
Improved Multi-Domain Image-to-Image

Translation GAN

Jeongik Cho

Abstract

StarGAN has shown excellent performance in

image-to-image translation using adversarial,

reconstruction, and classification losses in

multi-domain image-to-image translation. The

Style-Based Generator Architecture boosts

generator performance through the Embedder

and AdaIn modules. I propose here an attribute

loss, which is like having multiple GANs, which

is enhanced by combining StarGAN's

conditional GAN loss (adversarial loss and

classification loss) to improve learning speed.

And suggest the new generator architecture,

whose name is bi-directional progressive

growing Style-Based U-Net generator, to

improve learning speed.

1. Introduction

 StarGAN[1] uses reconstruction loss of

cycleGAN[2] and adversarial loss and

classification loss, which are losses of

conditional GAN[3].

𝐿஽ = −𝐿௔ௗ௩ + 𝜆௖௟௦𝐿௖௟௦
௥

𝐿௖௟௦
௥ = 𝐸௫,௔௧௧~௉ೝ(௫,௔௧௧)[−log (𝐷௖௟௦(att|x))]

𝐿ீ = 𝐿௔ௗ௩ + 𝜆௖௟௦𝐿௖௟௦
௚

𝐿௖௟௦
௚

= 𝐸௫ᇲ,௔௧௧ᇲ~௉೒൫௫ᇲ,௔௧௧ᇲ൯ൣ− log൫𝐷௖௟௦(𝑎𝑡𝑡ᇱ|𝑥ᇱ)൯൧

These are the losses of conditional GAN. In

𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), x means real data, and att is

the binary vector that expresses the attribute

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃௚(𝑥ᇱ, 𝑎𝑡𝑡ᇱ), 𝑥ᇱ means

generated data and 𝑎𝑡𝑡ᇱ is the binary vector

which is put in a generator to make 𝑥ᇱ .

In the star GAN, adversarial loss trains model

well because there are well known the metrics

such as LSGAN[4] or WGAN-GP[5] that can

measure the distance between real data

distribution and generated data distribution

even if they are far from each other. However,

classification loss of conditional GAN which is

using cross-entropy is hard to be learned if

the generated conditional data distribution is

far from real conditional data distribution

because cross-entropy trains the model to

reduce KL-divergence only.

Real B

Generated B
Generated A

Real A

In the above figure, the circle containing Real A

and Real B is the distribution of the real data,

and the circle containing Generated A and

Generated B is the distribution of the generated

data. Real A is real data with attribute A and

Generated A is data generated by the generator

with condition A. In the early stage of learning,

the classification loss does not have any

meaning because the distance between the

actual data distribution and the generated data

distribution is far, so learning is conducted only

as an adversarial loss.

Real B

Generated A
Generated B

Real A

As the learning progresses to some extent, the

actual data distribution and the generated data

distribution are somewhat similar, and

classification loss starts to have meaning when

each conditional data distributions overlap(Real

A-Generated A, Real B-Generated B).

To solve the problem that classification loss

does not have meaning at the beginning of

learning, I made several GANs that learn only

one attribute instead of conditional GAN losses.

Each Generator only generates data with each

attribute. Each Discriminator determines that it

is true only for the real data with each attribute

and that it is a fake for the data that the

generator generates for each attribute.

Attribute loss is the sum of each GANs loss.

Each GANs have their adversarial loss. So if you

use LSGAN loss or WGAN-GP loss that can train

models even if generated data distribution and

real data distribution, the model can be trained

well at the beginning of learning. Also, since

each discriminator shares all layers except the

output layer, and each generator shares all

layers except the input layer, the learning time

does not increase significantly.

I also used embedder and generator that is a

simplified architecture of Few-Shot Adversarial

Learning of Realistic Neural Talking Head

Models[6] and U-Net architecture of Pix2Pix[7]

and AdaIn module and embedder of Style-

based generator[8]. I replaced all batch

normalization layer to AdaIn module. To

improve the learning speed, the generator

grows in both input and output directions, not

just in one direction like the style-based

generator. Also, I used the activation functions

of DCGAN[9].

Real B

Generated B
Generated A

Real A

2. Improved Star GAN

First, it is assumed that attribute information is

matched with real data.

2.1 Loss

Overall Loss is as follows.

𝐿஽ = 𝐿௔௧௧
஽

𝐿ீ = 𝐿௔௧௧
ீ + 𝛾௖௡௧𝐿௖௡௧

Attribute Loss

attribute loss is as follows.

𝐿௔௧௧
஽ = ෍ 𝐿௖

஽

௔௧௧

௖

𝐿௔௧௧
ீ = ෍ 𝐿௖

ீ

௔௧௧

௖

𝐿௖
஽ = 𝐸௫,௖~௉ೝ(௫,௖)[(𝐷௖(𝑥) − 1)ଶ]

+ 𝐸௫ᇲ~௉ಸ೎(௫ᇲ,ଵ)[𝐷௖(𝑥ᇱ)ଶ]

𝐿௖
ீ = 𝐸௫~௉ೝ(௫)[(𝐷௖൫𝐺௖(𝑥, 1)൯ − 1)ଶ]

c means one specific attribute among several

attributes. 𝐿௖
஽ and 𝐿௖

ீ are the losses of one

discriminator and one generator that

discriminate against a particular attribute c. 𝐿௔௧௧
஽

is the sum of the attribute losses of all

discriminators and 𝐿௔௧௧
ீ is the sum of the

attribute losses of all generators.

𝐺௖ is a generator that converts an image x to

have an attribute c when the image x and 1 are

received as inputs. 𝐺௖ tries to trick 𝐷௖ only if 1

is entered with x, and does not care if 0 is

entered(not learn).

𝐷௖ determines only about attribute c. 𝐷௖

discriminates real only for real data with

attribute c and doesn’t care about real data

without attribute c and determines fake when

received the fake image from 𝐺௖ that receives

1.

This is an example of using the least square loss

as an adversarial loss, but you can use other

losses such as Wasserstein-GP.

𝐿௔௧௧
஽ is the sum of each discriminator. Each

discriminator shares all layers with other

discriminators except the output layer.

Considering this aggregated discriminators as

one discriminator, the loss can be changed like

below.

𝐿௔௧௧
஽ = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)ൣ(𝐷(𝑥) − 1)2 ∙ 𝑎𝑡𝑡൧

+𝐸௫ᇲ,௔௧௧ᇲ~௉೒(௫ᇲ,௔௧௧ᇲ)[𝐷(𝑥ᇱ)ଶ ∙ 𝑎𝑡𝑡ᇱ]

In 𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), x is the real image, and att

is attribute binary vector. ‘ ∙ ’ means inner

product.

 In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥′, 𝑎𝑡𝑡′) , 𝑥ᇱ is generated

image and 𝑎𝑡𝑡ᇱ is a binary attribute vector

input generator to make 𝑥ᇱ.

Since each generator also shares all layers

except the input layer, 𝐿௔௧௧
ீ can be written as

the following by treating the grouped

generators as one.

𝐿௔௧௧
ீ = 𝐸௫~௉ೝ(௫)[൫𝐷൫𝐺(𝑥, 𝑎𝑡𝑡ᇱ)൯ − 1൯

ଶ
∙ 𝑎𝑡𝑡ᇱ]

𝑎𝑡𝑡ᇱ is a binary vector representing the

attribute you want to change in the real image

x. Use random binary vectors for training.

Incidentally, 𝐺௖(𝑥, 0) does not convert x to 𝑥ᇱ

that doesn’t have attribute c but simply disables

𝐺௖ . Therefore, if you want to remove attribute c

from image x, you need to add the attribute

‘not c’ while training.

Content Loss

The content loss uses the loss of cycleGAN[2].

Use l1 loss if the architecture is not grown

enough so the resolution of the image is too

low to fit on the network, but if the architecture

grows enough to fit on the network, use l1 loss

of the output that is put on the network.

Because I aimed for face attributes change, I

used sliced pre-trained FaceNet[11]. This idea

comes from Few-Shot Adversarial Learning of

Realistic Neural Talking Head Models[6].

𝐿௖௡௧ = 𝐸௫~௉ೝ,೎(௫)[||൫𝐺(𝐺(𝑥, 𝑐ᇱ), 𝑐)൯ − (𝑥)||ଵ]

𝐿௖௡௧ = 𝐸௫~௉ೝ,೎(௫)[||𝑁𝑒𝑡൫𝐺(𝐺(𝑥, 𝑐ᇱ), 𝑐)൯

− 𝑁𝑒𝑡(𝑥)||ଵ]

3.2 Architecture

Generator

I also used embedder and generator that is a

simplified architecture of Few-Shot Adversarial

Learning of Realistic Neural Talking Head

Models[6] and U-Net architecture of Pix2Pix[7]

and AdaIn module and embedder of Style-

based generator[8]. To improve the learning

speed, the generator grows in both input and

output directions, not just in one direction like

the style-based generator. Also, I used the

activation functions of DCGAN.

Discriminator

Discriminator has attribute outputs that each

output discriminates whether real image with

each attribute or generated image with each

attribute.

3. Experiments

3.1 Loss compare

I compared star GAN loss and attribute loss

with reconstruction loss. I used the same

Attribute Vector

Residual
Convolution

Residual
Convolution

Residual
Convolution

Average Pooling
Convolution

Upscaling
Convolution

Average Pooling
Convolution

To RGB

Style Vector

AdaIN

AdaIN

AdaIN

AdaIN

AdaIN

From Image

AdaIN

AdaIN

Image

Upscaling
Convolution AdaIN

Progressive
Growing

Progressive
Growing

Concatenate

Image

MLP

Residual
Convolution

Average Pooling
Convolution

Average Pooling
Convolution

From Image

Image

Progressive
Growing

Residual
Convolution

Residual
Convolution

Attribute Vector

architecture without the output layer. Star GAN

uses cross-entropy, so activation function of

Star GAN loss attribute output is sigmoid while

attribute loss with reconstruction loss uses

leaky Relu output. I used Adam optimizer with

learning rate 0.00001 and beta1 0.5 and beta2

0.999. In Star GAN, Reconstruction loss weight

is 10, and classification and adversarial loss

weight are 1 that is recommending weights by

the author of StarGAN. In attribute loss,

reconstruction loss weight is 30 and attribute

loss weight is 1. Dataset is Celeb A[10] and both

models trained 24% of Celeb A dataset only

once. I used resized image that resolution is 72

by 88, and the trained domain is 8 ('smiling',

‘not smiling’, 'black hair', ‘not black hair’, 'male',

‘not male’, 'young', ‘not young’). It takes almost

an hour on RTX2080ti.

Results

The left images are images generated by

starGAN loss and the middle images are

generated by attribute, reconstruction losses,

and the right images are the original image.

Input attribute vector was ‘not smiling’, ‘not

black hair’, ‘male’, ‘young’. The images were

randomly picked.

In this case, the input attribute vector was

‘smiling’, ‘not black hair’, ‘not male’, ‘young’

In this case, the input attribute vector was ‘not

smiling’, ‘black hair’, ‘not male’, ‘not young’

3.2 Progressive growing compare

I compared the bi-directional progressive

growing model and non-progressive growing

model. Both models trained approximately

1900sec on rtx2080ti (1901sec for the bi-

directional progressive growing model, 1942sec

for non-progressive growing model). The bi-

directional progressive growing model learned

2% of celeb A dataset in resolution 18 by 22

with 150 sec, 4% in resolution 36 by 44 with

462sec, 8% in resolution 72 by 88 with 1289sec.

The non-progressive model learned 12% of

celeb A dataset in resolution 72 by 88 with

1942sec.

Results

Left pictures are results of the non-progressive

growing model, middle pictures are a bi-

directional progressive growing model, and the

right pictures are original pictures.

References

[1] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

https://arxiv.org/abs/1711.09020

[2] Jun-Yan Zhu, Taesung Park, Phillip Isola,

Alexei A. Efros https://arxiv.org/abs/1703.10593

[3] Mehdi Mirza, Simon Osindero

https://arxiv.org/abs/1411.1784

[4] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

https://arxiv.org/abs/1611.04076

[5] Ishaan Gulrajani, Faruk Ahmed, Martin

Arjovsky, Vincent Dumoulin, Aaron Courville

https://arxiv.org/abs/1704.00028

[6] Egor Zakharov, Aliaksandra Shysheya, Egor

Burkov, Victor Lempitsky

https://arxiv.org/abs/1905.08233

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,

Alexei A. Efros https://arxiv.org/abs/1611.07004

[8] Tero Karras, Samuli Laine, Timo Aila

https://arxiv.org/abs/1812.04948

[9] Alec Radford, Luke Metz, Soumith Chintala

https://arxiv.org/abs/1511.06434

[10] Ziwei Liu Ping Luo Xiaogang Wang

Xiaoou Tang

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.ht

ml

[11] Florian Schroff, Dmitry Kalenichenko, James

Philbin https://arxiv.org/abs/1503.03832

