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Abstract 

StarGAN has shown excellent performance in 

image-to-image translation using adversarial, 

reconstruction, and classification losses in 

multi-domain image-to-image translation. The 

Style-Based Generator Architecture boosts 

generator performance through the Embedder 

and AdaIn modules. I propose here an attribute 

loss, which is like having multiple GANs, which 

is enhanced by combining StarGAN's 

conditional GAN loss (adversarial loss and 

classification loss) to improve learning speed. 

And suggest the new generator architecture, 

whose name is bi-directional progressive 

growing Style-Based U-Net generator, to 

improve learning speed. 

 

1. Introduction 

 StarGAN[1] uses reconstruction loss of 

cycleGAN[2] and adversarial loss and 

classification loss, which are losses of 

conditional GAN[3]. 

𝐿 = −𝐿ௗ௩ + 𝜆௦𝐿௦
  

𝐿௦
 = 𝐸௫,௧௧~ೝ(௫,௧௧)[−log (𝐷௦(att|x))] 

𝐿ீ = 𝐿ௗ௩ + 𝜆௦𝐿௦
  

𝐿௦


= 𝐸௫ᇲ,௧௧ᇲ~൫௫ᇲ,௧௧ᇲ൯ൣ− log൫𝐷௦(𝑎𝑡𝑡ᇱ|𝑥ᇱ)൯൧ 

These are the losses of conditional GAN. In 

𝑥, 𝑎𝑡𝑡~𝑃(𝑥, 𝑎𝑡𝑡), x means real data, and att is 

the binary vector that expresses the attribute 

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃(𝑥ᇱ, 𝑎𝑡𝑡ᇱ), 𝑥ᇱ means 

generated data and 𝑎𝑡𝑡ᇱ is the binary vector 

which is put in a generator to make 𝑥ᇱ . 

 

In the star GAN, adversarial loss trains model 

well because there are well known the metrics 

such as LSGAN[4] or WGAN-GP[5] that can 

measure the distance between real data 

distribution and generated data distribution 

even if they are far from each other. However, 

classification loss of conditional GAN which is 

using cross-entropy is hard to be learned if 

the generated conditional data distribution is 

far from real conditional data distribution 

because cross-entropy trains the model to 

reduce KL-divergence only.  
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In the above figure, the circle containing Real A 

and Real B is the distribution of the real data, 

and the circle containing Generated A and 

Generated B is the distribution of the generated 

data. Real A is real data with attribute A and 

Generated A is data generated by the generator 

with condition A. In the early stage of learning, 

the classification loss does not have any 



meaning because the distance between the 

actual data distribution and the generated data 

distribution is far, so learning is conducted only 

as an adversarial loss. 
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As the learning progresses to some extent, the 

actual data distribution and the generated data 

distribution are somewhat similar, and 

classification loss starts to have meaning when 

each conditional data distributions overlap(Real 

A-Generated A, Real B-Generated B). 

To solve the problem that classification loss 

does not have meaning at the beginning of 

learning, I made several GANs that learn only 

one attribute instead of conditional GAN losses. 

Each Generator only generates data with each 

attribute. Each Discriminator determines that it 

is true only for the real data with each attribute 

and that it is a fake for the data that the 

generator generates for each attribute.  

 

Attribute loss is the sum of each GANs loss. 

Each GANs have their adversarial loss. So if you 

use LSGAN loss or WGAN-GP loss that can train 

models even if generated data distribution and 

real data distribution, the model can be trained 

well at the beginning of learning. Also, since 

each discriminator shares all layers except the 

output layer, and each generator shares all 

layers except the input layer, the learning time 

does not increase significantly. 

I also used embedder and generator that is a 

simplified architecture of Few-Shot Adversarial 

Learning of Realistic Neural Talking Head 

Models[6] and U-Net architecture of Pix2Pix[7] 

and AdaIn module and embedder of Style-

based generator[8]. I replaced all batch 

normalization layer to AdaIn module. To 

improve the learning speed, the generator 

grows in both input and output directions, not 

just in one direction like the style-based 

generator. Also, I used the activation functions 

of DCGAN[9]. 
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2.  Improved Star GAN 

First, it is assumed that attribute information is 

matched with real data. 

 

2.1 Loss 

Overall Loss is as follows. 

𝐿 = 𝐿௧௧
  

𝐿ீ = 𝐿௧௧
ீ + 𝛾௧𝐿௧ 

 

Attribute Loss 

attribute loss is as follows. 

𝐿௧௧
 =  𝐿



௧௧



 

𝐿௧௧
ீ =  𝐿

ீ

௧௧



 

 

𝐿
 = 𝐸௫,~ೝ(௫,)[(𝐷(𝑥) − 1)ଶ]

+ 𝐸௫ᇲ~ಸ(௫ᇲ,ଵ)[𝐷(𝑥ᇱ)ଶ] 

𝐿
ீ = 𝐸௫~ೝ(௫)[(𝐷൫𝐺(𝑥, 1)൯ − 1)ଶ] 

c means one specific attribute among several 

attributes. 𝐿
  and 𝐿

ீ  are the losses of one 

discriminator and one generator that 

discriminate against a particular attribute c. 𝐿௧௧
  

is the sum of the attribute losses of all 

discriminators and 𝐿௧௧
ீ  is the sum of the 

attribute losses of all generators. 

𝐺 is a generator that converts an image x to 

have an attribute c when the image x and 1 are 

received as inputs. 𝐺 tries to trick 𝐷 only if 1 

is entered with x, and does not care if 0 is 

entered(not learn). 

𝐷  determines only about attribute c. 𝐷 

discriminates real only for real data with 

attribute c and doesn’t care about real data 

without attribute c and determines fake when 

received the fake image from 𝐺 that receives 

1. 

This is an example of using the least square loss 

as an adversarial loss, but you can use other 

losses such as Wasserstein-GP. 

𝐿௧௧
  is the sum of each discriminator. Each 

discriminator shares all layers with other 

discriminators except the output layer. 

Considering this aggregated discriminators as 

one discriminator, the loss can be changed like 

below. 

𝐿௧௧
 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)ൣ(𝐷(𝑥) − 1)2 ∙ 𝑎𝑡𝑡൧ 

+𝐸௫ᇲ,௧௧ᇲ~(௫ᇲ,௧௧ᇲ)[𝐷(𝑥ᇱ)ଶ ∙ 𝑎𝑡𝑡ᇱ] 

In 𝑥, 𝑎𝑡𝑡~𝑃(𝑥, 𝑎𝑡𝑡), x is the real image, and att 

is attribute binary vector. ‘ ∙ ’ means inner 

product. 

 In  𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥′, 𝑎𝑡𝑡′) , 𝑥ᇱ  is generated 

image and 𝑎𝑡𝑡ᇱ is a binary attribute vector 

input generator to make 𝑥ᇱ. 

Since each generator also shares all layers 

except the input layer, 𝐿௧௧
ீ  can be written as 

the following by treating the grouped 

generators as one. 

𝐿௧௧
ீ = 𝐸௫~ೝ(௫)[൫𝐷൫𝐺(𝑥, 𝑎𝑡𝑡ᇱ)൯ − 1൯

ଶ
∙ 𝑎𝑡𝑡ᇱ] 

𝑎𝑡𝑡ᇱ  is a binary vector representing the 

attribute you want to change in the real image 

x. Use random binary vectors for training.  

Incidentally, 𝐺(𝑥, 0) does not convert x to 𝑥ᇱ 



that doesn’t have attribute c but simply disables 

𝐺 . Therefore, if you want to remove attribute c 

from image x, you need to add the attribute 

‘not c’ while training. 

 

Content Loss 

The content loss uses the loss of cycleGAN[2]. 

Use l1 loss if the architecture is not grown 

enough so the resolution of the image is too 

low to fit on the network, but if the architecture 

grows enough to fit on the network, use l1 loss 

of the output that is put on the network. 

Because I aimed for face attributes change, I 

used sliced pre-trained FaceNet[11]. This idea 

comes from Few-Shot Adversarial Learning of 

Realistic Neural Talking Head Models[6]. 

𝐿௧ = 𝐸௫~ೝ,(௫)[||൫𝐺(𝐺(𝑥,  𝑐ᇱ), 𝑐)൯ − (𝑥)||ଵ] 

𝐿௧ = 𝐸௫~ೝ,(௫)[||𝑁𝑒𝑡൫𝐺(𝐺(𝑥,  𝑐ᇱ), 𝑐)൯

− 𝑁𝑒𝑡(𝑥)||ଵ] 

 

3.2 Architecture 

Generator 

 

I also used embedder and generator that is a 

simplified architecture of Few-Shot Adversarial 

Learning of Realistic Neural Talking Head 

Models[6] and U-Net architecture of Pix2Pix[7] 

and AdaIn module and embedder of Style-

based generator[8]. To improve the learning 

speed, the generator grows in both input and 

output directions, not just in one direction like 

the style-based generator. Also, I used the 

activation functions of DCGAN. 

 

Discriminator 

 

Discriminator has attribute outputs that each 

output discriminates whether real image with 

each attribute or generated image with each 

attribute. 

 

3. Experiments 

 

3.1 Loss compare 

I compared star GAN loss and attribute loss 

with reconstruction loss. I used the same 
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architecture without the output layer. Star GAN 

uses cross-entropy, so activation function of 

Star GAN loss attribute output is sigmoid while 

attribute loss with reconstruction loss uses 

leaky Relu output. I used Adam optimizer with 

learning rate 0.00001 and beta1 0.5 and beta2 

0.999.  In Star GAN, Reconstruction loss weight 

is 10, and classification and adversarial loss 

weight are 1 that is recommending weights by 

the author of StarGAN. In attribute loss, 

reconstruction loss weight is 30 and attribute 

loss weight is 1. Dataset is Celeb A[10] and both 

models trained 24% of Celeb A dataset only 

once. I used resized image that resolution is 72 

by 88, and the trained domain is 8 ('smiling', 

‘not smiling’, 'black hair', ‘not black hair’, 'male', 

‘not male’, 'young', ‘not young’). It takes almost 

an hour on RTX2080ti. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

 

The left images are images generated by 

starGAN loss and the middle images are 

generated by attribute, reconstruction losses, 

and the right images are the original image. 

Input attribute vector was ‘not smiling’, ‘not 

black hair’, ‘male’, ‘young’. The images were 

randomly picked. 



 

In this case, the input attribute vector was 

‘smiling’, ‘not black hair’, ‘not male’, ‘young’ 

 

 

In this case, the input attribute vector was ‘not 

smiling’, ‘black hair’, ‘not male’, ‘not young’ 

 

3.2 Progressive growing compare 

I compared the bi-directional progressive 

growing model and non-progressive growing 

model. Both models trained approximately 

1900sec on rtx2080ti (1901sec for the bi-

directional progressive growing model, 1942sec 

for non-progressive growing model). The bi-

directional progressive growing model learned 

2% of celeb A dataset in resolution 18 by 22 

with 150 sec, 4% in resolution 36 by 44 with 

462sec, 8% in resolution 72 by 88 with 1289sec. 

The non-progressive model learned 12% of 

celeb A dataset in resolution 72 by 88 with 

1942sec. 

 

Results 

 

Left pictures are results of the non-progressive 

growing model, middle pictures are a bi-

directional progressive growing model, and the 

right pictures are original pictures. 
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