wikipedia.org/wiki/Penning_trap) offers a good and easy read on this. 
5 We are quoting from Ivan Todorov’s excellent overview of the matter here. See: Ivan Todorov, From Euler's play 
with infinite series to the anomalous magnetic moment, 12 October 2018 (https://arxiv.org/abs/1804.09553v2).  

https://en.wikipedia.org/wiki/Penning_trap
https://arxiv.org/abs/1804.09553v2
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We have a simpler geometric explanation: we think of the fine-structure constant as the radius of the 

naked charge in the Zitterbewegung model of the electron.6 Because we will use a similar model for the 

nucleon, it is good to briefly recall the basics of the model. Figure 1 illustrates the idea. We have a 

centripetal force (F) holding a naked charge – something with zero rest mass – in a circular orbit around 

some center.  

Figure 1: The Zitterbewegung model of an electron 

 

Because the naked charge goes around at the speed of light (or almost the speed of light, as we will 

argue later), it acquires some mass which we’ll denote as mγ. We use the γ subscript here because the 

zbw charge does behave like a photon here: it acquires relativistic mass because of its extreme velocity. 

The only thing is that our zbw charge also has electric charge (all of the charge of the electron, in fact), 

which a photon doesn’t have, of course! Its relativistic mass also gives it some non-zero momentum p = 

mγv = γm0v = γm0c, even if m0 (i.e. the rest mass of the naked charge) is zero. 

What’s the nature of the centripetal force? It is electromagnetic: think of a perpetual current in a 

superconductor. We cannot dwell on this here. The point is: this geometry explains a magnetic moment 

which we can calculate as being equal to: 

μ = I ∙ π𝑟C
2 =

qe

2m
ℏ 

This model also allows us to calculate the angular momentum using a classical (but relativistically 

correct) formula: 

L = 𝐼 ∙ ω = mγ ∙ 𝑎2 ∙ ω =
me

2
∙ 𝑎2 ∙ ω =

me

2
∙

ℏ2

me
2 ∙ 𝑐2

E

ℏ
=

ℏ

2
 

This, then, gives us the theoretical gyromagnetic ratio of an electron which, as you know, we express in 

terms of the Bohr magneton qe/2m: 

ge =
μ

L
=

qeℏ

2me

2

ℏ
= 2 ·

qe

2me
 

Hence, the theoretical g-ratio of an electron in free space is equal to two: two units of qe/2m, that is. We 

call an electron in free space (no potential) a spin-only electron so as to distinguish it from an electron in 

                                                           
6 See: Jean Louis Van Belle, The Anomalous Magnetic Moment: Classical Calculations, 11 June 2019 
(http://vixra.org/abs/1906.0007). Zitter is German for shaking or trembling. It refers to a presumed local oscillatory 
motion which Erwin Schrödinger stumbled upon when he was exploring solutions to Dirac’s wave equation for free 

electrons. We are not shy about it: we believe this motion to be real. Why? Because it explains a lot⎯an awful lot! 
And it does so without hocus-pocus! No black-box theory. No inexplicable rules. No weird theorems. Just a simple 
form factor. 

http://vixra.org/abs/1906.0007
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an atomic orbital or an electron that is in some orbit because of an applied electromagnetic field. As for 

the latter, you should note we have such field in a Penning trap. The formulas for an orbital electron are 

similar but incorporate the orbital number n:  

μ𝑛 = I ∙ π𝑟𝑛
2 =

qe

2me
𝑛ℏ 

L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

g𝑛 =
μ

L
=

qe

2me

𝑛ℏ

𝑛ℏ
= 1 ∙

m

2qe
 

Hence, for an orbital electron, we find a g-ratio that is equal to one: one units of qe/2m, that is.7 

However, let us get back to the matter at hand⎯literally. The point is: the empirical or experimental 

value differs from this theoretical value, and (most of) the difference is given by Schwinger’s /2π 

factor. To be precise, Schwinger’s is a first-order correction, which explains about 99.85% of the 

difference. Higher-order corrections are supposed to explain the rest. As mentioned above, Schwinger 

gets his /2π factor by calculating “the one loop electron vertex function in an external magnetic field 

using his renormalized QED.”  

We get an /8 factor from a very approximative geometric argument and we think the missing 4/π may 

be explained by precession.8 In short, we think our geometric argument makes an awful lot of sense. It is 

based on the idea that the pointlike charge has some radius itself, and that this radius is a fraction of the 

radius of the electron, which is nothing but the Compton radius ae = ħ/mc. Figure 2 illustrates the idea: if 

we think of the Zitterbewegung (zbw) charge as a tiny sphere, then the radius of its orbital or oscillatory 

motion – think of it as the effective Compton radius of the electron – will have to be slightly smaller than 

what it would be if the zbw charge was really nothing but a point with zero radius. If not, we’d have a 

proportion of charge that is larger than 1/2 going faster than the speed of light.9  

Figure 2: Geometry of zbw charge and electron 

 

Why do we think the zbw charge would have some size? There are two reasons for that. The first reason 

is philosophical⎯or logical, we’d say. We think a pointlike object does not make any sense: if it has 

some property – even if it is just some charge without any rest mass – then it will have some dimension. 

An object whose dimension is zero is just plain nothingness: it is a mathematical point only.  

                                                           
7 For the detail of the calculations, and the rationale of the model, see: Jean Louis Van Belle, The Electron as a 

Harmonic Electromagnetic Oscillator, 31 May 2019 (http://vixra.org/abs/1905.0521). 
8 Jean Louis Van Belle, The Anomalous Magnetic Moment: Classical Calculations, 11 June 2019 

(http://vixra.org/abs/1906.0007). 
9 We effectively think of the zbw charge here as a tiny sphere of charge, and we assume the charge density is the 
same everywhere. 

http://vixra.org/abs/1905.0521
http://vixra.org/abs/1906.0007
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The second reason is empirical: in elastic scattering experiments (Thomson scattering), the (low-energy) 

photons seem to bounce off some hard core – and we think that’s the pointlike charge.10 The 

explanation is consistent with experiment, because the Thomson radius is measured as a fraction – the 

fine-structure constant – of the Compton radius: 

𝑟e =
e2

m𝑐2 = α ∙ 𝑎 = α
ℏ

m𝑐
≈ 2.818 … × 10−15 m 

In any case, we don’t want to spend too much time and space on this.11 The point here is that there is, 

effectively, some easy geometric explanation (a physical interpretation, that is) for the quantum-

mechanical formula that you have seen many times but probably never quite understood: 

α =
qe

2

4πε0ℏ𝑐
=

e2

ℏ𝑐
 

You should just note that – since the 2019 redefinition of SI units – we think of the electric charge (and 

the speed of light) as exact numbers: qe = 1.60217663410−19 C, exactly, and c = 299,792,458 m/s, and 

so that’s equally exactly. Now, Maxwell’s equations tell us that the magnetic and electric constant are 

related through c2: 

𝑐2 =
1

ε0μ0
 

In case you haven’t seen this expression before, just take it as a fact of the world and check the 

dimensions: ε0 is expressed in C2/N·m2 while μ0 is expressed in N/A2 = N·s2/C2, so [ε0μ0] = s2/m2. It’s one 

of those relations that can be proved easily mathematically but have a profound physical meaning that 

cannot be explained very easily. But it’s not impossible. Let’s first establish equivalent time and distance 

units so the numerical value of the speed of light is equal to 1. We can do this in various ways, but one 

intuitive one is to measure distance in light-seconds: a light-second is the distance that a photon or, if 

you don’t want to talk about photons because you’re not sure what they are, plain light12 would cover in 

one second: one light-second is, obviously, 299,792,458 m, exactly. Why? Because the speed of light is 

an exact physical constant: think of light – as an electromagnetic oscillation – defining the time and 

distance units.13 So what happens if we replace the m in the ε0 = 8.8541878128(13)10−12 C2/N·m2 

formula one light-second? One meter obviously corresponds to 1/c light-seconds. Hence, the numerical 

value of ε0 will have to change too if we’re going to use light-second as the distance unit. To make a long 

story short, we will write as: 

                                                           
10 We do not have that when there is inelastic scattering: Compton scattering. Compton scattering occurs when we 
use high-energy photons (X or gamma rays): the photon is briefly absorbed, and a new photon is emitted – with a 
different energy (a longer wavelength). The difference in energy gives the electron some kinetic energy: it will 
accelerate and change direction.  
11 For a more elaborate exposé, see: Jean Louis Van Belle, The Nature of Yukawa’s Charge and Force, 19 June 2019 
http://vixra.org/abs/1906.0311. 
12 The Philosopher would say: “If we don’t know what photons are, exactly, then we don’t really know what light 
is.” Both concepts are as precise or as imprecise as our definition of it. The idea of light traveling at the speed of 
light assumes some light particle that we can track. We can’t measure the speed of a continuous beam. We may 
not know much about photons but, for all practical purposes, it is the light particle.  
13 This sounds brutal – or even weird – but it’s not as brutal or weird as you might think at first. 

http://vixra.org/abs/1906.0311
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ε0 = [8.8541878128(13)299,792,4582]10−12 C2/N·s2  0.796106 C2/N·s2  

We can now rephrase or recalculate the relation between the electric and magnetic constant as:  

𝑐2 = 12 =
1

ε0μ0
=

1

(0.796 … 106 C2

N ∙ s2) (1.256 … 10−6 N ∙ s2

C2 )
= 1 

The manipulations above show that – when using natural time and distance units – ε0 and μ0 are just 

each other’s reciprocal (1/1.256… = 0.796…). Any case, that’s not what we want to discuss here, even if 

we do want you to think about it. What do we want to discuss here? We wanted to link the , μ0 and ε0 

constants. 

You should check on (1) the CODATA values for , μ0 and ε0, (2) their (relative) standard uncertainty 

(think of it as the standard deviation of the measurements) and (3) the correlation coefficient for these 

three physical constants.14 You will find the results below: 

Figure 3: CODATA values and correlation of fine-structure, electric and magnetic constants 

 Empirical value Relative uncertainty Correlation coefficient 

Fine-structure constant () 7.2973525693(11)10−3 1.510−15 1 (with ε0 and μ0) 

Electric constant (ε0) 8.8541878128(13)10−12 C2/N·m2 1.510−15 1 (with  and μ0) 

Magnetic constant (μ0) 1.25663706212(19)10−6 N/A2 1.510−15 1 (with  and ε0) 

 

Note that the electric and magnetic constant are also referred to as the (electric) permittivity and 

(magnetic) permeability of the vacuum (i.e. free space). That makes sense if we think of them as some 

kind of force per unit of flux, in space or in time. For ε0 (for 1/ε0, we should say), we have the newton 

per C2/m2 unit: the denominator is (electric) charge per meter, squared. For μ0, we have newton per 

C2/s2: charge per second, squared. The ratio of 1/ε0 and μ0 gives us the speed of light, squared: 1/ε0μ0 = 

c2. It is tough to understand this intuitively, but not impossible. 

The point here is the following: fine-structure constant, magnetic constant and electric constant are all 

related, and we think the relation is given by the sheer geometry of the situation. Now that we are here, 

we should probably add a remark here. We said that the charge of an electron (qe) has been defined as 

qe = 1.60217663410−19 C, exactly. You probably also know that Planck’s constant has also been defined 

as being equal to h = 6.6260701510−34 J·s, exactly.15 Hence, you may think that we should think of  = 

e2/ħc as some exact value now⎯because of the following formula: 

α =
qe

2

4πε0ℏ𝑐
=

e2

ℏ𝑐
 

                                                           
14 CODATA is the Committee on Data of the International Science Council and publishes this data 
(http://www.codata.org). However, I find the US NIST site (https://physics.nist.gov/cuu/Constants/index.html) 
more user-friendly. Note that the electric and magnetic constant are referred to  
15 The NIST defines the unit as J·Hz−1, which confirms our interpretation of Planck’s constant as a fundamental 

cycle. Note that the reduced Planck constant (ħ = h/2π = 1.054 571 817...10−34 J·s) has an infinite number of digits 
but zero uncertainty. That is because π is an irrational number. 

http://www.codata.org/
https://physics.nist.gov/cuu/Constants/index.html
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But, no! The e2 and qe
2 are related through ε0 and, hence, the uncertainty about ε0 will be reflected in an 

uncertainty about e2 and, therefore, in the fine-structure constant . 

Let us show one more thing before we move on. We can use the 1/c2 = μ0ε0 to write  as a function of 

μ0:     

α =
qe

2

4πε0ℏ𝑐
=

qe
2μ0𝑐2

4πℏ𝑐
=

qe
2μ0𝑐

4πℏ
 

This just shows – once again – how the three constants and, therefore, their uncertainties, are related. 

This leads us to another discussion: if  is a fraction of that Compton radius, then what is that Compton 

radius? 

The Compton radius of an electron 
In our classical interpretation of what an electron (and a photon) might actually be16, we equated the 

Compton radius of an electron to the radius of Schrödinger’s Zitterbewegung. Our assumption – the 

electron as a naked charge – something pointlike with zero rest mass17 - moving about some center at 

the speed of light. It can do so because its rest mass is zero. The rest mass of the electron itself is 

nothing but the equivalent mass of the energy in this oscillatory motion: Wheeler’s idea of mass without 

mass. This led us to interpret the speed of light – the c in Einstein’s mass-energy equivalence relation (E 

= m·c2) – as a tangential velocity: c = a·ω.18 We then used the Planck-Einstein relation (ω = E/ħ = m·c2/ħ) 

to find the Compton radius: 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2 =
ℏ

m ∙ 𝑐
=

λ𝐶

2π
≈ 0.386 × 10−12 m 

The novel idea here is that one rotation – one cycle of the electron in its Zitterbewegung – does not only 

pack the electron’s energy (E = m·c2): it also packs Planck’s quantum of action (S = h). The idea of an 

oscillation packing some amount of physical action may not be very familiar but it is quite simple: 

physical action is the product of (1) a force (the force that keeps our zbw charge in its circular orbit), (2) 

some distance (the circular loop) and (3) some time (the cycle time). For an electron, we got a cycle time 

that was equal to: 

T =
ℎ

E
≈

6.626 × 10−34 J ∙ s

8.187 × 10−14 J
≈ 0.8 × 10−20 s 

We can also calculate the electric current:  

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 1.98 A 

This looks phenomenal – a household-level current (almost 2 ampere) at the sub-atomic scale but, as 

mentioned above, the model gives us consistent values for the magnetic moment, the angular 

                                                           
16 See the above-mentioned papers. 
17 Pointlike does not imply it has no dimension whatsoever. We think of the classical electron radius as the radius 

of the zero-mass Zitterbewegung charge. Hence, the fine-structure constant (re = ·rC = ħ/mc) relates the two 

radii. As mentioned above, this explains the small /2π anomaly in the magnetic moment. 
18 A tangential velocity will always equal the radius times the angular frequency of the rotational motion. 
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momentum of an electron and the g-ratio, so we see no reason why we wouldn’t try to roll with this. 

The obvious question here is the following: what keeps this photon-like charge in its orbit? What is the 

nature of the centripetal force?19 We think we have answered this question in our papers – it is the 

electromagnetic force itself (again, think of a current ring in a superconducting material20) – and so we 

won’t dwell on it here. We just wanted to recap the basics of our oscillator model for an electron in 

order to now apply it to the nucleon. 

The Compton radius of protons and neutrons 
We have a new charge here – the Yukawa charge – and there is no reason why we wouldn’t treat it as a 

pointlike charge with zero rest mass. In other words, we can apply the same reasoning as the one we 

used to calculate the Compton radius of an electron. Because the model may not be familiar, we repeat 

the logic once more: 

1. We think of the Yukawa charge as a pointlike charge with zero rest mass. Pointlike does not 

mean it’s dimensionless. In fact, we will want to think of it as some sphere of charge, and we will 

probably also want to develop some theory for the radius of the charge⎯something like our 

explanation of the anomalous magnetic moment of the electron in terms of the radius of the 

naked charge. 

2. Because its rest mass is zero, the Yukawa charge will move at the speed of light. We think this 

motion is some Zitterbewegung⎯something like the Zitterbewegung of an electron. We just 

have a different charge here and, therefore, we also have a different mass and a different 

radius. However, the E = m·c2 and tangential velocity formula can be combined and give us the E 

= mN·aN
2·c2 equation. The mN and aN are the nucleon mass and the radius or amplitude of the 

oscillation.   

3. We think one cycle of this nucleon (or nuclear?) oscillation packs (1) the energy of the nucleon 

and (2) one unit of physical action. Yes. We are talking Planck’s quantum of action here. Why? 

The reason is simple: none of the theoretical developments so far, and none of the experiments 

so far, give us any reason to try to use some other quantum in the Planck-Einstein relation. 

Hence, we think the ω = E/ħ = m·c2/ħ is valid in the nucleus too. 

This gives us the Compton radius for an electron, for a nucleon, or for any particle we might associate 

with some new charge⎯electric, nuclear or whatever one might come up with (colors, perhaps?): 

                                                           
19 Alexander Burinskii, a Russian physicist who specializes in physical electron models, wrote me the following 
when I first contacted him back in December 2018: “I know many people who considered the electron as a toroidal 
photon  and do it up to now. I also started from this model about 1969 and published an article in JETP in 1974 on 
it: "Microgeons with spin". Editor E. Lifschitz prohibited me then to write there about Zitterbewegung [because of 
ideological reasons ], but there is a remnant on this notion. There was also this key problem: what keeps [the 
pointlike charge] in its circular orbit?” 
20 We do not have a material ring to guide the electron here – no little wire – but we believe the scale and current 
are such that all is kept in place. We refer to Burinskii’s and Hestenes research. Burinskii integrates gravity in his 
Kerr-Newman geometries. As for David Hestenes, his calculations revived the Zitterbewegung interpretation of an 
electron in the 1980s and early 1990s and he will, therefore, forever be associated with the so-called 
Zitterbewegung interpretation of quantum mechanics. 
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𝑎 =
𝑐

ω
=

𝑐∙ℏ

m∙𝑐2 =
ℏ

m∙𝑐
  

If we try the mass of a proton (or a neutron⎯almost the same), we get this: 

𝑎p =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

938 × 106 eV
≈ 0.21 × 10−15 m 

The order of magnitude is right, because we get a radius between 0.84 and 0.9 fm out of proton 

scattering experiments.21 But a factor of the order of 1/4 is, perhaps, a bit much. To put things into 

perspective, we may remind ourselves that the order of magnitude of the Compton radius of the proton 

that we have calculated here is the same as the order of magnitude of the Thomson radius of an 

electron, i.e. the radius of the Zitterbewegung charge: re = ·rC  2.8 fm. However, while the order of 

magnitude is the same, we should also note our theoretical proton radius – the Compton radius above: 

0.21 fm – is about 13.5 times smaller than the classical electron radius. 

Why are we mentioning this? We might be tempted to think of a proton as a neutron with an added 

positron (the anti-matter counterpart of an electron) or, vice versa, of a neutron as a proton with an 

added electron22, but the calculation above shows that doesn’t make much sense: our proton, or our 

neutron, should be much larger then! Even if we accept the empirical value (0.84 and 0.9 fm) – which we 

should accept, of course, because that’s what we measure ! – then the two radii (proton or neutron 

radius versus the classical electron radius) differ by a factor that is close to π. Indeed, 2.8/π  0.89. It 

must be a coincidence, right?     

The Compton radius of quarks 
What if we try the mass of quarks? Which ones? We have six: u, d, c, s, t and b quarks. We will probably 

want to limit ourselves to the first generation, because the second and third might be explained by 

some resonance or higher (non-equilibrium?) energy states. The u and d quarks23 have an equivalent 

mass of 2.3 ± 0.7 ± 0.5 and 4.8 ± 0.5 ± 0.3 MeV/c2 respectively. The weird x  1  2 expression 

accounts for statistical versus systematic uncertainty respectively.24 These are very imprecise 

numbers⎯which is one of the many reasons why I don’t like quark theory but that is entirely subjective, 

                                                           
21 We refer to Wikipedia once again for a very readable account of these experiments and their results 
(https://en.wikipedia.org/wiki/Proton_radius_puzzle). 
22 The mass of a neutron is about 939,565,413 eV/c2 and about 938,272,081 eV/c2 for the proton. Hence, the 
energy difference is almost 1.3 MeV. That’s quite considerable when thinking photons or other low-energy 
phenomena. Everything is relative, of course! We need to do some thinking about that difference. It is about the 
same as the upper limit of the energy of a gluon, which is thought of as ranging between 0 and 1.3 MeV/c2. Also 
note that the neutron mass is the larger one. Perhaps it absorbed an electron? The electron mass is about 0.511 
MeV/c2. So one might add some oscillation energy perhaps to explain the remaining difference? These thoughts 
are, obviously, very speculative and, as mentioned, we get into trouble when thinking of the size of an electron. 
23 I love the idea of quarks and the analogy with flavors and – for gluons – colors, but their names: quarks: up, 
down, strange, charm, bottom, and top? Up/down and bottom/top sounds to similar and so that’s quite confusing. 
As for the distinction between strange and charm, you tell me! 
24 For the difference between the two: https://en.wikipedia.org/wiki/Systematic_error. We also took the 
mentioned mass estimates for the u and d quark from the Wikipedia article on quarks. It may be mentioned that 
these values have not yet made it into the NIST tables of fundamental physical constants – unlike, say, the mass of 
neutrons, protons, alpha particles, and the most common leptons (electron, tau, etcetera). You can check for 
yourself: https://physics.nist.gov/cuu/Constants/Table/allascii.txt. It’s a long list, so I might have made a mistake! 

https://en.wikipedia.org/wiki/Proton_radius_puzzle
https://en.wikipedia.org/wiki/Systematic_error
https://physics.nist.gov/cuu/Constants/Table/allascii.txt
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of course. Let’s get back to the point here. If these  1  2 numbers are, effectively, standard 

deviations from the mean, then we may say the mass of quarks varies between 0 and 7.2 MeV/c2.25 

However, let us take the 2.3 and 4.8 values to get some idea of the order of magnitude: 

𝑎𝑢 =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

2.3 × 106 eV
≈ 86 × 10−15 m 

𝑎𝑑 =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

4.8 × 106 eV
≈ 41 × 10−15 m 

The result is unsurprising: the Compton radius is inversely proportional to the mass and, hence, a mass 

that’s 200 or 400 times smaller will yield a Compton radius that is 200 to 400 times larger. The radius of 

an atom ranges from The diameter of a nucleus ranges from the mentioned 0.8 fm – the hydrogen 

nucleus, or a single proton – to about 5.86 fm for the heaviest atoms, like uranium. The 41-86 fm scale is 

50 or 100 times the proton size, so the Compton radius of a quark doesn’t make much sense. 

Should we, therefore, think of quarks as some kind of mathematical abstraction rather than something 

real? No. Quark theory does make it easier to explain the particle zoo and – much more importantly – 

the existence of quarks has been confirmed experimentally, right? Hence, our oscillator model – the 

Zitterbewegung – might not apply to quarks: perhaps they are pure charges. No Zitter. 

We do to do some research here but, yes, the properties of quarks are being measured in experiments. 

These experiments are interesting. Many were done in a particle accelerator in Hamburg, HERA26, in 

which electrons or positrons were collided with protons at a center of mass energy of 318 GeV. That’s 

huge! HERA was closed down in 2007 but measured many things, including the size of quarks, for which 

they found an upper limit that was equal to 0.4310−18 m.27 So that’s about 2,000 times smaller than the 

mentioned empirical value we got for protons and neutrons (0.84 and 0.9 fm). Yes: two thousand times. 

We will have to come back to this. As for now, we should note that the quark model implies that most of 

the mass of the proton or the neutron must come from some oscillation or interaction between the 

quarks. So what could that oscillation or interaction possibly be? 

We will let the matter rest for the time being – literally – and explore some other topic: excitations. 

Excited states 
We will start, once again, with the theory for an electron, and then examine if we can apply the same 

concepts to nucleons. 

                                                           
25 If the distribution is normal, then the three-sigma (3) rule tells us this will capture 99.73% of all observations. 
26 HERA stands for Hadron-Elektron-Ringanlage (in German) or, in English, Hadron-Electron Ring Accelerator. See 
the Wikipedia article on this installation: https://en.wikipedia.org/wiki/HERA_(particle_accelerator). 
27 See: Limits on the effective quark radius from inclusive e-p scattering at HERA, ZEUS Collaboration, March 2016 
(https://arxiv.org/pdf/1604.01280.pdf). 

https://en.wikipedia.org/wiki/HERA_(particle_accelerator)
https://arxiv.org/pdf/1604.01280.pdf
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The energy states of the electron  
The idea of an excited state is interesting. It reminds us of our results for an electron in some Bohr 

orbital, which we compare with the results we obtained for an electron in free space below.28 

Table 1: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2 m𝑐2 = −
1

𝑛2 E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛2𝑟B =

𝑛2𝑟C

α
=

𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 ω𝑛 =

𝑣𝑛

𝑟𝑛
=

α2

𝑛3ℏ
m𝑐2 =

1
𝑛2 α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω =
1

2
∙ m ∙ 𝑎2 ∙ ω =

m

2
∙

ℏ2

m2𝑐2

E

ℏ
=

ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe

2m
ℏ μ𝑛 = I ∙ π𝑟𝑛

2 =
qe

2m
𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 

 

Could we excite an electron? We assume an electron gets excited – temporarily – when it absorbs a 

high-energy photon in Compton scattering experiments. It is good to briefly recall the logic here. 

Compton scattering involves electron-photon interference: a high-energy photon (the light is X- or 

gamma-rays) will hit an electron and is briefly absorbed before the electron comes back to its 

equilibrium situation. It does so by emitting another photon, whose wavelength will be longer. The 

photon has, therefore, less energy, and the difference in the energy of the incoming and the outgoing 

photon gives the electron some linear momentum. We refer to Compton scattering as inelastic because 

of this interference effect.  

In contrast, low-energy photons scatter elastically. Elastic scattering experiments yield the smaller radius 

of the electron: the Thomson radius, which is given by the fine-structure constant: re = α·rC. Thomson 

scattering radius is referred to as elastic because the photon seems to bounce off some hard core: there 

is no interference. This picture is fully consistent with the Zitterbewegung model of an electron: we 

think of the hard core as the pointlike charge itself, but pointlike does not mean its size is zero! It is, in 

fact, this picture that inspires the tangential velocity formula (c = a·ω) that we are using. 

                                                           
28 See: Jean Louis Van Belle, The Emperor Has No Clothes: A Classical Interpretation of Quantum Mechanics, 21 
April 2019 (http://vixra.org/abs/1901.0105).  

http://vixra.org/abs/1901.0105
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The point is: Compton scattering does involve the idea of an excited electron. How should we think of its 

energy states? The energy states that we associate with Bohr orbitals do not include the rest energy of 

the electron. Hence, we should not be too obsessed by them.  

Let us see what happens if we apply the Sn = n·h formula (n = 1, 2, 3, …) to the spin-only electron. We no 

longer have a unique energy and, therefore, we no longer have a unique frequency. Different 

frequencies imply different cycle times Tn = λn/vn. Hence, we have different radii an = λn/2π and different 

tangential velocities vn. Or perhaps not. If our charge has no rest mass, then its tangential velocity 

should remain what it is⎯the speed of light, right? Yes. 

That sounds like an idea. Let’s apply straight away to our hypothetical nucleon charge.  

The energy states of the nucleon 
Let us solve this intuitively. If our equilibrium state – the non-excited state – is written and defined by 

E1·T1 = h, then our Sn = n·h formula29 (or, if you prefer the angular momentum expression, Sn = n·h 

implies that E2·T2 = 2·h, E3·T3 = 3·h, …, or – more generally - En·Tn = n·h. If we take the ratio, then we get: 

E𝑛 · T𝑛 

E1 · T1
= 𝑛 

Now, the cycle time is equal to the distance over the loop divided by the velocity: Tn = λn/vn. We can, 

therefore, write the EnTn/E1T1 ratio as: 

E𝑛 · λ𝑛/𝑣𝑛 

E1 · λ1/𝑣𝑛
=

E𝑛 

E1
∙

λ𝑛 

λ1
∙

𝑣1 

𝑣𝑛
= 𝑛 

If v1 and vn have to be equal, and equal to the speed of light (v1 = vn = c), then this might work if En = n2·E1 

and if λn = λn/n:   

E𝑛 

E1
∙

λ𝑛 

λ1
∙

𝑣1 

𝑣𝑛
=

𝑛2E1 

E1
∙

λ1 

𝑛 ∙ λ1
∙

𝑐 

𝑐
= 𝑛 

A shorter loop means a higher frequency. We can calculate the frequency as fn = 1/Tn = vn/λn = c/λn = n· 

f1. That makes sense: the energy of an oscillation is proportional to the square of its frequency. Let’s put 

our formulas in a little table (Table 2). 

Table 2: Non-excited and excites states of a nucleon: key values 

S𝑛 = 𝑛 ∙ h for 𝑛 = 1, 2, … 

E𝑛 = 𝑛2 ∙ E1 = 𝑛2 ∙ mN ∙ 𝑐2 

𝑎𝑛 =
1

𝑛
∙ 𝑎1 =

1

𝑛
∙

ℏ

mN𝑐
 

𝑣𝑛 = 𝑐 

ω𝑛 =
𝑐

𝑎𝑛
= 𝑛 ∙

mN𝑐2

ℏ
= 𝑛 ∙

E1

ℏ
= 𝑛 ∙ ω1 

                                                           
29 We could rephrase this in terms of angular momentum – an expression you know from quantum mechanics – 
but we find this more convenient and, more importantly, more powerful as an explanation of what we think is the 
case. 
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These formulas feel somewhat counter-intuitive because we are used to see the solution of the black-

body radiation, where we assumed energy states were defined as E1 = h·f, E2 = 2·h·f, E3 = 3·h·f,…, En = 

n·h·f. These energy states were all separated by the same amount of energy: En − En−1 = ħ·ω = h·f. It was 

a classical application of the energy equipartition theorem. Here we do not have energy equipartition: 

the orbitals are separated not by equal energies h·f but by equal amounts of physical action: Planck’s 

quantum of action (not E = h·f) is the fundamental unit here and we, therefore, do not have one single 

frequency: the frequency depends on the orbital, as shown in Table 2. 

We get the result that the 1st, 2nd, nth orbital now packs an amount of energy that is equal to En = n·h·fn = 

n2·h·f1 = n2·E1 The energy difference between two orbitals – or two excitation states, we should say – can 

be calculated as: 

E = En − En-1 = n2·E1 − (n−1)2·E1 = [n2 − (n−1)2]·E1 = (2n − 1)·E1   

E is no longer constant: it is now a linear function of n, as shown in the table below (Table 3) 

Table 3: Energy differences: E = (2n − 1)·E1 

n 1 2 3 4 5 … 

E = (2n − 1)·E1 1·E1 3·E1 5·E1 7·E1 9·E1 … 

E2 − E1  2·E1     

E3 − E1 4·E1    

E4 − E1 6·E1   

E5 − E1 8·E1  

… … 

En − E1 2·(n − 1)·E1 = (2n − 2)·E1 

  

The idea of a nuclear force quantum 
Standard quantum field theory assumes the exchange of nuclear force quanta. What does our model say 

about them? We obviously have an energy quantum here, but it’s the energy of the nucleon itself:  

E1 = mN·c2 

Can we imagine some exchange of a photon-like particle carrying this energy between one nucleon and 

another? Of course, we can. In fact, we can see skipping one or more of the higher states would allow to 

take this particle to have an energy that’s equal to any multiple of E1 = mN·c2. 

The point is: this particle cannot be photon-like because it is at least as massive as the nucleon. We are 

talking the mass of protons and neutrons here. To be precise, that mass is about 939,565,413 eV/c2 for 

the neutron and about 938,272,081 eV/c2 for the proton. Why should we assume the nucleons stick 

together by exchanging particles that are at least as heavy as themselves?  

To be fair, the idea of a nuclear force quantum was, obviously, very different from the idea of the gluon 

that Murray Gell-Mann advanced in the early 1960s, as part of his quark model: we no longer think of 

protons and neutrons as elementary particles nowadays. Still, gluons are imagined as being quite heavy: 
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anything between 0 and 1.3 MeV/c2. That upper limit30 – 1.3 MeV/c2 – happens to coincide with the 

mass difference between protons and neutrons. That brings us to the next question: what might explain 

that  mass difference? We will come back to that. Let us first provide some more elements for the 

matter at hand here: is there a nuclear force quantum? 

Yukawa predicted one: his nuclear quantum is usually denoted as mU (and is referred to as the U-

quantum), and it is based on his model of the nuclear force which – in turn – is based on his model for 

the forces in a nucleus, which are governed by this special potential he invented: the Yukawa potential. 

Let’s discuss that in more detail. Yukawa thought of some wave equation for the nucleus. Something like 

Schrödinger’s equation. Let us explore that idea. 

A wave equation for the nucleus? 

The augmented Rutherford-Bohr model 
Why do we need a wave equation? We get the energy levels out of our oscillator model, don’t we? Yes 

and no. To be precise, the answer is: no. Let us re-visit the electron oscillator model to show why it 

would not work for nucleons.  

Our formulas for the orbital electron (see Table 1) effectively assume circular orbitals separated by an 

amount of action (or angular momentum) that is equal to h (or ħ if we’re talking angular momentum): 

Sn = n·h  Ln = n·ħ  

We got the following energy formula for the energy of the nth orbital: 

E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅 

How did we do that? It is just The Bohr model: we have a positively charged nucleus at its center and the 

electron has an effective rest mass: the radial velocity v = a·ω of the electron is, therefore, some fraction 

of the speed of light (v = α·c). It also has some non-zero momentum p = m·v which we can relate to the 

electrostatic centripetal force using the simple classical formula F = p·ω = mv2/a. In contrast, the model 

of an electron in free space is based on the presumed Zitterbewegung, which combines the idea of a 

very high-frequency circulatory motion with the idea of a pointlike charge which – importantly – has no 

inertia and can, therefore, move at the speed of light (v = c). Figure 4 illustrates the idea. 

Figure 4: The position, force and momentum vector in a Bohr loop 

 

                                                           
30 We are yet to do a more detailed analysis. This is general information from the Wikipedia article on gluons and, 
therefore, needs further verification. 
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The formulas in the Bohr-Rutherford model are derived from the basic quantum-mechanical rule that 

angular momentum comes in units of ħ = h/2π. We rephrased that rule as: physical action comes in units 

of h. We also associated Planck’s quantum of action with a cycle: one rotation will pack some energy 

over some time (the cycle time) or – what amounts to the same – some momentum over some distance 

(the circumference of the loop). We can, therefore, write: 

S = h = E·T = p·λ = p·2π·rB 

Using the v = α·c and rC = α·rB relations, one can easily verify this is, effectively, the case: 

𝑆 = p ∙ 2π ∙ 𝑟B = m𝑣 ∙ 2π ∙ (𝑟C/α) = mα𝑐 ∙
2πħ

αmc
= h 

We can also calculate S by calculating the force and then multiply the force with the distance and the 

time. The force is just the (centripetal) electrostatic force between the (negative) electric charge and the 

(positive) hydrogen nucleus (the proton). 

F =
qe

2

4πε0𝑟B
2 = α ∙

ħ𝑐

𝑟B
2 

We can then also calculate S as: 

𝑆 = F ∙ 𝑟B ∙ T = α ∙
ħ𝑐

𝑟B
2 ∙ 𝑟B ∙

2π𝑟B

𝑣
= α ∙

h𝑐

α𝑐
= h 

All is consistent. For the energy, we get the following: 

𝑆 = ℎ = E ∙ T = E ∙
2π𝑟B

𝑣
= E ∙

ℎ
αm𝑐
α𝑐

⇔ E = α2m𝑐2 

This is twice the ionization energy of hydrogen (Ry = α2mc2/2) – the Rydberg energy – and it is also twice 

the kinetic energy (ħ2/2ma2 = α2mc2/2). That is OK because the oscillator model adds the kinetic and 

potential energy of two oscillators – one perpendicular to the other – and we only need the kinetic 

energy, so we should add a 1/2 factor.31  

It is easy to generalize these results for n = 2, 3, etcetera. One can, indeed, show that the energy of the 

nth orbital is what we wrote above:  

E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅 

We have an augmented Rutherford-Bohr model of an atom here. This 105-year old model32 was 

designed to explain the wavelength of a photon that is emitted or absorbed by a hydrogen atom – a 

                                                           
31 Alternatively, we can show that – because of the circular motion – the effective mass will be equal to 1/2 of the 
total mass. 
32 Around 1911, Rutherford had concluded that the nucleus had to be very small. Hence, Thomson’s model – which 
assumed that electrons were held in place because they were, somehow, embedded in a uniform sphere of 
positive charge – was summarily dismissed. Bohr immediately used the Rutherford hypothesis to explain the 
emission spectrum of hydrogen atoms, which further confirmed Rutherford’s conjecture, and Niels and Rutherford 
jointly presented the model in 1913. As Rydberg had published his formula in 1888, we have a gap of about 25 
years between experiment and theory here. 
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one-electron atom, and it does so very well. The idea is that the energy of a photon that is emitted or 

absorbed is equal to the difference in energy between the various orbitals. The energy of these orbitals 

is usually expressed in terms of the energy of the first Bohr orbital, which is now referred to as the 

ground state of (the electron in) the hydrogen atom. The Rydberg energy ER is then the energy of the 

electron in the first Bohr orbital and, as we have shown above, it can be expressed in terms of the fine-

structure constant (α) and the rest energy (E0 = mc2) of the electron33: 

E𝑅 =
α2m𝑐2

2
=

1

2
(

qe
2

2ε0h𝑐
)2m𝑐2 =

qe
4m

8ε0
2h2

≈ 13.6 eV 

To be precise, the difference in energy between the various orbitals should be equal to: 

ΔE = (
1

𝑛1
2

−
1

𝑛2
2

) ∙ E𝑅 

The Rydberg formula then becomes self-evident. The idea of the wavelength of a wave (λ), its velocity of 

propagation (c) and its frequency (f) are related through the λ = c/f relation, and the Planck-Einstein 

relation (E = h·f) tells us the energy and the wavelength of a photon are related through the frequency: 

λ =
𝑐

𝑓
=

ℎ𝑐

E
 

Hence, we can now write the Rydberg formula by combining the above: 

1

λ
=

ΔE

h𝑐
= (

1

𝑛1
2

−
1

𝑛2
2

) ∙
E𝑅

h𝑐
= (

1

𝑛1
2

−
1

𝑛2
2

) ∙
α2m𝑐2

2h𝑐
 

The Rydberg formula has the fine-structure constant in it but it actually describes the so-called gross 

structure of the hydrogen spectrum only (see Figure 5). Indeed, when the spectral lines are examined at 

very high resolution, the spectral lines are split into finer lines. This is due to the intrinsic spin of the 

electron. This intrinsic spin of the electron is to be distinguished from its orbital motion. It shows we 

should not be thinking of the electron as a pointlike (infinitesimally small) particle. It has a radius: the 

Compton radius! Hence, we speak of spin angular momentum versus orbital angular momentum. There 

must be some coupling between the two motions. Such coupling – and possibly other factors – should 

explain the fine structure. 

                                                           
33 We should write m0 instead of m – everywhere. But we are using non-relativistic formulas for the velocity and 
kinetic energy everywhere. Hence, we dropped the subscript. 
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Figure 5: The gross structure of the hydrogen spectrum34 

 

The point to note here is that the energy in the orbitals is only a very small fraction (α2 ≈ 0.00005325) of 

the rest energy of the electron. That is what we want, right? Can’t we develop a similar model for 

nucleons? Nuclear orbitals separated by relatively small energy differences which then explain some 

photon-like particle that we can associate with the nuclear force?  

We must make two remarks here: 

1. This augmented Bohr-Rutherford model is based on the assumption of an immovable proton at 

the center: it is immovable because its mass is about 1,836 times the mass of the electron. This 

is why we can imagine these circular orbits. We cannot think of two nucleons attracting each 

other in the same way: they would have the same mass and, hence, the orbital would not be 

circular. We should think of the trajectories of binary stars here ! 

2. We should carefully think of why we’d need ‘photon-like particles that we can associate with the 

nuclear force’: we have no use for new theoretical particles !   

Having said that, just assuming that the nucleons will just sit on top of each other is rather boring. 

Hence, the idea of a wave equation might make sense.  

The rationale for a wave equation 
We interpreted Schrödinger’s wave equation as a differential equation whose solutions give us all 

possible electron orbitals, including non-circular orbitals.35 In fact, we think our augmented Rutherford-

Bohr model is just a mathematical abstraction of the atom. It only gives us the principal quantum 

number n, which gives us the energy level. Actual electron orbitals are defined by two more numbers: 

1. The orbital angular momentum number l = −n+1, −n+2, …, 0, …, n−2, n−1   

2. The magnetic quantum number ml = −l, −l+1, …, 0, …, l−2, l−1     

                                                           
34 The illustration was taken from: http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-
hydrogen-atom.html.  
35 See: Jean Louis Van Belle, A Geometric Interpretation of Schrödinger’s Equation, 12 December 2018 
(http://vixra.org/abs/1812.0202). 

http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-hydrogen-atom.html
http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-hydrogen-atom.html
http://vixra.org/abs/1812.0202
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In addition, the electron may have its spin up or down and there is, therefore, room for two electrons in 

one orbital. Our augmented Rutherford-Bohr model doesn’t capture the l and m numbers and, 

therefore, it doesn’t capture the fine structure of the hydrogen spectrum. 

In contrast, Schrödinger’s wave equation does the trick. It is, therefore, effectively very tempting to not 

simply assume that nucleons will just sit on top of each other and think of modeling some kind of wave 

equation for nucleons – using Yukawa’s potential function.  

Arguments against the idea 
While we mentioned why the idea might make sense, we would also like to note why it might not make 

sense. 

1. We are modeling something very different: a nucleon – be it a proton, a neutron or a quark – is not 

electrically neutral (the neutron is but, as mentioned, we think of it having some internal pieces whose 

electric charges cancel out). A wave equation would, therefore, need to integrate not one but two 

potentials: Yukawa’s potential and the Coulomb potential. We cannot neglect the Coulomb potential 

because we argued that the Yukawa and Coulomb forces are equally important at the distance r = aN.36 

2. Things are complicated because this potential applies to two nucleons only. What if we have only 

one, or if we have three, four or n nucleons? With Schrödinger’s equation, things get complicated, but 

they are not impossible. Feynman says the following about this: 

“To get a solution, we would have to solve Schrödinger’s equation for Z electrons in a Coulomb 

field. For helium [two electrons], no one has found an analytic solution, although solutions for 

the lowest energy states have been obtained by numerical methods. With three, four or five 

electrons it is hopeless to try to obtain exact solutions, and it is going too far to say that 

quantum mechanics has given a precise understanding of the periodic table. It is possible, 

however, even with a sloppy approximation—and some fixing—to understand, at least 

qualitatively, many chemical properties which show up in the periodic table.”37 

If it is that difficult for more than one electron – and for such simple potential – then it looks like an 

impossible task to try to model anything real for more than two nucleons. 

3. The most important question, however, is still the following: why would we need an equivalent of 

‘photons’ to be associated with the nuclear force? Just because it looks nice? Or to find some other use 

for complicated quantum field theories?  

There is no experimental evidence for these ‘nuclear photons’ and the whole theory feels, therefore, 

quite artificial. What is that it tries to explain, exactly? 

Jean Louis Van Belle, 22 June 2019 

                                                           
36 See: Jean Louis Van Belle, The Nature of Yukawa's Nuclear Force and Charge, 19 June 2019 
(http://vixra.org/abs/1906.0311). 
37 Feynman’s Lectures, Vol. III, Chapter 19 (http://www.feynmanlectures.caltech.edu/III_19.html#Ch19-S6). 

http://vixra.org/abs/1906.0311
http://www.feynmanlectures.caltech.edu/III_19.html#Ch19-S6

