Solving the $\boldsymbol{n}_{\mathbf{1}} \times \boldsymbol{n}_{\mathbf{2}} \times \boldsymbol{n}_{\mathbf{3}}$ Points Problem for $\boldsymbol{n}_{\mathbf{3}}<6$

Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy
e-mail: marcokrt1984@yahoo.it

Abstract

In this paper, we show enhanced upper bounds of the nontrivial $n _1 \times n _2 \times n _3$ points problem for every $n_{-} 1 \leq n_{-} 2 \leq n_{-} 3<6$. We present new patterns that drastically improve the previously known algorithms for finding minimum-link covering paths, solving completely a few cases (e.g., n_1 = n_2 $=3$ and n_3=4).

Keywords: Graph theory, Topology, Three-dimensional, Creative thinking, Link, Connectivity, Outside the box, Upper bound, Point, Game.

2010 Mathematics Subject Classification: 91A43, 05C57.

1 Introduction

The $n_{1} \times n_{2} \times n_{3}$ points problem [12] is a three-dimensional extension of the classic nine dots problem appeared in Samuel Loyd's Cyclopedia of Puzzles [1-9], and it is related to the well known NP-hard traveling salesman problem, minimizing the number of turns in the tour instead of the total distance traveled [1-15].
Given $n_{1} \cdot n_{2} \cdot n_{3}$ points in \mathbb{R}^{3}, our goal is to visit all of them (at least once) with a polygonal path that has the minimum number of line segments connected at their end-points (links or generically lines), the so called Minimum-link Covering Path [3-4-5-8]. In particular, we are interested in the best solutions for the nontrivial $n_{1} \times n_{2} \times n_{3}$ dots problem, where (by definition) $1 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{3}<6$.
Let $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right) \leq h_{u}\left(n_{1}, n_{2}, n_{3}\right)$ be the length of the covering path with the minimum number of links for the $n_{1} \times n_{2} \times n_{3}$ points problem, we define the best known upper bound as $h_{u}\left(n_{1}, n_{2}, n_{3}\right) \geq h\left(n_{1}, n_{2}, n_{3}\right)$ and we denote as $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right)$ the current proved lower bound [12].
For the simplest cases, the same problem has already been solved [3-12]. Let $n_{1}=1$ and $n_{2}<n_{3}$, we have that $h\left(n_{1}, n_{2}, n_{3}\right)=h\left(n_{2}\right)=2 \cdot n_{2}-1$, while $h\left(n_{1}=1, n_{2}=n_{3} \geq 3\right)=2 \cdot n_{2}-2$ [6]. Hence, for $n_{1}=2$, it can be easily proved that

$$
h\left(2, n_{2}, n_{3}\right)=2 \cdot h\left(1, n_{2}, n_{3}\right)+1=\left\{\begin{array}{lll}
4 \cdot n_{2}-1 & \text { iff } & n_{2}<n_{3} \tag{1}\\
4 \cdot n_{2}-3 & \text { iff } & n_{2}=n_{3}
\end{array}\right.
$$

2X3X5 SOLUTION (trivial):
 11 lines

NO INTERSECTION

Figure 1. A trivial pattern that completely solves the $2 \times 3 \times 5$ points puzzle.

2X5X5 SOLUTION (trivial):

17 lines
NO INTERSECTION

Figure 2. Another example of a trivial case: the $2 \times 5 \times 5$ points puzzle.

Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases where the current upper bound does not match the proved lower bound.

2 Improving the solution of the $\boldsymbol{n}_{1} \times \boldsymbol{n}_{\mathbf{2}} \times \boldsymbol{n}_{\mathbf{3}}$ points problem for

 $n_{3}<6$In this complex brain challenge we need to stretch our pattern recognition [7-10] in order to find a plastic strategy that improves the known upper bounds [3-13] for the most interesting cases (such as the nontrivial $n_{1} \times n_{2} \times n_{2}$ points problem and the $n_{1} \times n_{1} \times\left(n_{1}+1\right)$ set of puzzles), avoiding those standardized methods which are based on fixed patterns that lead to suboptimal covering paths, as the approaches presented in [2-8-11].

Let $3 \leq n_{1} \leq n_{2} \leq n_{3} \leq 5$, a lower bound of the $n_{1} \times n_{2} \times n_{3}$ problem is given by [12]

$$
\begin{equation*}
h_{l}\left(n_{1}, n_{2}, n_{3}\right)=\left\lceil\frac{n_{1} \cdot\left(2 \cdot n_{2} \cdot\left(n_{3}+1\right)-n_{1}-1\right)-2}{n_{3}+n_{2}-2}\right\rceil-1 \tag{2}
\end{equation*}
$$

The current best results are listed in Table 1, and a direct proof follows for each nontrivial upper bound shown below.

$\mathbf{n}_{\mathbf{1}}$	$\mathbf{n}_{\mathbf{2}}$	$\mathbf{n}_{\mathbf{3}}$	Best Lower Bound ($\left.\boldsymbol{h}_{\boldsymbol{l}}\right)$	Best Upper Bound ($\left.\boldsymbol{h}_{\boldsymbol{u}}\right)$	Discovered $\mathbf{b y}$	Gap $\left(\boldsymbol{h}_{\boldsymbol{u}}-\boldsymbol{h}_{\boldsymbol{l}}\right)$
2	2	3	7	$\underline{\mathbf{7}}$	trivial	0
2	3	3	9	$\underline{\mathbf{9}}$	trivial	0
3	3	3	14	$\underline{\mathbf{1 4}}$	Marco Ripà (proved in 2013 [14])	0
2	2	4	7	$\underline{\mathbf{7}}$	trivial	0
2	3	4	11	$\underline{\mathbf{1 1}}$	trivial	0
2	4	4	13	$\underline{\mathbf{1 3}}$	trivial	0
3	3	4	15	$\underline{\mathbf{1 5}}$	Marco Ripà (proved on Jun. 27, 2019 [v1])	0

3	4	4	17	19	Marco Ripà (ibid.)	2
4	4	4	22	23	$\begin{gathered} \text { Marco Ripà } \\ \text { (NNTDM [13]) } \end{gathered}$	1
2	2	5	7	7	trivial	0
2	3	5	11	$\underline{11}$	trivial	0
2	4	5	15	15	trivial	0
2	5	5	17	17	trivial	0
3	3	5	15	16	Marco Ripà (proved on Jun. 27, 2019 [v1])	1
3	4	5	18	20	Marco Ripà (ibid.)	2
3	5	5	20	24	Marco Ripà (ibid.)	4
4	4	5	24	26	Marco Ripà (ibid.)	2
4	5	5	27	31	Marco Ripà (ibid.)	4
5	5	5	33	36	Marco Ripà (proved on Jul. 9, 2019 [v4])	3

Table 1: Current solutions for the $n_{1} \times n_{2} \times n_{3}$ points problem, where $n_{1} \leq n_{2} \leq n_{3} \leq 5$.

Figures 3 to 12 show the patterns used to solve the $n_{1} \times n_{2} \times n_{3}$ puzzle (case by case). In particular, by combining the (2) with the original result shown in figure 4 , we obtain a formal proof for the $3 \times 3 \times 4$ points problem.

3X3X3 SOLUTION CONSIDERING TWO DIFFERENT PATHS:

Figure 3. $h_{u}(3,3,3)=h_{l}(3,3,3)=14$. This solution has been proved to be optimal [12-13].

Figure 4. The $3 \times 3 \times 4$ puzzle has finally been solved. $h_{u}=h_{l}=15$ and no crossing lines.

Figure 5. Best known upper bound of the $3 \times 4 \times 4$ puzzle. $19=h_{u}=h_{l}+2$.

$4 \times 4 \times 4$ best upper bound:

23 lines

Figure 6. An original pattern for the $4 \times 4 \times 4$ puzzle. $23=h_{u}=h_{l}+1$ [13].

3X3X5 best upper bound:

Figure 7. Best known upper bound of the $3 \times 3 \times 5$ puzzle. $16=h_{u}=h_{l}+1$.
$3 \times 4 \times 5$ best upper bound:
20 lines

Figure 8 . Best known upper bound of the $3 \times 4 \times 5$ puzzle. $20=h_{u}=h_{l}+2$.

$3 \times 5 \times 5$ best upper bound:

24 lines

Figure 9 . Best known upper bound of the $3 \times 5 \times 5$ puzzle. $24=h_{u}=h_{l}+4$.
$4 \times 4 \times 5$ best upper bound: 26 lines

5
Figure 10. Best known upper bound of the $4 \times 4 \times 5$ puzzle. $26=h_{u}=h_{l}+2$.
$4 \times 5 \times 5$ best upper bound:
31 lines

Figure 11. Best known upper bound of the $4 \times 5 \times 5$ puzzle. $31=h_{u}=h_{l}+4$.

$5 \times 5 \times 5$ best upper bound:

36 lines

Figure 12. Best known upper bound of the $5 \times 5 \times 5$ puzzle. $37=h_{u}=h_{l}+4$ [13].
Finally, it is interesting to note that the improved $h_{u}\left(n_{1}, n_{2}, n_{3}\right)$ can lower down the upper bound of the generalized k-dimensional puzzle too. As an example, we can apply the aforementioned 3D patterns to the generalized $n_{1} \times n_{2} \times \ldots \times n_{k}$ points problem using the simple method described in [12].
Let $k \geq 4$, given $n_{k} \leq n_{k-1} \leq \cdots \leq n_{4} \leq n_{1} \leq n_{2} \leq n_{3}$, we can conclude that

$$
\begin{equation*}
h_{u}\left(n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right)=\left(h_{u}\left(n_{1}, n_{2}, n_{3}\right)+1\right) \cdot \prod_{j=4}^{k} n_{j}-1 \tag{3}
\end{equation*}
$$

3 Conclusion

In the present paper we have drastically reduced the gap $h_{u}\left(n_{1}, n_{2}, n_{3}\right)-h_{l}\left(n_{1}, n_{2}, n_{3}\right)$ for every previously unsolved puzzle such that $n_{3}<6$. Moreover, we can easily disprove Bencini's claim that $h_{u}(3,3,4)=17=h_{l}(3,3,4)$ (see [2], page 7, lines 2-3), since $h_{u}(3,3,4)=15=h_{l}(3,3,4)$, as shown by combining (2) with the upper bound from figure 4. We do not know if any of the patterns shown in figures 5 to 12 represent optimal solutions, since (by definition) $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right)$. Therefore, some open questions about the $n_{1} \times n_{2} \times n_{3}$ points problem remain to be answered, and the research in order to cancel the gap $h_{u}\left(n_{1}, n_{2}, n_{3}\right)-h_{l}\left(n_{1}, n_{2}, n_{3}\right)$, at least for every $n_{3} \leq 5$, is not over yet.

References

[1] Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B. (1999). The angular-metric traveling salesman problem. SIAM Journal on Computing 29, 697-711.
[2] Bencini, V. (2019). n_1 \times n_ $2 \times n _3$ Dots Puzzle: A Method to Improve the Current Upper Bound. viXra, 6 Jun. 2019, http://vixra.org/pdf/1906.0110v1.pdf
[3] Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P. (2009). Traversing a set of points with a minimum number of turns. Discrete \& Computational Geometry 41(4), 513-532.
[4] Collins, M. J. (2004). Covering a set of points with a minimum number of turns. International Journal of Computational Geometry \& Applications 14(1-2), 105-114.
[5] Collins, M.J., Moret, M.E. (1998). Improved lower bounds for the link length of rectilinear spanning paths in grids. Information Processing Letters 68(6), 317-319.
[6] Keszegh, B. (2013). Covering Paths and Trees for Planar Grids. arXiv, 3 Nov. 2013, https://arxiv.org/abs/1311.0452
[7] Kihn, M. (1995). Outside the Box: The Inside Story. FastCompany.
[8] Kranakis, E., Krizanc, D., Meertens, L. (1994). Link length of rectilinear Hamiltonian tours in grids. Ars Combinatoria 38, 177-192.
[9] Loyd, S. (1914). Cyclopedia of Puzzles. The Lamb Publishing Company, p. 301.
[10] Lung, C. T., Dominowski, R. L. (1985). Effects of strategy instructions and practice on nine-dot problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(4), 804-811.
[11] Ripà, M., Bencini, V. (2018). $\mathrm{n} \times \mathrm{n} \times \mathrm{n}$ Dots Puzzle: An Improved "Outside The Box" Upper Bound. viXra, 25 Jul. 2018, http://vixra.org/pdf/1807.0384v2.pdf
[12] Ripà, M. (2014). The Rectangular Spiral or the $\mathrm{n}_{1} \times \mathrm{n}_{2} \times \ldots \times \mathrm{n}_{\mathrm{k}}$ Points Problem. Notes on Number Theory and Discrete Mathematics 20(1), 59-71.
[13] Ripà, M. (2019). The $3 \times 3 \times \ldots \times 3$ Points Problem solution. Notes on Number Theory and Discrete Mathematics 25(2), 68-75.
[14] Sloane, N. J. A. (2013). The Online Encyclopedia of Integer Sequences. Inc. 2 May. 2013. Web. 8 Jul. 2019, http://oeis.org/A225227
[15] Stein, C., Wagner, D.P. (2001). Approximation algorithms for the minimum bends traveling salesman problem. In: Aardal K., Gerards B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. LNCS, vol 2081, 406-421. Springer, Berlin, Heidelberg.

