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Abstract. This article presents a novel Hamiltonian architecture based on vertex types and empires for
demonstrating the emergence of aperiodic order (quasicrystal growth) in one dimension by a suitable
prescription for breaking translation symmetry. At the outset, the paper presents different algorithmic,
geometrical, and algebraic methods of constructing empires of vertex configurations of a given quasi-
lattice. These empires have non-local scope and form the building blocks of the new lattice model. This
model is tested via Monte Carlo simulations beginning with randomly arranged N tiles. The simulations
clearly establish the Fibonacci configuration, which is a one dimensional quasicrystal of length N , as the
final relaxed state of the system. The Hamiltonian is promoted to a matrix operator form by performing
dyadic tensor products of pairs of interacting empire vectors followed by a summation over all permissible
configurations. A spectral analysis of the Hamiltonian matrix is performed and a theoretical method is
presented to find the exact solution of the attractor configuration that is given by the Fibonacci chain as
predicted by the simulations. Finally, a precise theoretical explanation is provided which shows that the
Fibonacci chain is the most probable ground state. The proposed Hamiltonian is a one dimensional model
of quasicrystal growth.

PACS. 61.44.Br Quasicrystals – 75.10.Hk/Jm Classical/Quantized spin models – 05.50.+q Lattice theory

1 Introduction

The simplest geometrical construct for generating a one
dimensional quasicrystal, such as the Fibonacci chain, is
by the cut and project procedure from a strip embedded
in the two dimensional Z2 lattice and with a slope pro-

portional to the Galois conjugate − 1
φ , where φ = 1+

√
5

2 is

the golden mean [1, 2]. The method can be replicated to
generate higher dimensional quasi-lattices. However, this
purely geometrical construction does not lend a physical
picture of the processes that may be involved in the gen-
eration of a simple aperiodic lattice. Specifically, it is of
immense importance to experimentalists and material sci-
entists to understand the physics of quasicrystal growth [3,
4]. Besides, a physical picture of the emergence of trans-
lation asymmetry in crystals may be of general interest to
scientists striving to unravel the laws of nature through
the study of symmetries and conservation principles [5, 6,
7, 8].

a amriksen@thapar.edu
b perelmanc@hotmail.com

1.1 Known models of quasicrystal growth

In 2008, writing under the Solid-state physics section of
Nature, Paul J. Steinhardt posed a fundamental question:
How does your quasicrystal grow? [9]. Broadly speaking,
theoretical approaches to understand the growth of qua-
sicrystals have been undertaken along two distinct modes
of enquiry, viz., rule-based methods [10, 11, 12, 13, 14, 15]
and variants of lattice models using molecular dynamics
simulations [16, 17, 18, 19]. The lattice models typically
have spinorial generators defined by the Pauli spin matri-
ces [20] that form the bases of the special unitary group
SU(2) [21]. The connection between the symmetry of the
aforementioned group and the absence of translation sym-
metry of quasicrystals is not obvious. This presents us with
an opportunity to devise an alternative new lattice model
for which the connection between the higher dimensional
translation symmetry of the generating mother lattice (2D
in this case) and the emergent asymmetry of the quasicrys-
tal (aperiodic order) is clear. The present article attempts
to address this point. Capturing this relationship with a
higher dimensional space in a realistic model of quasicrys-
tal is important because it allows us to study the dynam-
ics of low frequency phason modes [22]. Research on un-
derstanding the fundamental structural (atomic) arrange-
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ments in aperiodic lattices is essential because phason de-
grees of freedom in quasicrystals enable the modeling of
complex dynamical processes [23, 24, 25, 26, 27, 28, 29].
Specifically, they allow us to study the dynamics of peri-
odic and quasiperiodic structures with anharmonic inter-
actions both by analytical calculations and by molecular
dynamics simulations [30, 31]. Historically, lattice models
like the Ising model and its variants have been extensively
used to investigate various aspects of phason dynamics
and atomic structures pertaining to quasicrystals [32, 33,
34, 35]. With the development of new lattice models, in-
vestigation of phason modes of aperiodic systems driven
by quasi-periodic potentials [36] can be expanded further.
The mechanism by which crystal symmetry is broken man-
ifests in many forms. In a very recent paper, a group of
researchers have studied and demonstrated the manner in
which quasicrystalline structures can emerge by sponta-
neous breaking of discrete time translation symmetry of
a time-periodic Hamiltonian of a many body system [37].
Signatures of Fibonacci order have also been reported by
considering asymmetric Van der Pol-Duffing oscillators in
an appropriate parameter space [38].

Many authors have primarily focussed on studying the
Ising model with spin interactions prescribed by the Fi-
bonacci quasicrystal [39, 40] and have analyzed spectral
behavior of Fibonacci oscillators by considering Ising like
models with atoms spaced according to the Fibonacci chain
[41]. Additionally, several authors have studied electronic
structures and energy spectrum of Fibonacci quasicrys-
tals by considering tight binding Hamiltonian models with
hopping constants prescribed by a finite Fibonacci word
(Fibonacci approximant) [43, 45, 44, 42, 46]. There is an
apparent dearth of lattice models whose ground state is
the Fibonacci configuration. Such models may be a better
candidate for experimental explorations. Unlike the afore-
mentioned investigations, the current work addresses this
gap and presents a lattice Hamiltonian whose ground state
is the Fibonacci state with the highest probability and
therefore is a physical model for explaining the manner in
which quasicrystals grow purely based on energetics. This
will open new research avenues for studying properties of
quasicrystals using techniques cited above in this section
based on the Hamiltonian model presented in this article.

1.2 Scope of this work

This research paper presents a new Hamiltonian archi-
tecture using vertex configurations (VCs) and their re-
spective empires to understand the nature of atomic re-
arrangements compatible with the emergence and growth
of quasicrystals in one dimension. This formulation has
the advantage of encoding non-local interactions directly
through the non-local scope of empires of the VCs, i.e. lo-
cality is neither assumed a priori for any interaction (like
in the case of the nearest neighbor Ising model) nor is it
erroneously concocted to serve as a precursor to any emer-
gent non-locality. The proposed Hamiltonian architecture
is a first principles approach belonging to a class of inte-
grable lattice models and at the same time, is formulated

in terms of matrix operators that have a clear geometric
interpretation. The simulations of the proposed Hamilto-
nian model demonstrate the manner in which a random
assortment of tiles, self interact and rearrange to form a
one dimensional Fibonacci quasicrystal. A detailed spec-
tral analysis of the Hamiltonian operator reveals that the
Fibonacci state is the most likely ground state of the sys-
tem. This aperiodic Fibonacci ground state can be gen-
erated entirely by the interaction of a collection of sub-
states (empires) of different chain configurations undergo-
ing energetic relaxation. This paper presents a new phys-
ical model of quasicrystal growth in one dimension.

1.3 Organization of this paper

Section 2 introduces the definition of Fibonacci words in
a recursive manner, and presents three different methods
of constructing empires for a given VC in a Fibonacci
chain. While the geometric method is primarily useful
for implementing the Monte Carlo simulations discussed
in the latter section, the algebraic expression of the em-
pires of a Fibonacci chain will be key to understand the
manner in which the translation symmetry is broken as
discussed later. Section 3 discusses the implementation
of the Monte Carlo simulation of the new Hamiltonian
model and presents results of these simulations. Section
4 presents the operator form of the Hamiltonian and dis-
cusses the construction of the matrix algebra. In this sec-
tion, spectral analysis of the Hamiltonian operator is pre-
sented and these analytical results are compared with the
results of the simulations. A direct physical explanation
is provided as to why the Fibonacci chain is the most
likely ground state of the system as is evident from the
simulations. In sections 5 and 6, a summary of the main
contributions of this paper is presented and future plans
to extend the work to two dimensional quasicrystals are
outlined.

At the very outset, it must be carefully noted that
unless otherwise specified, by the phrase Fibonacci chain,
we refer to the finite Fibonacci approximant in this arti-
cle. This terminology is interchangeably used with equiva-
lent phrases such as Fibonacci configuration and Fibonacci
state.

2 The Fibonacci lattice

A Fibonacci sequence is constructed from the Fibonacci
numbers by using the following recurrence relation,

Fn+1 = Fn + Fn−1, (1)

where F0 = 0, F1 = 1. An interesting property of this

sequence is the golden ratio scaling, limn→∞
Fn+1

Fn
= φ

where the rapid convergence to φ (the golden ratio) can
be verified in a simple manner [47]. A Fibonacci word is
constructed using the following recurrence relation,

Sn = Sn−1Sn−2, n ≥ 2, (2)
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with S0 = 0, S1 = 01. Thus a Fibonacci word of length n is
a finite sequence of 0 and 1 constructed as above [48, 49].
The relationship between a finite Fibonacci word and the
Fibonacci sequence stems from the fact that the length of
Sn is Fn+2, the (n+ 2)th Fibonacci number. A Fibonacci
lattice or Fibonacci quasicrystal of size n is a lattice with
grid spacing encoded by the Fibonacci word Sn where 0→
φ and 1 → 1. A standard representation of such a quasi
lattice is given by replacing 0 by L and 1 by S where the
symbols L and S are regarded as tiles. Eg., a section of
a Fibonacci quasicrystal in the L, S representation looks
like ...LSLLSLSLLSLLS... . Thus, a Fibonacci lattice is
a quintessential example of a one dimensional quasicrystal.

2.1 Vertex configurations and empires

The model demonstrated in this manuscript is designed
based on VCs and empires. These are standard canonical
descriptors of quasicrystals [50]. For the 1D Fibonacci qua-
sicrystal, there are three VCs, viz., {L,L}, {L, S}, {S,L}.
Note that the tile S cannot appear in succession in a Fi-
bonacci lattice and hence {S, S} is not a legal VC.

2.1.1 Notations and definitions

Empire: Corresponding to each vertex type (vertex con-
figuration) at each coordinate, there is a set of forced tiles
that constitute the respective empire [51, 52, 53, 54, 55,
56]. The precise formulation of an empire for a given VC
will become clear through the detailed discussions of this
section.

Generally speaking, there are three ways of construct-
ing empires of a VC in a quasicrystal. For the one di-
mensional case, a simple substitution rule may be used to
enlist the empires for any vertex configuration [2]. Alterna-
tively, a geometric method using an irrational projection
from a two dimensional lattice may be used to generate
the empires of a given VC [57, 58]. Finally, a new set of
algebraic formulae for the empires of the one dimensional
Fibonacci quasicrystal is developed for the first time to
our knowledge and presented here. All these methods are
discussed in an elaborate manner in the context of the one
dimensional Fibonacci quasicrystal.

In what follows, the mathematical notation and defini-
tions of the related terms are given below.

V : set of VCs (vertex configurations) = {{L,L}, {L, S}, {S,L}}
X : set of coordinates denoted by subscript numerals, i.e. (x0, x1, x2, ...) ≡ (0, 1, 2...)

αj : the VC α located at coordinate j (3)

Eαj ,l =


+1, if tile located at l is S

−1, if tile located at l is L

0, otherwise (i.e. unforced tile).

τi : binary representation of the tiling space with entries 1 for S and −1 for L.

Ω : domain of the lattice containing the set {αi}i=2:N where N is the length of the lattice.

For the sake of notational brevity, a tile referenced by
the coordinate l means that the tile is located between the
lattice coordinates l and l + 1 for a right sided entry and
between the coordinates−l and−l−1 for a left sided entry.
For example, consider the chain expressed by (5). The tile
referenced by l = 1 is S located between l = 1 and l+ 1 =
2.1 A VC referenced by coordinate j refers to the one
composed of the tiles on either side of j. Finally, the VC-
empire parameterization encompasses the local and non-
local field of influence of a given VC through its domain
of influence by the forced tiles. Concisely, this empire field
of VC α situated at j is denoted by the empire vector

Eαj
=
(
...EαLj,−2E

αL
j,−1E

αL
j,0E

αR
j,0 E

αR
j,1 E

αR
j,2 ...

)
,

1 Left and right sided entries in an empire vector are with
reference to the coordinate located at the center of the VC,
this is analogous to a radial convention with the center of the
VC as the origin.

where superscripts L and R refer to left and right sided
entries respectively. In the following three sections, we dis-
cuss three different methods of finding the empires of VCs.
The substitution method and the geometric method of
constructing empires have been explored by others in the
past but the algebraic prescriptions of the empires are new
results presented here.

2.1.2 Substitution algorithm for constructing empires

This algorithm borrows extensively from detailed discus-
sions on substitution rules for generating aperiodic Fi-
bonacci words in ch. 4 of the text by Baake and Grimm
[2]. This method is applicable for the one dimensional Fi-
bonacci chain but may be extended as a principle to a
network of Fibonacci chains. The identification of the em-
pire tiles in a real Fibonacci chain, denoted by uppercase



4 Amrik Sen, Carlos Castro Perelman: A new Hamiltonian model of the Fibonacci quasicrystal ...

S and L tiles, is undertaken by referencing from a virtual
Fibonacci chain, denoted by lowercase s and l tiles. The
virtual chain (hitherto referred to as fibonacci) begins
with the tile l and is constructed by using the substitution

rule l→ ls, s→ l iteratively. Thus the first few iterations
give lsllslsl because l → ls → lsl → lslls → lsllslsl. The
VCs along with their respective empires can be expressed
algorithmically as follows.

{L,L}s+ fibonacci 

{
s→ SL

l→ (LS|SL)L

{L, S}L+ s+ fibonacci 

{
s→ (LS|SL)L

l→ (LSLS|SLSL|SLLS)L

{S,L}s+ fibonacci 

{
s→ (LS|SL)L

l→ (LSLS|SLSL|SLLS)L
(4)

Here, each line of the algorithm must be read as follows.
Eg., the first line means: “the empire of a given {L,L} VC
in a real Fibonacci chain is constructed by the substitu-
tion {L,L} → LL, and s→ SL, l→ (LS|SL)L performed
on the virtual fibonacci chain s + fibonacci where the
forced tiles are expressed without parenthesis, the opera-
tion | means conditional OR, and  stands for the above
mentioned substitution.”Above, only a right sided empire

identification procedure has been shown but extension to
the left of the VC is straightforward by symmetry consid-
eration. This is made clear in the example presented in
the following section.

Illustration of the algorithm: Consider a given section
of a 1D Fibonacci chain (labelled as the real chain):

...S
↑
L
↑
SLL
↑
S
↑
L
↑
LSL
↑
SLL
↑
S
↑ .
L
↑ .
L
.
S
−3
L
↑−2

S
↑−1

L
↑ 0

L
↑ 1
S
↑ 2
L
↑ 3
S
.
L
.
L
↑ .
S
↑
L
↑
LSL
↑
SLL
↑
S
↑
L
↑
LSL
↑
S
↑
... (5)

where the bold font tiles L
0
L constitute the VC of interest

located at the coordinate x0 ≡ 0 in this example. The un-
derset numerals denote coordinate locations (recall that
the tiles are indexed by the coordinates to their immedi-
ate left). The significance of the underset uparrows ↑ is ex-
plained after expression (7). The 1D Fibonacci chain in (5)
is represented in tiling space. The equivalent binary rep-
resentation of the chain is a sequence {τi} with entries ±1
depending on the corresponding entries in the tiling space,
i.e., −1 for L and 1 for S. Thus, we have τ−3 = 1, τ−2 =
−1, τ−1 = 1, τ0 = −1, τ1 = −1, τ2 = 1, τ3 = −1, ... etc.

The first step involves the construction of the virtual
Fibonacci chain that serves as a guide to identify the

forced tiles in the real chain and thereby the correspond-
ing empire. The algorithm prescribes the form of the vir-
tual chain to be s + fibonacci where fibonacci begins
with the tile l and is constructed by using the substitution
l → ls, s → l iteratively as mentioned earlier. Thus we
have the following virtual chain,

s+ lsllslsl... = slsllslsl... .

The substitution rule for {L,L} is applied to the above
virtual chain, i.e. s → SL, l → ()()L where each () corre-
sponds to one unforced tile. Further, the unforced tiles are
labelled by 0s for convenience. This entails the following
empire form.

...L
↑
()()L

↑
S
↑
L
↑
()()L

↑
S
↑
L
↑
()()L

↑
()()L

↑
S
↑
L
↑
()()L

↑
S
↑

L
↑︸︷︷︸

E1L
0,0

L
↑︸︷︷︸

E1R
0,0

S
↑
L
↑
()()L

↑
S
↑
L
↑
()()L

↑
()()L

↑
S
↑
L
↑
()()L

↑
S
↑
L
↑
()()L

↑
... . (6)

E1
0 = {E1

0,l}l∈X,X∈Ω = (... E1L
0,−5 E

1L
0,−4 E

1L
0,−3 E

1L
0,−2 E

1
0,−1 E

1L
0,0 E

1R
0,0 E

1R
0,1 E

1R
0,2 E

1R
0,3 E

1R
0,4 E

1R
0,5 ...)

= (... 0 0 − 1 1 − 1 0 0 − 1 1 −1︸︷︷︸
E1L

0,0

−1︸︷︷︸
E1R

0,0

1 − 1 0 0 − 1 1 − 1 0 0 ...) (7)
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The tiles bearing the underset uparrows ↑ are the forced
tiles of the VC LL. The corresponding tiles in the real
chain (5) are consequently indexed by the uparrows ↑ and
constitute the forced tiles of the empire of the VC LL.
The coordinate locations for the chain in (6) are implied
as in (5) and are not shown again. In terms of the vectorial
notation, the empire for {L,L} located at j = 0 is given
by eq. (7) above.

2.1.3 Geometric method of constructing empires

The cut and project method of constructing the empire of
a given vertex configuration is illustrated in this section.
This method can be applied for any chain (not necessarily
a Fibonacci chain). It may be recalled that a 1D Fibonacci
chain can be constructed by projecting a two-dimensional
cylindrical section of the Z2 lattice onto a 1D real line by
using an irrational angle [1, 2]. Hence, it is reasonable to
search for the forced tiles that constitute the empire of
a given vertex type within this band of the original Z2

lattice. For convenience of calculation, we consider a ro-
tated frame of reference of the original Z2 lattice (a.k.a.
mother lattice) such that the horizontal x-axis of the new
2D plane coincides with the projected quasicrystal space
of the Fibonacci chain (refer Figure 1). In this frame, the
horizontal and vertical arms of the Z2 lattice appear at
an irrational angle with respect to the x-axis as is further
illustrated in the graphic depicted in Figure 1. The lattice
arm joining points (x0, y0) and (x1, y1) makes an angle

θ = tan−1 1
φ with the horizontal axis. Here φ = 1+

√
5

2 .

Moreover, the lattice arms are each of unit length and or-
thogonal to each other. The arm joining the points (x2, y2)
and (x1, y1) also makes the same angle θ with the vertical.

Given the state of a two-alphabet chain (Fibonacci or
otherwise) in 1D, the first step involves reconstructing the
corresponding section of the Z2 lattice, i.e., the (x, y) co-
ordinates in the original 2D space. Following Figure 1 and
simple trigonometry, we obtain the following relations,

yi = yi−1 − τi sin(Θiπ/2 + θ), Θi =
1 + τi

2
,

xi = xi−1 − κiτi, κi =

{
1, if τi = −1

− 1
φ , if τi = 1.

(8)

The starting point of the chain is located at the origin,
i.e., (x0, y0) = (0, 0).

Next, the calculation of the empire is undertaken by
identifying the bounding (x, y) coordinates of the VC in
question for which we intend to find the empire. The em-
pire window is constructed in the 2D plane by finding the
minimum and the maximum of the y-coordinates associ-
ated with the VC. This is illustrated graphically in Figure
1. The tiles with both bounding (x, y) coordinates within
the empire window constitute the empire of the given VC.
It is important to emphasize that this method of finding
the empires is not restricted to a Fibonacci chain alone
but is more general and works for any 2-alphabet chain.

Fig. 1: (Not to scale) Proof of concept of the cut and project
method to find the empire of a given vertex configuration,
{L, S}, bounded by the lattice coordinates (x3, y3), (x4, y4) and
(x5, y5). The empire window depicted by the horizontal dashed
lines is bounded by the maximum and minimum y-coordinates
of the lattice points defining the VC, shown here by solid dou-
ble lines (oblique) bounded by the horizontal dashed lines. Tiles
that have both their bounding coordinates within this empire
window constitute the empire of the given VC. Thus, for the
string shown here, the section of the empire corresponding to
the {L, S} VC is: ...L()()LSL()...

2.1.4 Algebraic formulae of empires

This section presents new analytic expressions of the em-
pires for a one dimensional (Fibonacci) quasicrystal and
thereby prescribes the exact form by which the translation
symmetry is absent in the quasicrystal. It must not be sur-
prising that the expressions are related to the Fibonacci
word. The empires obtained by using these formulae are
validated against the corresponding empires constructed
by two other methods explained above. In the following
paragraphs, we illustrate the algebraic forms of the em-
pires for each VC of the chain.

Symmetric VC, {L,L}: We provide a direct analytical
expression for every element of the empire vector Eα

j . For

example, the (l− j − 1)th entry of the empire vector E1R
j

(for VC {L,L}) is given by

E1R
j,l ≡ E1R

n = fn+1

(
fn + fn−1

)
− fn,

n = l − j > 0,

E1R
0,0 = E1R

0 = −1 (by construction), (9)

where fn is the nth bit of an infinite Fibonacci word2

fn = 2 + un − un+1, un = bnφc,

φ is the golden ratio 1+
√
5

2 . The superscript R denotes
empire entries to the right of the VC located at j includ-
ing the right tile of the concerned VC. Also note that
f0 = 1, i.e. the 0th bit of a Fibonacci word is taken as 1 by

2 The first few entries of an infinite Fibonacci word are
1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1... after prepending by 1 that
is now taken as the 0th bit of an infinite Fibonacci word.
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prepending 1 to the Fibonacci word defined by the recur-
sion (2), f1 = 0, f2 = 1, etc.. bc is the standard floor op-
erator that outputs the integer part of the argument. For
consistency, entries from eq. (9) are compared with that
of entries from eq. (7). E1R

0,0 = −1, E1R
0,1 = 1(0 + 1)− 0 =

1, E1R
0,2 = 0(1 + 0) − 1 = −1, E1R

0,3 = 0(0 + 1) − 0 =

0, E1R
0,4 = 1(0 + 0)− 0 = 0, E1R

0,5 = 0(1 + 0)− 1 = −1.
Owing to the symmetry of the {L,L} VC, using f−n =

fn in conjunction with the formula given by eq. (9), gives
the entries of the empire vector to the left of LL. For a
symmetric VC like {L,L}, the following is trivially true:
E1L
−n = E1R

n . Here L corresponds to left and the convention
for referencing the tiles is the following:

– tiles to the right of the VC are referenced by the coor-
dinate xl to their immediate left, and

– tiles to the left of the VC are referenced by the coor-
dinate xl to their immediate right,

i.e. the convention follows a radial indexing scheme with
the center of the VC located at xj (x0 in the above exam-
ple) as the origin. Additionally, E1R

0,0 = E1L
0,0, each referenc-

ing the right and left tiles that respectively constitute the
VC. Finally, E1

j = E1L
j + E1R

j constitutes the full empire
vector. Here

E1L
j=0 = (... E1L

0,−5 E
1L
0,−4 E

1L
0,−3 E

1L
0,−2 E

1
0,−1 E

1L
0,0 0 0 0 0 0 0...)

and likewise for E1R
j=0. For brevity, the superscripts L and

R are often omitted and the sign of the subscript n = l−j
is sufficient to identify the left and right tiles.

Asymmetric VC, {L, S}, {S,L}: Similarly, exact formu-
lations of the asymmetric VCs are given below for the first
time to our knowledge.

E3R
n =

{
−1; n = 0

3 + un − un+2; n ≥ 1,

E2R
n =


1; n = 0

−1; n = 1

E3R
n−1; n > 1.

(10)

By symmetry, the left sided entries are

E3L
−n = E2R

n , n ≥ 0

E2L
−n = E3R

n , n ≥ 0. (11)

Clearly, the non-trivial empire tiles obey the following re-
lations E3

−n = E2
n, E

2
−n = E3

n, n > 0. Moreover, Eα
j =

EαL
j + EαR

j constitutes the full empire vector for the VCs

α = 2, 3. The definitions of un, EαL
j and EαR

j are as de-

scribed earlier. Note that for an asymmetric VC, the 0th

mode empire tiles EαL
0,0 6= EαR

0,0 are defined as above.3 This
completes the parametrization of the 1D Fibonacci chain
in terms of the VCs and the corresponding empires.

3 The trivial empire tiles correspond to the tiles of the VC
only.
2.2 Random flips

The Monte Carlo simulations of section 3 below employ
random flips to span the different chain configurations. A
random flip can be categorized as follows:

1. symmetric flip: For the 1D case, this refers to the
flips of the type {L, S} ↔ {S,L}. A flip of this kind
preserves the local length at the location of the flip.

2. asymmetric flip: This refers to the flips of the type
{L,L} ↔ {S,L} or {S,L} ↔ {L,L}, etc. A flip of this
kind does not preserve the length of the quasicrystal
section locally and results in a defect and must be ac-
companied by a simultaneous flip (possibly near the
original flip) of a similar kind so that the total length
of the section within the two flips is conserved.

3 Hamiltonian

The canonical Hamiltonian HΩ for the 1D Fibonacci sys-
tem is constructed as follows:

HΩ = − 1

N

∑
k,i∈X

Bk,iEαk,i︸ ︷︷ ︸
interaction free terms

− 1

N

∑
j,i∈X

Jj,i〈Eαj |Eαi〉︸ ︷︷ ︸
interaction terms

≡ − 1

N
Bk,iEαk,i −

1

N
Jj,i〈Eαj |Eαi〉︸ ︷︷ ︸

Einstein summation notation

, (12)

where Bk,i and Jj,i are the free parameters of the
model with units of energy and Eαj

≡ Eα
j is a dimen-

sionless vector of 0s and ±1s denoting the empire of the
VC α located at j. Here, 〈·|·〉 denotes an inner product op-
eration: 〈A|B〉 :=

∑
iAiBi, where A,B are vectors with

entries Ai and Bi respectively. The locations of the forced
tiles are referenced by the elements ±1 in the vector Eαj

depending on whether the forced tile in question is S or L.
The Hamiltonian in eq. (12) has two terms, viz., the inter-

action free term which expresses the energy of a given VC
(in conjunction with its empire field) in an external field or
in vacuum, and the interaction term that encompasses the
mutual energy of interaction of two distinct VCs through
the interaction of their respective empires. It is important
to note that by construction, the empire interactions are
non-local because the values of m and n can be far apart.
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3.1 Metropolis-Hastings simulation of the Hamiltonian

The algorithm first chooses selection probabilities ps(µ, ν)
which represent the probability that state ν is selected
by the algorithm out of all states given that the previous
state is µ. It then uses acceptance probabilities pa(µ, ν)
that ensure the detailed balance condition. This is a class
of molecular dynamics simulation that is generally used
to study lattice models [18, 30].

3.1.1 Simulation steps

1. A lattice site is randomly picked from the Fibonacci
grid using selection probability ps(µ, ν) and the con-
tribution to the total energy involving the VC at this
site is calculated.

2. The VC is flipped and the new contribution to the
energy is calculated. The flip may be LL→ LS,LS →
SL, SL→ LL, etc.

3. If the new energy is less, then the flipped value is re-
tained.

4. If the new energy is more, then the flipped value is
retained with probability e−β(Hν−Hµ). Here β = 1

kBT

where kB is the Boltzmann’s constant and T is the
temperature. For the simulations reported here, T is
suitably set to 0.6K to allow for an orderly final con-
figuration of the chain.

5. The process is repeated until a global minimum of the
total energy is attained.

The interaction mechanism in this case involves the em-
pire of the flipped VC with the empires of all other (non
flipped) VCs. This scenario is reminiscent of a spontaneous
(empire) field interaction due to an impulse perturbation
(single flip) with the background empire field (owing to
the existing non-flipped VCs and their empires). This al-
gorithm can be extended to more than two simultaneous
flips. The interaction mechanism in this case involves the
empire of each of the flipped VCs with the background
empire field (due to the non-flipped VCs) in conjunction
with an interfering competition between the flipped VCs
and their empires. In this case, either the ripples created
by both the flips get annihilated by the background field
or the ripples caused by one of the flips annihilate those
of the other field. In any case, the simplest strategy as il-
lustrated by the algorithm mentioned above is considered
here.

3.2 Results of simulations of one dimensional
quasicrystal growth

Several simulation runs with chains of different lengths (N
= 5,8,13,21,34,55,89,144, and 233) were performed start-
ing with different initial states of the chain. In each case,
the attractor, that minimized the total Hamiltonian, was
found to be the Fibonacci chain. In Figures 2 and 3, an
example of one such simulation with N = 34 is presented.

A selected number of movies of the simulations can be
found in the first author’s youtube channel.4

3.3 Distribution of the attractor and invariance of the
Hamiltonian to initial conditions

It is important to note that by establishing the Fibonacci
chain (a.k.a. the Fibonacci state) as the attractor of the
Hamiltonian (12), as shown by the simulations, we are es-
sentially interested in the relative distribution of the L
and S tiles. In the next section, we invoke the ansatz that
the distribution of the sign of the entries of the most rele-
vant eigenvector of the Hamiltonian matrix prescribes the
attractor configuration. The applicability of this ansatz is
found to be consistent by treating the Hamiltonian as a
quantum mechanical system and verifying one of the main
axioms of probability as discussed in the subsequent sec-
tion. It must be noted that the choice of labels for the
ternary system used in the definition of the empires in
section 2.1 is entirely arbitrary and a matter of computa-
tional convenience. It must be emphasized that the results
of the simulations are invariant to the initial state of the
chain as is shown by the above cited movies of the simu-
lations and Figures 2 and 3.

4 Empire dyads, spectral analysis, and the
Fibonacci state

In order to formulate an algebraic representation of the
Fibonacci system and the associated empire dyads, it is
essential to promote the Hamiltonian defined by eq. 12 to
a matrix operator form. Moreover, since the external field
Bαk,i, plays no influence on the final attractor configura-
tion, the interaction free term will be omitted from con-
sideration in the theoretical analysis of the Hamiltonian
presented in this section. This is a matter of convenience
without any loss of generality. More importantly, the ab-
sence of the external field B ≡ 0 will allow us to invoke
postulates of quantum mechanics to analyze the classical
lattice model (12). This is similar in spirit to the direct
correspondence between the quantum Ising model and the
classical Ising model in the absence of external magnetic
field [20, 59, 60].

4.1 Construction of empire dyads and the Hamiltonian
matrix operator

Consider any chain (not necessarily Fibonacci) of fixed
length N (i.e. N lattice sites) where N is moderately large.
The matrix operator, corresponding to a pair of interact-
ing empire vectors5 of VCs α and β located at positions

4 https://www.youtube.com/watch?v=MirQPchbo7Q

https://www.youtube.com/watch?v=1n-je95jOlk

https://www.youtube.com/watch?v=_KsToOQs5hc
5 Note that the geometric method of constructing empires

enables us to find the empire of a VC located at a certain
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Fig. 2: The set of plots corresponds to the initial state of the chain (bottom left panel) at the start of the simulation where
the tiles L and S are color coded as light and dark respectively. The VC pairs being flipped are shown by the black colored
stem pairs displayed in the top panels. The number of defects in the current state of the chain corresponds to the number of
forbidden elementary configurations (LLL and SS) in a Fibonacci chain. The coordinates of the 2D lattice (mother lattice,
ref. Figure 1), from which the current state of the chain may be constructed, are shown in the bottom right panel. The total
Hamiltonian (NHΩ) of the current configuration is displayed in the middle right panel.

Fig. 3: The set of plots here corresponds to the final relaxed state of the chain. The arrangement of the light (L) and dark (S)
balls clearly shows that the attractor configuration is the Fibonacci chain. The evolution of the total Hamiltonian (NHΩ) of
the system is also displayed clearly demonstrating that the attractor configuration has the minimum energy. The defect counter
shows the absence of any forbidden configuration in the final state and hence is consistent with the fact that the attractor is
the Fibonacci chain.
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m and n respectively, is a dyad and is defined as

Eαmβn := Eαm ⊗Eβn ≡ EαmEβn

T . (13)

Unlike in the earlier sections, here the coordinate loca-
tions of the individual tiles are referenced from the left
(beginning of the chain), eg. the subscript above identifies
the location of the α VC as the mth coordinate and so
on. The empire matrix Eαmβn is a dyadic product of two
vectors resulting in a tensor of rank two and dimensions
N ×N .

The Hamiltonian operator can be then written as the
distributed sum of the symmetrized Empire matrices Eαmβn
over all possible VCs and location pairs as follows:

H := − 1

N

∑
m,n∈X

Eαmβn + (Eαmβn)T

2
, (14)

where the sum is over all possible pairs of interacting em-
pires of the given chain. H is an N×N symmetric matrix
whose trace gives the Hamiltonian HΩ defined by eq. (12),
i.e. HΩ := Tr(H ). Since the interaction free term of the
Hamiltonian prescribed earlier by eq (12) plays no dis-
cernible influence on the evolution of the tiled chain into
the Fibonacci configuration, it is omitted from consider-
ation here and only the bilinear interaction terms are re-
tained. Further, the interaction coefficients Jm,n that ap-
pear in the eq. (12) are set to unity. Among all possible
chain configurations, the Fibonacci chain corresponds to
the configuration that minimizes the trace HΩ = Tr(H )
as demonstrated by the Monte Carlo simulations of sec-
tion 3.2.

4.2 Spectrum of the Hamiltonian H and theoretical
analysis

In this section, we show by spectral analysis of H how one
may recover the Fibonacci chain if only the collection of all
empire configurations associated with a Fibonacci chain
of length N was available (and not the Fibonacci chain
itself). After all, the Monte Carlo simulations of section
3 showed that one could find the attractor configuration
by relaxing HΩ built entirely of the empires. We will also
explain why this Fibonacci attractor corresponds to the
ground state of H with the highest probability.

H is a real symmetric matrix and hence has real eigen-
values with λ1 = λmin < 0 corresponding to the ground
state energy level E1 ≡ Emin. Interestingly, the eigenvec-
tor corresponding to λmin prescribes the distribution of L
and S tiles of a Fibonacci chain (up to our chosen sign
convention). This corroborates the observations made in
section 3.2 earlier that the attractor of the chain is the
Fibonacci state.

The Hamiltonian H can be diagonalized as ΨDΨ−1

where the energy eigenvalues are given by the diagonal

coordinate of any chain configuration. Hence, the notion of
empires is not restricted to a Fibonacci quasicrystal but applies
to any configuration of the chain.

matrix

D =

E1 0 · · · 0
0 E2 · · · 0
·· ·· · · · ··
0 ·· · · · EN

 ,

and Ψ is a matrix whose columns are the eigenvectors
ψn corresponding to the eigenvalues En. By convention,
|E1| ≥ |E2| ≥ |E3| ≥ ... . In order to obtain the Fibonacci
chain exactly in terms of the signed unitary digits, −1
and 1 (and not only in their relative distribution of signs),
a superposition of the relevant eigenvectors of H must
be considered. Thus, if one were to posit the Fibonacci
state as a quantum state, the Fibonacci state ψF may
be written as a linear superposition of r + 1 eigenvectors
corresponding to the r+1 dominant eigenvalues (including
the zero eigenvalue) of the matrix H whose rank is r < N ,
resulting in the following ansatz,

ψF =
∑

n≤r+1

cnψn, (15)

where the ψns are the orthonormal eigenvectors of H and
ψF := ± 1√

N
signψ1 (see eqs. (17) and (18)). This ansatz

is a consequence of the equivalence between the quantum
and classical lattice models in the absence of the exter-
nal field and the fact that the distribution of signs of the
entries of ψ1 prescribes the attractor configuration as ex-
plained earlier. The Fibonacci state ψF is degenerate as
manifested by the appearance of ± in the ansatz because
the choice of the labels L→ −1 and S → +1 is arbitrary.
Both ψF and −ψF are solutions of H |ψ〉 = E|ψ〉 [61].
This underscores the fact that it is the relative ordering
of the signs of the entries of ψ1 that essentially dictates
the attractor configuration. Further, the matrix H is rank
deficient because the resulting truncated Fibonacci chain
is not an exact quasicrystal but an approximant with pe-
riodicity equal to N . Only in the infinite length chain, a
full rank matrix Hamiltonian can be obtained. Another
interesting observation from Table 1 is that the rank(H )
for a chain of length N (corresponding to, say, Fibonacci
word Sm) is equal to the length of the previous Fibonacci
word (Sm−1) except in some cases where the result is off
by one due to numerical imprecision in computing the di-
agonalization of H owing to infinitesimally small numbers
involved resulting in roundoff errors. This is likely due to
the manner in which the higher Fibonacci words may be
generated recursively like Sm = Sm−1Sm−2, ∀m ≥ 2 as
mentioned earlier in eq. (2).
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Table 1: rank(H ) vs N

length of chain, N rank(H )

5 2
8 4
13 8
21 12
34 21
55 33
89 55
144 88
233 144

It may be insightful to provide an analogy with quan-
tum mechanical systems. The energy of the Fibonacci
state can be obtained as

〈ψF |H |ψF 〉 = EψF =
∑
n

|cn|2En, (16)

where En is the nth eigenvalue of H and denotes the nth

energy eigenstate and the coefficient |cn|2 is the probabil-
ity of being in state ψn. The latter demands the restric-
tion

∑
n≥1 |cn|2 = 1. It may be interesting to note that

if |cn|2 = 1
N , then the value of EψF would be the ensem-

ble average of the energy eigenvalues prescribed by HΩ

whence all the energy eigenstates are equally probable,
i.e. NEψF =

∑
nEn = Tr(H ) = HΩ . This equiparti-

tion of energy eigenmodes is a signature of the principle
of eigenstate thermalization [62, 63, 64]. Further, while
the energy eigenstates may be equally probable in occur-
rence, their magnitudes are distinctly different because
|E1| > |E2| > |E3| > and so on, unless there is a degener-
acy of eigenstates. In the present case, as is shown below,
|E1| � |Ei| ∀i 6= 1 which guarantees the prominence of
the most relevant eigenstate ψ1. In the next section, we
will discuss if the condition of equiprobable eigenstates,
given above, holds or not in the large N thermodynamic
limit; and if not, what inference one may draw. In sum-
mary, two questions remain central to the inquiry in this
paper.

1. How to find the attractor of the Hamiltonian model?

2. Why does the attractor configuration coincide with the
Fibonacci chain as demonstrated by the simulations of
the previous section?

The answer to the first question is essential to justify the
observations of the simulations presented in section 3.2
above. The answer to the second question is important
in order to understand the physics of quasicrystal growth
and the origin of aperiodicity in physical systems.

4.2.1 How to find the attractor of the Hamiltonian?

Simulations of section 3 prescribe a solution strategy for
finding the attractor configuration. Is this attractor solu-
tion consistent with our quantum mechanical interpreta-
tion of the system? The central idea to find the explicit
form of the solution of the final relaxed state of the Hamil-
tonian (12) is postulated as a superposition of eigenstates
(15). Recall the ansatz (15): the attractor configuration
is prescribed by signψ1 where ψ1 is the eigenvector cor-
responding to the most dominant energy eigenvalue E1

and sign is the well known signum function. Since the
eigenvector corresponding to the most dominant eigen-
value prescribes the distribution of the tiles in the final
state up to the chosen sign convention, the exact form of
the final Fibonacci state of the chain can be obtained by
writing a linear combination of the first (r + 1) eigenvec-
tors with the associated coefficients as mentioned in the
expression (15). This will prescribe the correct exact form
of the attractor configuration provided

〈cr+1, cr+1〉 =

r+1∑
i=1

|ci|2 = 1,

where cr+1 =
(
c1, c2, c3, ..., cr, cr+1

)T
. Importantly, this

attractor turns out to be the Fibonacci chain of length

N . Figure 4 presents the values of
r+1∑
i=1

|ci|2 for chains of

different lengths by considering only the first (r+ 1) coef-

ficients. In all cases, the value of
r+1∑
i=1

|ci|2 is very close to

unity thereby validating the suitability of eq. (15) to find
the exact solution of the final relaxed state of the Hamil-
tonian. The solution obtained is the Fibonacci chain.

The solution strategy mentioned above is explained
here through an example. Consider a chain of length N =
13. Under similarity transformation, H = ΨDΨ−1 and
the rank of H is r = 8. The attractor of this system is
obtained by considering the eigenvector

ψ1 =



0.1962
−0.1962

0.2917
0.2403
−0.1941

0.5313
−0.1455

0.1455
0.3860
−0.2452

0.4366
0.0954
−0.0954



(17)
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and using the following ansatz and solving for the coeffi-
cients cn,

−1√
13

signψ1 =
−1√

13



1
−1

1
1
−1

1
−1

1
1
−1

1
1
−1



=
∑

n≤8+1

cnψn. (18)

This gives us

cr+1 =



c1
c2
c3
c4
c5
c6
c7
c8
c9


=



−0.8873
−0.0335

0.0107
−0.1524
−0.2994

0.2110
0.1909
−0.1328

0.0000


whence it may be checked that indeed

〈cr+1, cr+1〉 =
∑
i≤8+1

|ci|2 = 1.

Finally, the attractor configuration ψF is expressed as a
superposition of eigenstates (15) by using the coefficients
computed above. This solution corresponds to the sixth
Fibonacci word S5 which can be found using the algorith-
mic recursion Sn = Sn−1Sn−2, n ≥ 2, S0 = 0, S1 = 01.
This paper presents a physical model of the emergence
of Fibonacci quasicrystal that can also be constructed al-
gorithmically as explained in several papers cited earlier.
The solution of H is an NP-hard optimization problem
that essentially involves finding the most probable ground
state energy [61, 65, 66].

4.2.2 Why is the attractor configuration given by the
Fibonacci chain?

While the ansatz allows us to find the attractor solution
consistent with the postulates of quantum mechanics, a
natural question that follows is: why is the attractor config-
uration given by the Fibonacci chain? After all, shouldn’t
one expect the relaxation of the Hamiltonian reminisce
thermalization resulting in equipartition of energy among
the different eigenstates? In fact, to the contrary, eigen-
state thermalization would imply the absence of an at-
tractor solution as multiple final states would be equally
probable. So if one is looking for an attractor as a solution,
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Fig. 4: This plot shows that the probability of the Fibonacci
state being the ground state is significantly higher than being
in any other excited state. Further, it is shown that the solution
prescribed by eq. (15) is consistent with the fundamental axiom
of probability,

∑
i≤r+1 |ci|

2 = 1.

and consequently a model of quasicrystal growth, thermal-
ization is undesirable. So it works to our advantage that
the Hamiltonian H does not thermalize to equiprobable
eigenstates.

In fact, let us rewrite the spectral decomposition given
by eq. (16) as

EψF =
∑
n

|cn|2En =
∑
(m)

|c(m)|2E(m), (19)

where by convention |c(1)|2 ≥ |c(2)|2 ≥ |c(3)|2 ≥ ... and
E(m) ∈ ρ(H ) (spectrum of H ) is such that its coefficient
is c(m). In other words, the second equality is simply a

re-arrangement of the summands in
∑
n
|cn|2En that obeys

the above inequalities and sorts the energy eigenstates in
decreasing order of the probability of finding the Fibonacci
chain in that state. It turns out that c(1) ≡ c1 and conse-
quently E(1) ≡ E1. More importantly, the Hamiltonian H
is such that |c(1)|2 � |c(2)|2 as shown clearly in Figure 4.
In section 3, we have presented results of numerical exper-
iments that established that of all the possible configura-
tions, it is the Fibonacci configuration that minimizes the
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Fig. 5: Top: Energy eigen values E1 and E2 of the hamiltonian
H are plotted along with the trace of the Hamiltonian which
gives the total energy of the system. Clearly, |E1| � |E2|.
Bottom: This plot shows that the relative error in the approx-
imation of Tr(H ) by E1 decreases as N increases and is prac-
tically miniscule. The plots show that for moderately large N ,
Tr(H ) can be well approximated by E1.

total Hamiltonian HΩ = Tr(H ). Note that practically al-
most all of the total energy of the system is concentrated
in the ground state as illustrated by Figure 5. In essence,
since E1 → HΩ as N becomes large enough, it follows
that the Fibonacci configuration not only minimizes HΩ

among all possible chain configurations but also minimizes
the ground state energy among all possible chain config-
urations. This establishes that the Fibonacci chain is the
most probable ground state of the Hamiltonian H and by
a big margin (see Figure 4).

It must be emphasized here that the ability of the em-
pires, through simple non-local interactions as prescribed
by the r.h.s. of eqs. (12) and (14), to form the final Fi-
bonacci state of the chain renders the empires as the gen-
erators of the Fibonacci chain and fundamental elements
in a model of aperiodic order. It can be shown that the
simple nearest neighbor Ising model does not generate the
Fibonacci chain.6 Essentially, it is the non-local scope of

6 https://www.youtube.com/watch?v=N85_aDD_lUI

the empires that is the quintessential element in modeling
quasicrystal growth. This inherent non-local aspect of the
model permits a quantum mechanical analogy.

4.3 Symmetries and comparison with the Ising model

The most fundamental symmetry in crystalline structures
is translation symmetry. This symmetry is absent in qua-
sicrystalline structures. In the current case under investi-
gation here, the precise algebraic form in which a transla-
tion asymmetry pertaining to the Fibonacci quasicrystal
may be conceptualized is illustrated by eqs. (9), (10) and
(11). These empires collectively characterize all forbidden
configurations of the Fibonacci chain. The Hamiltonian
H encodes the exact physical mechanism which mani-
fests this translation asymmetry through the interaction
of the empires.

Of course, this beckons a natural comparison with other
lattice models especially with the most widely-known near-
est neighbor Ising Hamiltonian. At the outset, it must be
clarified that the Monte Carlo simulation of the nearest
neighbor Ising Hamiltonian, that relies entirely on local
spin-spin interactions, does not generate the Fibonacci
chain or any one dimensional quasicrystal. This clearly
underscores the necessary role of non-local interactions in
a model of quasicrystal growth.

The definition of the empires (as illustrated by the ex-
amples (5) and (6), and the top and bottom figures on
the left panel of Figure 3) imply that the inner prod-
uct Jm,n〈Eαm |Eαn〉 in eq. (12) is essentially equivalent

to
∑N
i=1 J

i
m,ns

m
i s

n
i =

∑N
i=1 J

i
m,ns

2
i because smi = sni = si

where si labels the ith tile of the chain under consider-
ation. Hence, one may attempt to devise an equivalent
zero-field lattice model of the form

H
(1)
Ω = − 1

N

∑
m,n∈X

N∑
i=1

J im,ns
m
i s

n
i

= − 1

N

∑
m,n∈X

N∑
i=1

J im,nsisi

= − 1

N

∑
m,n∈X

N∑
i=1

J im,ns
2
i (20)

that generates the Fibonacci chain. Here si = ±1 and
Jm,n ≡ J im,n is a vector for every m and n with non-zero

unit entries at locations where the effect of the spins (s2i )
must be accounted for. In this sense, J im,n are non-local
coupling constants indexed by i and the vectors them-
selves are labelled by the m and n lattice sites. A care-
ful observation of the interaction terms in the Hamilto-
nian (12) and the definition of the empire vectors reveals
the formal similarities with the Hamiltonian (20). How-
ever, such an attempt to engineer the coupling constants
does not encode the information of the projection from a
higher dimensional space. Moreover, there does not ap-
pear a simple way to construct the coupling constants
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J im,n and hence using model (20) to perform the analy-
sis and the simulations, instead of the equivalent models
(12) and (14), would be very challenging. On the other
hand, the empires provide us with a tool to model non-
local interactions very naturally and share a geometrical
significance as the generators of the Fibonacci chain be-
cause they are derived by projection from a higher di-
mension which has translation symmetry. In any case the
model (12) presented here is clearly not an Ising model
for reasons mentioned above.

Like the nearest neighbor Ising model, the Hamiltonian
HΩ is invariant under spin inversion as mentioned earlier.
This is so because the inner product between the empire
vectors is invariant under spin inversion. Eg., consider
Eαm = (s1s2s3....sN ) and Eβn = (s′1s

′
2s
′
3....s

′
N ) where

si, s
′
i = −1, 1 or 0 depending on xi = L, S or if it is an

unforced tile. Clearly, the spin inversion si → −si and
s′i → −s′i, which is essentially flipping the labels of L and
S, preserves 〈Eαm |Eβn〉.

However, unlike the zero external field nearest neigh-
bor Ising model in one-dimension or the nearest neigh-
bor Ising model in a square lattice in two-dimensions, the
zero-external field (Bαk,i ≡ 0) partition function ZΩ =
Tr(e−βHΩ ) based on eq. (12), and thereby the free energy
density, are not invariant under sign inversion of the cou-
pling coefficients Jj,i. This is because the non-zero entries
of the interacting empire vectors change sign concurrently.
This is further illustrated by the equivalent model (20).
Therefore, the thermodynamic properties of the model
presented here are not the same under the reversal of sign
of the coupling constants Jj,i.

5 Summary of main results

The main novel contributions of this paper are summa-
rized below.

1. Algebraic forms of the empires of the VCs of a Fi-
bonacci chain are provided for the first time to our
knowledge. The closed form expressions are verified in
agreement with earlier known methods of computing
empires of VCs using geometric and algorithmic meth-
ods. These algebraic forms enable us to know the exact
manner by which the translation symmetry is absent
in a Fibonacci chain.

2. A Hamiltonian is constructed using the empires men-
tioned above and Monte Carlo simulations are per-
formed. The simulations show that the Fibonacci chain
is an attractor of the model.

3. The Hamiltonian is promoted to a matrix operator
form and a spectral analysis is performed to find the
relevant eigenstates. An ansatz is provided to find the
attractor configuration analytically. It is verified to be
true and consistent for a chain of any finite length. A
quantum mechanical interpretation reveals that the Fi-
bonacci chain is the most probable ground state of the
system and hence provides a theoretical explanation
of the attractor configuration. The theoretical anal-
ysis shows that the Fibonacci configuration not only

minimizes the total Hamiltonian (total energy) of the
system but also minimizes the ground state of the sys-
tem.

4. The paper presents a new physically realizable model
of quasicrystal growth based on non-local interactions.
To our best knowledge, this may be the first Hamil-
tonian based lattice model whose ground state is the
Fibonacci quasicrystal.

6 Future research directions

Two immediate research directions follow naturally from
the model analyzed here. Firstly, there seems a forma-
tive correspondence between the empire Hamiltonian pre-
sented in this paper and the well known spin-1 Ising model
owing to the use of ternary elements. Secondly, the one-
dimensional model described here may be extended to a
two dimensional model of quasicrystal growth by relaxing
a network of chains (fibers). These directions are discussed
briefly below.

6.1 Spin 1 lattice model and angular momentum
operators

The empire vectors of eqs. (12) and (13) that define the
Hamiltonian HΩ and H are made of ternary elements
{1,−1, 0}. This suggests a correspondence with the spin-1
Ising model associated with the spin-1 angular momentum
matrices Lx, Ly, Lz, each of dimension 3× 3 [67, 68]. The
diagonal entries of Lz are 1, 0 and −1. The key difference
in our case with respect to the spin-1 Ising model is that
the empire vectors have a non-local scope and the Hamil-
tonian implements non-local interactions 〈Eαm |Eβn〉 be-
tween the mth and nth lattice sites. Furthermore, since
the number of vertex types α, β = 1, 2, 3 also matches the
number of spatial directions x, y, z, one may propose the
following zero-field Hamiltonian

H (2) = −
∑

a={x,y,z}

∑
m,n∈X

Jm,nL
a
mL a

n (21)

as a non-local generalization of the spin-1 nearest neigh-
bor Hamiltonian. Here, a, b = 1, 2, 3 correspond to x, y, z
and Jm,n are the non-local coupling constants between
lattice sites m and n. By defining, L a

m := I⊗m−1 ⊗ La ⊗
I⊗N−m, a = x, y, z, as 3N×3N matrices and appropriately
engineering Jm,n, we propose to investigate if there is any

correspondence between H (2) stated above by eq. (21)
and the Hamiltonian of eq. (14). It may be interesting to
note that the model (21) is similar in spirit to a non-local
version of the Heisenberg model [20, 59] that has shown
promise in the study of ferrimagnetic effects [69, 70, 71, 72]
and for investigating quantum spins in quasiperiodic anti-
ferromagnets [73]. Further, unlike the spin-1 Ising model,
it may be interesting to allow for cross-interactions in the
form of L x

mL y
n etc. and investigate the behavior of the

model. It must be stated that appropriately engineering
the coupling constants Jm,n will present a formidable chal-
lenge.
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6.2 Network of Fibonacci chains in 2D

We will extend the formalism to a tiling network in two
dimensions with overall pentagonal symmetry as an ex-
ample.

Tiling matrix T: The tiling space is a network of 2-
alphabet chains with a suitable matrix representation de-

noted by T
j,kj
i,ki

where i, j ∈ {1, 2, 3, 4, 5} denote the chain
species and ki, kj index the entries from the respective
chain species and take on values between −N and N . Thus
we have 2N + 1 members in each species. To account for
5-fold symmetry, we have five distinct chain species. The
reader is referred to Figure 6. This formalism can be eas-
ily extended to any general n-fold symmetry by having n
chain species.

Fig. 6: Topological representation of the tiling network where
each chain species is shown with a different color. The ki for
each chain species indexes the corresponding member of that
species and takes on values between −N and N . Each member
of every chain species has a unique ki index. Note that the
graphic is only partially displayed and that the chains of each
species are longer than shown here as each of them intersect
with every member of all other species.

The entries of the matrix T are −1, 1 or 0 as in the
1D case, where 0 represents absence of a tile. The en-
tries of the T matrix represent the tile type associated at
the intersection of lines ki and kj . Moreover, the network
topology prohibits the intersection of three or more lines
at the same site. Member chains of the same species never
intersect with each other. There are no loops. The matrix
T is symmetric in its upper and lower arguments. Math-

ematically, the above constraints can be enumerated as
follows,

1. Ti,mi,n = 0, m 6= n,

2. Tj,mi,n = Ti,nj,m.

The network of chains mentioned above will be relaxed
using a Monte Carlo simulation under the constraints listed
above and the attractor configuration will be investigated
corresponding to the minimum of the total Hamiltonian.
We conjecture that the relaxed state will correspond to
the Penrose tiling which is a two dimensional quasicrys-
tal. Thus we can put this framework to test as a gener-
alized model of quasicrystal growth in two dimensions.
Subsequently, the model will be extended to three di-
mensions. Such topological order with inherent quasicrys-
talline structure has been studied recently based on a
quantum string-net Hamiltonian [74]. Simulations of in-
teracting Fibonacci anyons, with relevance in quantum
computing technology, have been analyzed using tensor
network approaches [75] which further emphasizes the im-
portance of research on the proposed topic.
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