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Abstract

Electric charges may have mass in part or in full because they charged. Supplying
details is the electromagnetic mass problem. Here, the charge’s mass is associated with
intrinsic quantum mechanical quantities so that the classical problems with extended
charge distributions, for example, are irrelevant. An intrinsic vector potential is de-
fined, based on intrinsic linear momentum. The charge-electromagnetic field interaction
energy is gauge-dependent and the needed mass term is placed with the interaction en-
ergy in the intrinsic gauge. Traditional electromagnetism retains its gauge invariance.
The field equations make no new predictions since all dynamic dependence on intrin-
sic quantities can be gauged away. The field equations describe a massive, charged
4-spinor Dirac electron-like particle and an uncharged, massless neutrino-like particle,
formulas that have been a part of physics for nearly a century.

1 Introduction

Opposite charges attract; like charges repel. If the interaction is mediated by an electro-
magnetic field and if the electromagnetic field has energy, then carrying the electromagnetic
field should act as a drag on a charge’s motion, an inertia. The problem is called “elec-
tromagnetic mass” and it has only controversial solutions. [3, 4, 9] Electromagnetic mass is
frequently presented as an unsolved problem in introductory textbooks. [1, 2] Here we show
how a charge may have mass due to its being charged, but in a way that has nothing to do
the interaction being mediated by an electromagnetic field.
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1 INTRODUCTION 2

Instead, we suggest that electromagnetic mass may be an intrinsic quantity like spin. Let
us, for a moment, consider angular momentum. Given enough grease and quality bearings, a
large flywheel rotating about a stationary axis can maintain a constant angular momentum.
To keep the flywheel intact, forces are needed. Failing flywheels can do impressive damage.

Now consider quantum effects. An electron can be in a motionless state and still have
angular momentum, its ‘intrinsic’ or ‘spin’ angular momentum. It is widely accepted that,
with spin, “a consistent mechanical model doesn’t exist”, see, for example, page 374 of [7].
The physical description of intrinsic electron spin does not have a place for the forces that
prevent rotating matter flying apart like a crumbling flywheel.

Intrinsic quantum quantities avoid the complications that accompany mechanical mod-
els. For example, with intrinsic electromagnetic mass, one would not need to introduce
non-electromagnetic forces to counter the repulsion of like-charges in order to hold an ex-
tended charge distribution model together. There simply would not be an extended charge
distribution model.

In this paper, we introduce an intrinsic matrix vector potential for a charged spin 1/2
field. Before defining an intrinsic vector potential, we first need an intrinsic momentum,
a matrix that generates translations just as spin matrices generate rotations. A matrix
representation (rep) of the Poincaré algebra is required. In Sec. 2, we describe the needed
algebra, a representation of spacetime rotations and translations for spin 1/2.

The intrinsic matrix momentum that generates translations is needed to define the in-
trinsic vector potential. The intrinsic matrix translations are taken to be independent of the
continuous translation rep that applies to functions. The matrix rep has its own matrix mo-
mentum generators and, we contend, its own displacements with its own intrinsic coordinate
system y. Assuming that intrinsic coordinates y are independent of spacetime coordinates x
avoids the mechanical model problem mentioned above.

Sec. 3 shows how to upgrade a “Lorentz” quantum field that already transforms under a
matrix representation of the Lorentz group of spacetime rotations to a “Poincaré” field that
transforms via Poincaré transformations so that it responds to matrix translations.

Sec. 4 begins with a Lorentz 8-spinor quantum field ψ0 that, as is traditional, transforms
under spacetime rotations but not translations. Since mass is introduced with electromag-
netic interactions, we can, and do, assume that the free field ψ0 is massless, so that ψ0 is a
linear combination of massless annihilation and creation operators. The Lorentz field ψ0 is
then upgraded in Sec. 4, by the process in Sec. 3, to a Poincaré field Φ0 that transforms by
the matrix rep of Sec. 2, including matrix translations.

The current J of the field Φ0 is like the current j of the traditional field ψ0 except that
more complicated matrices α(y) in J replace the Dirac gamma matrices γ in j. It happens
that the matrices α(y) obey an identity that looks like a Maxwell’s equation in intrinsic
coordinates y. This is an opportunity to identify the matrix α(y) as proportional to the
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intrinsic vector potential. The Maxwell-like equation also shows that one 4-spinor is charged
and the other 4-spinor is uncharged in the 8-spinor field.

The lagrangian L, developed in Sec. 5, modifies a traditional lagrangian L0 by including
intrinsic quantities. The lagrangian L0 combines lagrangians for a free massless 8-spinor
ψ0, a free continuous rep vector potential A(x), and an interaction term for A(x) with the
charged 4-spinor current as source.

Adding the intrinsic vector potential α(y) to A(x) produces the lagrangian in its final
form, final aside from choosing the intrinsic gauge. The intrinsic gauge removes the intrinsic
y-dependence and provides the mass term. The mass is arbitrary.

A traditional Maxwell equation is found for the continuous vector potential A(x). For
the 4-spinors, the field equations are the traditional Dirac equation for the charged, massive
4-spinor. The Dirac equation for the uncharged, massless 4-spinor is the same as the field
equation for a free massless Dirac field.

These are familiar field equations, one for a Dirac electron and the other for a massless
4-spinor neutrino, so there are no new consequences from the field equations. However, the
fact that one is massive and the other massless is a consequence of their electric charge
values. Concluding remarks are presented in Sec. 6.

2 The 8-spinor Rep of the Poincar’e group

This section details the matrix representation of the Poincaré group of spacetime rotations
and translations needed to transform the 8-spinor fields. There are angular momentum ma-
trices σ that generate spacetime rotations and (linear) momentum matrices π that generate
translations. The generators are 8× 8 matrices that obey the Poincaré algebra.

As functions of spacetime, fields also need the differential representation of the spacetime
symmetries with momentum proportional to the divergence. We call this rep the “continuous
rep”, while the other rep is the “matrix rep”.

Suppose the points, also called events, of 3 + 1 spacetime are labeled with Minkowski
coordinates xµ, with µ, ν, ... ∈ {1, 2, 3, 4} and x4 = xt the time component. Having µ =
4 as the time index conflicts with the convention µ = 0 for time when one calculates the
antisymmetric tensor: with time last, we have ε1234 = +1, and, time first, ε4123 = −1. Let
the spacetime metric be the diagonal tensor ηµν with diagonal η11 = η22 = η33 = +1 and η44

= −1. As shorthand, the metric combines with vectors and tensors to “raise” and “lower”
indices. For example, for vector vµ, we write vν ≡ ηµνv

µ. Repeated indices are summed,
unless noted otherwise.

A Poincaré transformation applied to spacetime preserves scalar products, such as the
scalar product of one primed, one unprimed interval, δx′σδx

σ, where the interval δxµ is the
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difference of the coordinates of points 1 and 2. A translation adds the same amount bµ to
each and, therefore, there is no change in the difference,

δxµ = (xµ2 + bµ)− (xµ1 + bµ) = xµ2 − x
µ
1 . (1)

Intervals, and hence their scalar products, are invariant. Translations are inhomogeneous,
additive transformations.

Any Poincaré transformation, written (Λ, b), can be considered to be a spacetime rotation
Λ followed by a translation along some displacement b. We have (Λ, b) = (1, b)(Λ, 0).

Applying first transformation A followed by B gives the product transformation

(ΛB, bB)(ΛA, bA) = (ΛBΛA,ΛBbA + bB) . (2)

This is the rule for successive Poincaré transformations.
The 8× 8 matrices in our rep of the Poincaré algebra are conveniently arranged into four

4× 4 blocks,(
11 12
21 22

)
=
(

11 0
0 0

)
+
(

0 12
0 0

)
+
(

0 0
21 0

)
+
(

0 0
0 22

)
. (3)

Write Mij for a matrix that has nonzero components only in the ij block, i, j ∈ {1, 2}. It
follows that MijMkl = δjkNil, where matrix Nil has nonzero components confined to the
block il and δjk is the Kronecker delta which is unity for equal indices j = k and vanishes
otherwise.

The 4 × 4 gamma matrices γµD of the Dirac formalism are taken to be the following
matrices

γµD = i
(

0 −τµ
τµ 0

)
(4)

with Pauli matrices τµ,

τµ = {
(

0 1
1 0

)
,
(

0 −i
+i 0

)
,
(

1 0
0 −1

)
,
(

1 0
0 1

)
} , (5)

for µ = 1, 2, 3, 4, respectively. One can check the defining requirement of Dirac gamma
matrices, γµDγ

ν
D + γνDγ

µ
D = 2ηµν1. [5]

Let γµij be an 8 × 8 matrix with γµD in the ij-block and which vanishes elsewhere. Since
the γµD matrices satisfy the defining requirement of Dirac gammas, one has

γµijγ
ν
kl + γνijγ

µ
kl = 2δjkη

µν1il , (6)
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where 1il has the 4× 4 identity matrix in the il block with the other three 4× 4 blocks null.
We reserve the notation γµ for the following 8× 8 matrices

γµ ≡ γµ11 + γµ22 , (7)

which has 4× 4 gamma matrices γµD in the two diagonal blocks 11 and 22.
Angular momentum matrices σµν generate spacetime rotations. For the 8-spinor rep,

choose the following 8× 8 matrices

σµν = − i
4

(γµγν − γνγµ) = − i
4

(γµ11γ
ν
11 − γν11γ

µ
11)− i

4
(γµ22γ

ν
22 − γν22γ

µ
22) . (8)

Thus the 8-spinor rep of the group of spacetime rotations reduces to two 4-spinor reps, placed
diagonally in the 11- and 22-blocks.

The linear momentum matrices πµ are defined to be

πµ = kγµ21 . (9)

These four 8× 8 matrices generate translations.
The angular and linear momentum matrices σµν and πµ obey the Poincaré algebra,

i
[
σµν , σρλ

]
= ηνρσµλ − ηµρσνλ − ηνλσµρ + ηµλσνρ , (10)

i [σµν , πρ] = ηνρπµ − ηµρπν and i [πµ, πν ] = 0 . (11)

Equivalent reps with matrix generators differing from σµν and πµ by similarity transforma-
tions also satisfy the Poincaré algebra.

The generators combined with real-valued parameters make a transformation that acts
on 8-spinors. Since angular momentum generators are antisymmetric, the associated param-
eters ωµν might as well be antisymmetric, ωνµ = −ωµν since any symmetric part would not
contribute. Let Λ be the transformation of spacetime 4-vectors in the continuous rep and
D(Λ, 0) be the 8× 8 matrix transformation for 8-spinors.

For translations, the parameters are called displacements. For a displacement bµ, space-
time coordinate transform as follows xµ → xµ + bµ. Denote the associated 8 × 8 matrix
transformation by D(1, b).

Let the symbol D(Λ, b) stand for the 8×8 matrix transformation resulting from a rotation
followed by a translation. We consider only transformations that can be connected to the
identity by successive infinitesimal transformations. Building transformations infinitesimally
involves the matrix exponential and one finds that the 8× 8 matrix transformation D(Λ, b)
is given by

D(Λ, b) = D(1, b)D(Λ, 0) = e−ibµπ
µ

eiωµνσµν/2 . (12)
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It represents the Poincaré transformation (Λ, b). Since σµν and πµ are 8 × 8 matrices, the
matrix D(Λ, b) is an 8× 8 matrix.

By definition, (9), the nonzero components of the momentum matrices πµ are in the
21-block. This implies that the product of two momentum matrices vanishes and, therefore,
the translation matrix D(1, b) is linear in bµ,

πµπν = 0 and D(1, b) = e−ibµπ
µ

= 1− ibµπµ . (13)

When the translation matrix D(1, b) is applied to an 8-spinor, ψ =
(
ψ1

ψ2

)
, a combination of

the first 4-spinor’s components is added to the second 4-spinor. We have

D(1, b)ψ =
(
ψ1

ψ2

)
− ibµ

(
0 0
kγµD 0

)(
ψ1

ψ2

)
=
(

ψ1

ψ2 − ikbµγµDψ1

)
. (14)

The first 4-spinor ψ1 is the “donor” and the second 4-spinor ψ2 is the “receiver”.
This additive behavior is consistent with the inhomogeneous nature of translations.

Clearly there are no eigenspinors nor any eigenvalues of intrinsic translations because there
is no 8-spinor ψ with D(1, b)ψ proportional to ψ. No translation eigenvalues for translations
means no contributions to linear momentum. Unlike spin, which does contribute to the total
angular momentum, intrinsic translations do not contribute to the observed linear momen-
tum of a quantum system. Intrinsic translations make their presence felt in other ways, as
will be seen in what follows.

3 Quantum fields with translations

In this article, we need fields that transform with the full Poincaré group of spacetime
symmetries, including matrix translation reps. Often, fields are defined without matrix
translations. The fields are said to be “translation scalars”, or, put another way, displace-
ments vanish for matrix translations. [6,8] Since the fields transform with matrix reps of the
Lorentz group, call them “Lorentz fields.” We need to take such a Lorentz field and make
from it a “Poincaré” field that transforms with a matrix rep of the Poincaré group, including
non-trivial reps of translations. This section shows how. While the resulting field is not as
general as allowing translations earlier in the derivation of quantum fields, the result suffices
for the purposes here.

A quantum field ψ is a sum of annihilation and creation operators. Under spacetime
symmetries, the operators transform by a unitary representation. The unitary rep must be
infinite dimensional since boosts are not compact. Infinite dimensional reps can be inconve-
nient for some purposes. Thus one constructs fields. [8] Fields are operators since they are
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sums of operators, yet they transform under spacetime rotations via nonunitary, most often
finite dimensional reps.

In this article, not only do fields transform differently than operators under spacetime
transformations, the fields can describe a massive particle while the operators are massless.

Given a Poincaré transformation (Λ, b), the operators transform by some infinite dimen-
sional unitary rep denoted U(Λ, b). One builds a Lorentz field ψ as a linear combination of
these operators. The adjective “Lorentz” means that the field transforms only under the
Lorentz transformation Λ and not via translations. The Lorentz transformation matrix is
written D(Λ, 0), the “0” enforcing the assumption that bµ = 0 for the matrix transformations
of Lorentz fields.

Thus, we can begin by assuming that a Lorentz field ψ can be found that satisfies the
requirement that the operators transform unitarily and field transforms non-unitarily as
follows,

U(Λ, b)ψl(x)U−1(Λ, b) = D−1
ll̄

(Λ, 0)ψl̄(Λx+ b) . (15)

Lorentz fields are standard quantum fields. See, for example, Ref. [8].
Yet one can define a field Φ, based on ψ, that responds to translation matrices. Consider

applying a matrix translation D(1, y) to ψ to obtain the quantity Φl(x, y),

Φl(x, y) ≡ Dls(1, y)ψsl(x) , (16)

where y is a 4-vector coordinate-like displacement that is independent of x. The coordinates
y are called “intrinsic coordinates”. Since ψ(x) is a linear combination of annihilation and
creation operators, it follows that Φ is such a sum as well, but with coefficients that differ
from those for ψ by the matrix factor D(1, y). Therefore Φ is a quantum field.

Now we need to show that Φ obeys (15) except with D−1(Λ, b) on the right. Once shown,
this means that the unitary Poincaré transformation of the operators U(Λ, b) produces a
nonunitary matrix Poincaré transformation of the field Φ.

To show that, first note that applying an arbitrary Poincaré transformation (Λ′, b ′) , to
spacetime gives the points x and y new coordinates, x′ = Λ′x+b ′ and y′ = Λ′y+b ′. Replacing
these for the x and y in (16) and dropping the primes, we find

Φl(Λx+ b,Λy + b) = Dls(1,Λy + b)ψs(Λx+ b) . (17)

Given that, one can form the expression

D−1
ll̄

(Λ, b)Φl̄(Λx+ b,Λy + b) = D−1
ll̄

(Λ, b)Dl̄s(1,Λy + b)ψs(Λx+ b) . (18)

We need to evaluate the product of the Poincaré transformations on the right.
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The rule for successive Poincaré transformations, (2), implies D(Λ−1,−Λ−1b) D(Λ, b) =
D(1, 0) and, therefore, we have

D−1(Λ, b) = D(Λ−1,−Λ−1b) , (19)

where we have begun to hide the matrix indices. This implies, again by (2), that

D−1(Λ, b)D(1,Λy + b) = D(Λ−1,−Λ−1b)D(1,Λy + b) (20)

= D(Λ−1,Λ−1 (Λy + b)− Λ−1b) = D(Λ−1, y) = D(1, y)D−1(Λ, 0) .

Substituting the last expression into the right side of (18) yields

D−1(Λ, b)Φ(Λx+ b,Λy + b) = D(1, y)D−1(Λ, 0)ψ(Λx+ b) . (21)

By the Lorentz field transformation (15), we can replace D−1(Λ, 0)ψ(Λx+ b),

D−1(Λ, b)Φ(Λx+ b,Λy + b) = D(1, y)U(Λ, b)ψ(x)U−1(Λ, b) . (22)

Finally, the matrix D(1, y) acts on ψ(x) and commutes with U(Λ, b) which acts on operators.
By the definition of Φ in (16) together with switching the left and right sides of (22), we find
that

U(Λ, b)Φ(x, y)U−1(Λ, b) = D−1(Λ, b)Φ(Λx+ b,Λy + b) , (23)

which was to be shown.
Thus Φ(x, y) = D(1, y)ψ(x) is a field that transforms via the matrix Poincaré rep D(Λ, b),

which includes translations. The Poincaré field Φ(x, y) is needed to make the intrinsic vector
potential.

4 Currents and the intrinsic E-M vector potential

In this section we consider the free 8-spinor field and find evidence that the first 4-spinor is
charged. Terms like “the first 4-spinor” are keyed to the matrix rep in Sec. 2.

Let ψ0 be an 8-spinor Lorentz quantum field that is constructed from the annihilation
and creation operators for a massless spin 1/2 particle. This enforces the idea that mass is
associated with charge. The 8-spinor can host two 4-spinors, so ψ0 is a Lorentz free 8-spinor
quantum field that is the direct sum of two free massless 4-spinor fields.

Thus, by assumption, field ψ0 is a Lorentz quantum field. When spacetime undergoes
the Poincaré transformation (Λ, b), ψ0 transforms by the matrix D−1(Λ, 0), see (12), as if
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b didn’t exist, b → 0. Then, by the work in the preceding section, the Poincaré field Φ0,
defined by

Φ0 ≡ D(1, y)ψ0(x) , (24)

transforms with the matrix D−1(Λ, b) under the spacetime transformation (Λ, b). The field
Φ0, like ψ0, is interaction free.

The 4-vector probability current density jµ, for the Lorentz field ψ0, is defined to be

jµ ≡ N8ψ̄0γ
µψ0 , (25)

where N8 is a normalization constant and ψ̄0 = ψ†0γ
t is the Dirac conjugate, the hermitian

transpose times the time component gamma matrix. Since, by (7), γµ = γµ11 + γµ22, we have

jµ = N8ψ̄0γ
µψ0 =

N8

N1

N1ψ̄01γ
µ
11ψ01 +

N8

N2

N2ψ̄02γ
µ
22ψ02 =

N8

N1

jµ1 +
N8

N2

jµ2 , (26)

where jµi ≡ Niψ̄0iγ
µψ0i are the currents for the two 4-spinors in the 8-spinor field and the

Ns are normalization constants.
The current of the Poincaré field Φ0 in (24) is denoted Jµ. We find

Jµ ≡ N8Φ̄0γ
µΦ0 = −N8ψ̄0(x)γtD†(1, y)γtγµD(1, y)ψ0(x) = N8ψ̄0

αµ

a
ψ0 , (27)

where the minus sign appears because γt
2

= ηtt = −1 and where, for convenience, the
constant a is included now to be determined later and αµ(y) is the matrix

αµ(y) = −aγtD†(1, y)γtγµD(1, y) . (28)

Comparing (25) and (27), we see that the matrix αµ/a replaces γµ in the current jµ when
we go from a field ψ0 that doesn’t transform with the matrix translation rep to the field Φ0

that does translate via the matrix rep.
Aside from the scale constant a, the matrix αµ(y) is the given function of y in (28). Note,

for reference later, that αµ(y) is a fixed matrix and is not free to vary when it appears in a
lagrangian.

We can work with the expression for αµ(y). By (13), since the momentum matrix πµ =
kγµ21 in (6) is nonzero only in the 21-block, the translation D(1, y) is linear in y. With the
hermitian conjugate of πµ being πµ † = kγ12 µ, one can show that the matrix αµ/a can be
written as

αµ(y) = a
[
γµ − ikyρ (γρ12γ

µ
22 + γµ22γ

ρ
21) + k2y2γµ11 − 2k2yµyργ

ρ
11

]
, (29)
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which is quadratic in y and where y2 = yρy
ρ.

Since αµ(y) is quadratic in y, second order partial derivatives with respect to y are
constant. One finds an identity,

∂ λ ′∂ ′λα
µ − ∂ µ ′∂ ′κακ = 12ak2γµ11 , (30)

where the partial derivatives are with respect to the ys, meaning ∂ ′ρα
µ ≡ ∂αµ/∂yρ. (We are

saving unprimed partials for x.)
The current Jµ(x, y) = N8ψ̄0α

µψ0/a has its y-dependence confined to αµ(y). Since x
and y are independent, the x-dependent functions ψ̄0(x) and ψ0(x) are constants when
differentiating with respect to y. Thus, immediately from (30), we have

∂ λ ′∂ ′λ(aJ
µ)− ∂ µ ′∂ ′κ(aJκ) = 12ak2N8ψ̄0γ

µ
11ψ0 = 12ak2N8

N1

jµ1 . (31)

where we treat x and y as independent quantities, ∂xµ/∂yν = 0.
Compare (31) with one of Maxwell’s equations,

∂λ∂λA
µ
q − ∂µ∂κAκq = ρµ , (32)

where ∂λA
µ
q ≡ ∂Aµq /∂x

λ and Aµq is the vector potential due to a charged current density ρµ.
Clearly, the two equations (31) and (32) have the same form.

We are lead to define the quantity Aµi , related to αµ,

Aµi ≡ N8ψ̄0α
µψ0 = aJµ =

qN1

12k2N8

Jµ , (33)

so that the right side of (31) is the current ρµ = qjµ1 of a charge q. This has determined the
constant

a =
qN1

12k2N8

(34)

which was introduced with Jµ in (27).
By (31) and (33), at first glance, it would seem that the quantity Aµi , satisfies Maxwell’s

equation (32). But wait, this is obviously false because the partials in (32) are with respect
to x, not y. And, unlike the matrix quantity αµ(y), the vector potential Aq(x) is a function
of the same coordinates x as the current density ρµ = qjµ1 (x).

However, that is all right because no intrinsic quantity can be a function of x. The intrinsic
quantity would then have “mechanical” properties, which is like proposing a rotating mass
with a density function of x as the source of the electron’s spin. No mechanical model
accounts for electron spin and no mechanical model should exist for the intrinsic vector
potential. Hence, spacetime coordinates x and intrinsic coordinates y should be independent.
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Based on these remarks, we identify Aµi = aJµ as the “intrinsic vector potential” and αµ

as the “intrinsic vector potential matrix” or “matrix vector potential.” Thus (31) becomes
the Maxwell-like equation

∂ ρ ′∂ ′ρA
µ
i − ∂µ ′∂ ′κAκi = qjµ1 , (35)

so that the intrinsic vector potential Aµi satisfies Maxwell’s equation (32) aside from the issue
of coordinates x versus y.

The Maxwell-like equation (35) is our justification for characterizing the first 4-spinor as
charged and the second 4-spinor as uncharged. The reason for the difference originates with
the intrinsic momentum matrix πµ. By definition (9), the matrix πµ = kγµ21 is off-diagonal
with nonzero components in the 21-block. Thus the translation matrix D(1, y) has all of
its y-dependence in the 21-block and the hermitian conjugate D†(1, y) has y-dependence
in the 12-block. Since the gamma matrices γt and γµ are block-diagonal, the quadratic
y-dependence follows from D†(1, y) times D(1, y) which is effectively a 12-block times a 21-
block. But 12 times 21 yields a 11-block, and all the quadratic y-components in αµ are in the
11-block as seen in (29). Applying two y-derivatives to αµ can, therefore, only yield nonzero
results in the 11-block, as in (30). Hence the second 4-spinor ψ2 is not charged while the
first 4-spinor ψ1 is charged and that is due to the off-diagonal donor-receiver nature of the
momentum matrices.

Gauge invariance of the Maxwell-like equation (35) follows when the matrix vector po-
tential αµ undergoes a gauge transformation

α̃µ = αµ + ∂µχ , (36)

where the gauge function χ(y) is an 8× 8 matrix whose components have symmetric second
partials, ∂ ν ′∂ µ ′χ = ∂ µ ′∂ ν ′χ.

One can find a gauge χ0 that makes the gauge-transformed intrinsic vector potential
divergence-free. We don’t do that. Instead we need a different gauge, a special gauge to
make a mass term.

5 Gauge, mass term and field equations

The previous section dealt with free quantum fields. In this section a lagrangian is chosen
for interacting fields and field equations are found.

The initial lagrangian L0 combines the free-field lagrangians Lψ and LA for electromag-
netism with the lagrangian Lint for the electromagnetic interaction. One has

L0 ≡ Lψ + LA + Lint = ψ̄pλγ
λψ − 1

4
FµνF

µν − qAµjµ1 , (37)
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where pλ = i∂λ is the momentum, the partial derivative being with respect to spacetime
coordinates xλ, Fµν is the electromagnetic field of the vector potential Aµ, Fµν ≡ ∂νAµ−∂µAν .
The quantity Aµ is the vector potential and the charge current is qjµ1 . The functions in L0

depend on x. There are no intrinsic quantities in L0.
The interaction lagrangian, i.e. Lint = −qAµjµ1 , does not include jµ2 because we interpret

the Maxwell-like equation (35) as showing that jµ1 , not jµ2 , carries electromagnetic current.
Now the initial lagrangian L0 is modified by including intrinsic quantities. Add the

intrinsic momentum πµ to the momentum pµ; the replacement is pµ → pµ + πµ. Also, the
intrinsic vector potential Ãiµ is combined with the continuous rep vector potential Aµ. The
general matrix vector potential, i.e. α̃µ = αµ + ∂µ′χ, is the fixed matrix vector potential αµ

in (28) and (29) with arbitrary gauge χ. The gauge χ is a function of intrinsic coordinates y
and has yet to be determined.

Including the intrinsic quantities produces the lagrangian L,

L ≡ ψ̄
[
(i∂λ + πλ) γ

λ − (qAλ + qαλ + q∂ ′λχ) γλ11

]
ψ − 1

4
FµνF

µν . (38)

The lagrangian L has both functions of spacetime coordinates x and functions of intrinsic
coordinates y.

The intrinsic gauge χ is a function of the ys constrained only by having symmetric second
partial derivatives. We choose the special gauge to be

χ = −a
[(

1− m

4aq

)
yλγ

λ + i
k

2
y2 (112 + 121) +

k2

3
y2yλγ

λ
11

]
+

1

q
yλπ

λ , (39)

where the constant a is given by (34). The gauge-transformed matrix vector potential is
then

α̃µ = αµ + ∂µ′χ = (40)

= −a
[
− m

4aq
γµ + ikyλ(γ

λ
12γ

µ
22 + γµ22γ

λ
21) + 2ikyµ (112 + 121)− 2

3
k2y2γµ11 +

8

3
k2yµyλγ

λ
11

]
+

1

q
πµ .

While α̃µ is quite a mess, the gauge is chosen to produce a simplified lagrangian with a mass
term.

One finds that, with the gauge χ in (39), the lagrangian L in (38) becomes

L(φ, ∂φ) = ψ̄
[
(i∂λ − qAλ) γλ11 −m111 + i∂λγ

λ
22

]
ψ − 1

4
FµνF

µν , (41)

where the placeholder φ indicates the fields ψ̄, ψ, Aµ. All these functions depend on spacetime
coordinates x.
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The special gauge χ removed the functions of intrinsic coordinates y in αλ from the
Lagrangian L. By (38), this means that the y-dependence of the expression αλγ

λ
11 is in the

form ∂ ′λχγ
λ
11. In one sense, αλ and γλ11 are perpendicular, if by “perpendicular” one means

that their scalar product αλγ
λ
11 is effectively zero because the y-dependence can be gauged

away.
Also, we made the intrinsic momentum term πµ disappear. This is possible because πµ

is the gradient πµ = ∂µ ′
(
kyλγ

λ
21

)
and, therefore, can be absorbed by the gauge.

The field equations are the Euler-Lagrange equations,

∂L

∂φ
− ∂λ

[
∂L

∂(∂λφ)

]
= 0 , (42)

with suitable boundary conditions, i.e. the fields vanish properly at infinity.
The field equations for the continuous rep vector potential φ → Aµ(x) are Maxwell’s

equations for a current source qjµ1 ,

∂λ∂λA
µ − ∂µ∂λAλ = qjµ1 . (43)

Thus, we have set up the lagrangian so that the source of the vector potential Aµ(x) is the
current qjµ1 . The assumption that qjµ1 is the electromagnetic current is based on the identity
(30) which became the Maxwell-like equation (35).

Finally, varying L with φ→ ψ̄(x) and φ→ ψ(x) gives Euler-Lagrange equations for the
8-spinor. The 8-spinor fields ψ(x) and ψ̄(x) obey field equations for the first 4-spinor ψ1 and
a distinct set of field equations for the second 4-spinor ψ2.

For the first 4-spinor ψ1 we get Dirac equations for a charged, massive particle,

(i∂λ − qAλ) γλDψ1 = m1ψ1 and
(
−i∂λψ̄1 − qAλψ̄1

)
γλD = m1ψ̄1 . (44)

For the second 4-spinor ψ2, one finds Dirac equations for a massless particle,

γλD∂λψ2 = 0 and ∂λψ̄2γ
λ
D = 0 . (45)

The first 4-spinor ψ1 obeys the Dirac equation for a massive fermion with charge q in an
electromagnetic field with vector potential Aµ. See, for example, Ref. [5], Chapter XX.9 for
a discussion. The second fermion ψ2 has neither electromagnetic charge nor mass and obeys
free-particle field equations.
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6 Concluding remarks

The mass m of the 4-spinor ψ1 arises because it is charged. The current jµ1 is assumed to
be charged and not jµ2 because of a matrix identity, (30), which looks like one of Maxwell’s
equations with the first 4-spinor ψ1 supplying the current density. That places ψ1, and not
ψ2, in the interaction energy with the intrinsic vector potential where it can get mass from
the intrinsic gauge χ.

Electromagnetic field energy does not enter into the process. Intrinsic quantities offer
an alternative way of including a mass term that has nothing to do with any inertia caused
by carrying along an electromagnetic field as the charge moves. It might, therefore, be
more consistent to associate electromagnetism with one of the non-traditional theories that
discards the need for an electromagnetic field. Here, we have followed the conventional
treatment of electromagnetism by incorporating a vector potential Aµ.

The field equation (43) for the vector potential Aµ is gauge invariant. The special gauge
χ in (39) that gives the mass term is an intrinsic 8× 8 matrix function associated with the
intrinsic counterpart to Aµ. The continuous rep vector potential Aµ is not involved in the
origin of the mass term. Thus the vector potential Aµ can be gauge-transformed and the
consequences of gauge invariance continue here unchanged from conventional electromag-
netism.

The intrinsic gauge χ, Eq. (39), removes all interactions between the first 4-spinor ψ1

and the second 4-spinor ψ2. These are the off-diagonal blocks in χ, the terms proportional
to 112, 121, and πµ which is nonzero in the 21-block. In this way, the charged massive
electron-like particle does not interact with the massless chargeless neutrino-like particle.
This is an assumption. In general, an interaction between the two 4-spinors ψ1 and ψ2

could be implemented by introducing suitable off-diagonal terms χ12 and χ21 with nonzero
components confined to the 12- and 21-blocks. Such speculation is well beyond the horizon
of the present paper. Our focus is to provide a mass for the otherwise massless charged
4-spinor ψ1. Interactions between the first and second 4-spinors originating with an intrinsic
gauge may be considered in some future work.

The field equations (44) and (45) for the fermion fields ψ1 and ψ2 are those of a charged
massive particle and a massless particle, respectively. These are long-studied equations and
so there is nothing new. We keep four components for the massless particle because, if it
represents a neutrino, nonzero neutrino mass is indicated by experimental results.

In summary, the consideration of new intrinsic quantities has allowed a mass to be as-
signed to the charged fermion without becoming entrapped by the quandaries of charge
distribution models.
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An 8x8 matrix rep of the Poincare group and an intrinsic vector potential, by Richard Shurtleff, Went-
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This notebook contains an 8x8 matrix representation of the Poincare group of spacetime transforma-
tions rotations, boosts and translations that preserve the scalar product of two 4-vectors.

The representation is set up to be applied to an 8-spinor wave function made of two 4-spinor Dirac 
fermions.

The intrinsic vector potential is a quantity that obeys a Maxwell-like equation whose source is the first 
4-spinor which is, therefore, charged.

The intrinsic gauge is chosen in part to give the first 4-spinor a mass. Thus the charged 4-spinor 
acquires mass due to its being charge.

The calculations are discussed in my 2019 paper1 `Intrinsic vector potential and electromagnetic 
mass’. Many equations from the article are verified in this notebook. 

A ready-to-run version of this notebook should be available on the Wolfram User Notebook Archive, 
current URL: https://notebookarchive.org/ (as of Nov. 21, 2019)

Symbols
  
The table has the symbol from the paper, its Mathematica notation, and its definition

ημν, ημν ημν[[μ,ν]] the spacetime metric, flat, a 4x4 diagonal matrix with diagonal = 
{+1,+1,+1,-1}
δij δij[[i,j]] Identity matrix, one along the diagonal i = j and zero otherwise

ZeroMatrix[n] an nxn matrix of zeros 
 1 IdentityMatrix[n] the unit nxn matrix

xμ x[[μ]] the four Minkowski coordinates of a point (event) 
δxμ δxμ[μ] the μth component of a coordinate interval 



bμ b[[μ]] 4-vector displacement parameters for a translation
yμ y[[μ]] intrinsic Minkowski coordinates, independent of xμ 
x2 xSQUARED[x] x2 = xμ xμ = x12+ x22 + x32 - x42; scalar product of x with itself

ωμν ω[[μ,ν]] antisymmetric tensor of parameters for a spacetime rotation (Lorentz 
transformation)
ψ ψ8[[i]] 8-spinor with component index i = 1,2,...,8
ψ1 ψ1[[i]] the first 4-spinor in ψ, i = 1,2,3,4 with ψ1 = 0 for i = 5,6,7,8
ψ2 ψ2[[i]] the second 4-spinor in ψ, i = 5,6,7,8 and ψ2 = 0 for i = 1,2,3,4
ψ ψ8bar[[i]] the Dirac conjugate  ψ† γ4 

 τμ τμ[[μ]] the four Pauli 2x2 spin matrices with μ = 1,2,3,4 and time is μ = 4.
 γD

μ γDμ[[μ]] the four Dirac 4x4 gamma matrices
γD

5 γD5 the product  γD
5 = ⅈγD

4γD
1γD

2γD
3, note that time γD

4 is first.
 
 Mij an 8x8 matrix with nonzero components only in the ij-block with 4x4 
blocks ij = 1,2.
 γij

μ γμij[[μ]] four 8x8 matrices with the 4x4 matrix γD
μin the ij block, where i,j = 1,2

  1ij  oneij an 8x8 matrix with the unit 4x4 matrix in the ij block, where i,j = 1,2
  
  γALL[μ] the four 8x8 matrices γij

μarranged in a 2x2 matrix so that γALL[μ][[i,j]] is 
γij

μ

    oneALL the four 8x8 matrices 1ij arranged in a 2x2 matrix so that oneALL[[i,j]] is 1ij 
  γμ γμ[[μ]] four 8x8 matrices with γD

μ in the 11 and 22 diagonal blocks
  
 
 σμν σμν[[μ,ν]] the μνth angular momentum 8x8 matrix
 πμ πμ[[μ]] the μth linear momentum 8x8 matrix
 k kc scale factor for the πμ matrices
 
(Λ,b) a Poincare transformation, the rotation Λ(ω) followed by the transla-
tion along bμ.
D(Λ,0) DΛ0[ω] the 8x8 matrix representing a pure spacetime rotation (no translation)
D(1,b) D1b[b] the 8x8 matrix representing a pure translation (no spacetime rotation)
D†(1,b) D1bDagger[b] hermitian conjugate of the translation D(1,b); transpose of the complex 
conjugate
D(Λ,b) DΛb[ω,b] the 8x8 matrix representing the transformation (Λ,b) 
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αμ αμ[[μ]] the 8x8 matrix intrinsic vector potential
a ca a constant associated with the intrinsic vector potential αμ

χ χ intrinsic gauge, an 8x8 matrix function of intrinsic coordinates y

m m mass
q q charge

Definitions

In[ ]:= (*metric, Kronecker delta, null matrix*)

ημν = { {+1, 0, 0, 0}, {0, +1, 0, 0}, {0, 0, +1, 0}, {0, 0, 0, -1} };

δij = IdentityMatrix[50]; (* 50 = ∞ *)

ZeroMatrix[n_] := ZeroMatrix[n] = IdentityMatrix[n] - IdentityMatrix[n]

(*coordinate 4-vectors*)

x = {x1, x2, x3, x4}; (*Spacetime*)

b = {b1, b2, b3, b4}; (*displacement*)

y = {y1, y2, y3, y4}; (*Intrinsic*)

xSQUARED[x_] := Sum[ημν[[μ1, μ2]] × x[[μ1]] × x[[μ2]], {μ1, 4}, {μ2, 4}]

(*Use this for any coordinates*)

In[ ]:= (*rotation parameters, spinor wave functions*)

ω = {{0, ω12, ω13, ω14}, {-ω12, 0, ω23, ω24}, {-ω13, -ω23, 0, ω34}, {-ω14, -ω24, -ω34, 0}};

ψ8 = {ψ81, ψ82, ψ83, ψ84, ψ85, ψ86, ψ87, ψ88};

ψ1 = {ψ81, ψ82, ψ83, ψ84, 0, 0, 0, 0};

ψ2 = {0, 0, 0, 0, ψ85, ψ86, ψ87, ψ88};

ψ8bar = {ψ8b1, ψ8b2, ψ8b3, ψ8b4, ψ8b5, ψ8b6, ψ8b7, ψ8b8};

In[ ]:= (*2x2 Pauli spin matrices, 4x4 Dirac gamma matrices*)

τμ = { {{0, 1}, {1, 0}}, {{0, -ⅈ}, {ⅈ, 0}}, {{1, 0}, {0, -1}}, {{1, 0}, {0, 1}} };

γDμ = +ⅈ TableArrayFlatten{0, -τμ[[μ]]}, 
ν

4

(+ημν〚μ, ν〛) τμ〚ν〛, 0, {μ, 4};

γD5 = ⅈ γDμ[[4]].γDμ[[1]].γDμ[[2]].γDμ[[3]];
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In[ ]:= (*There are four 4x4 blocks in an 8x8 matrix. *)

(*These are 8x8 matrices with nonzero components in just one block.*)

γμ11 = Table[ArrayFlatten[{{γDμ[[μ]] , ZeroMatrix[4]}, {0, ZeroMatrix[4]}}], {μ, 4}];

γμ22 = Table[ArrayFlatten[{{ZeroMatrix[4] , 0}, {0, γDμ[[μ]]}}], {μ, 4}];

γμ21 = Table[ArrayFlatten[{{0, ZeroMatrix[4] }, {γDμ[[μ]], 0}}], {μ, 4}];

γμ12 = Table[ArrayFlatten[{{0, γDμ[[μ]]}, {ZeroMatrix[4] , 0}}], {μ, 4}];

one11 = ArrayFlatten[{{IdentityMatrix[4], 0}, {0, ZeroMatrix[4]}}];

one22 = ArrayFlatten[{{ZeroMatrix[4], 0}, {0, IdentityMatrix[4]}}];

one12 = ArrayFlatten[{{0, IdentityMatrix[4]}, {ZeroMatrix[4] , 0}}];

one21 = ArrayFlatten[{{0, ZeroMatrix[4]}, {IdentityMatrix[4] , 0}}];

In[ ]:= (*The four 8x8 matrices γij
μ arranged in a 2x2 matrix so that γALL[μ][[i,j]] = γij

μ.*)

γALL[μ_] := {{γμ11[[μ]], γμ12[[μ]]}, {γμ21[[μ]], γμ22[[μ]]}}

(*The four 8x8 matrices 1ij arranged in a 2x2 matrix so that oneALL[[i,j]] = 1ij.*)

oneALL = {{one11, one12}, {one21, one22}};

In[ ]:= (*8x8 gamma matrices*)

γμ = Table[γμ11[[μ]] + γμ22[[μ]], {μ, 4}];

In[ ]:= (*Poincare generators*)

(* Angular momentum matrices,

i.e. Lorentz generators for rotations and boosts  together = spacetime rotations*)

σμν = Table
-ⅈ

4
(γμ[[μ]].γμ[[ν]] - γμ[[ν]].γμ[[μ]]), {μ, 4}, {ν, 4};

(*Momentum matrices, i.e. generators for translations.*)

πμ = Table[kc γμ21[[μ]], {μ, 4}];

In[ ]:= (*Poincare Group transformations*)

(*Lorentz group of spacetime rotations*)

DΛ0[ω_] :=

SimplifyMatrixExpSum+ⅈ ημν[[μ1, μ2]] × ημν[[ν1, ν2]] × ω[[μ1, ν1]] × σμν[[μ2, ν2]]  2,

{μ1, 4}, {μ2, 4}, {ν1, 4}, {ν2, 4}, ω ∈ Reals

(*Group of translations and hermitian conjugate transpose plus complex conjugate*)

D1b[b_] :=

Simplify[MatrixExp[Sum[-ⅈ ημν[[μ1, μ2]] × b[[μ1]] × πμ[[μ2]], {μ1, 4}, {μ2, 4}]]];

D1bDagger[b_] := FullSimplifyTransposeConjugate

IdentityMatrix[8] - ⅈ Sum[ημν[[μ1, μ2]] × b[[μ1]] × πμ[[μ2]], {μ1, 4}, {μ2, 4}],

{kc, b1, b2, b3, b4} ∈ Reals

(*general spacetime transformation, spacetime rotation followed by a translation*)

DΛb[ω_, b_] := D1b[b].DΛ0[ω] (* Eqn. 12, definition of DΛ,b. *)

In[ ]:= (*Intrinsic vector potential and intrinsic gauge*)

αμ = Table[FullSimplify[

-ca γμ[[4]].D1bDagger[y].γμ[[4]].γμ[[μ]].D1b[y], {kc, y} ∈ Reals], {μ, 4}];

χ[y_] := -ca Sum ημν[[λ1, λ2]] 1 -
m

4 ca q
y[[λ1]] × γμ[[λ2]] +

kc2
xSQUARED[y]

3
y[[λ1]] × γμ11[[λ2]] + ⅈ

kc

2
xSQUARED[y] one21 + one12 -

1

q ca
y[[λ1]] × πμ[[λ2]] , {λ1, 4}, {λ2, 4}
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Poincare algebra

In[ ]:=

Print["check Angular momentum commutators (Eqn. 10)"]

Print" ⅈ[σ
μν,σρσ] = η

νρ
σ
μσ
-η

μρ
σ
νσ
-η

νσ
σ
μρ
+η

μσ
σ
νρ : ",

{0} == Union[Flatten[Table[ⅈ (σμν[[μ, ν]].σμν[[ρ, σ]] - σμν[[ρ, σ]].σμν[[μ, ν]]) -

(ημν[[ν, ρ]] × σμν[[μ, σ]] - ημν[[μ, ρ]] × σμν[[ν, σ]] - ημν[[ν, σ]] × σμν[[μ, ρ]] +

ημν[[μ, σ]] × σμν[[ν, ρ]]), {μ, 4}, {ν, 4}, {ρ, 4}, {σ, 4}]]]

check Angular momentum commutators (Eqn. 10)

ⅈ[σ
μν,σρσ

] = η
νρ
σ
μσ
-η

μρ
σ
νσ
-η

νσ
σ
μρ
+η

μσ
σ
νρ : True

In[ ]:=

Print["check that (linear) momentum generators form a vector (Eqn. 11)"]

Print" ⅈ[σ
μν,πρ] = η

νρ
π
μ
-η

μρ
π
ν : ",

{0} == Union[Flatten[Table[ⅈ (σμν[[μ, ν]].πμ[[ρ]] - πμ[[ρ]].σμν[[μ, ν]]) -

(ημν[[ν, ρ]] × πμ[[μ]] - ημν[[μ, ρ]] × πμ[[ν]]), {μ, 4}, {ν, 4}, {ρ, 4}]]]

check that (linear) momentum generators form a vector (Eqn. 11)

ⅈ[σ
μν,πρ

] = η
νρ
π
μ
-η

μρ
π
ν : True

In[ ]:= Print[

"check translations form an Abelian group because the generators commute (Eqn. 11)"]

Print" ⅈ[π
μ,πν] = 0 : ",

{0} == Union[Flatten[Table[ⅈ (πμ[[μ]].πμ[[ν]] - πμ[[ν]].πμ[[μ]]), {μ, 4}, {ν, 4}]]]

check translations form an Abelian group because the generators commute (Eqn. 11)

ⅈ[π
μ,πν

] = 0 : True

Translations are linear functions of displacements bμ

In[ ]:= Print"(Eqn. 13) check the product of two momenta vanishes; π
μ
π
ν

= 0 : ",

{0} == Union[Flatten[Table[πμ[[μ]].πμ[[ν]], {μ, 4}, {ν, 4}]]]

(Eqn. 13) check the product of two momenta vanishes; π
μ
π
ν

= 0 : True

In[ ]:=

Print

"(Eqn. 13) check translations are linear in displacements bμ; D(1,b) = 1 - ibμπ
μ: ",

{0} ⩵ UnionFlattenSimplifyD1b[b] - IdentityMatrix[8] -

ⅈ Sum[ημν[[μ1, μ2]] × b[[μ1]] × πμ[[μ2]], {μ1, 4}, {μ2, 4}], b ∈ Reals

(Eqn. 13) check translations are linear in displacements bμ; D(1,b) = 1 - ibμπ
μ: True

Fields
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It is a long story. The essentials:

1. Quantum Field Theory discounts translations of fields. Fields transform via spacetime ROTATIONS, 
but not translations. (Confusing fact: operators do transform by the full Poincare group including 
translations. That is where waves, ⅇⅈp

σ xσ, come from.)
2. Call a field that transforms just by spacetime rotations a Lorentz field ψ. One can make a Poincare 
field Φ from ψ by multiplying by a translation:

Φ(x,y)  =  D(1,y)ψ(x), 

where x are spacetime coordinates and y are “intrinsic coordinates” that can be, and are assumed to 
be, independent of the x coordinates.
3.  The probability current jμ for the Lorentz field ψ is given by   jμ = ψ γμ ψ . For the Poincare field we 
have  Jμ = Φ γμ Φ .
4. One can show that  the Poincare current can be written like the Lorentz current, i.e.

aJμ = ψ αμ ψ,  

except that αμ /a replacesγμ. The constant “a” is placed there for convenience and determined in the 
article1.
5. The four matrices are functions of intrinsic coordinates y,  αμ(y). They are called the Intrinsic Vector 
Potential because they satisfy a Maxwell-like equation.

The intrinsic vector potential αμ(y) is defined above. It satisfies a Maxwell-like equation:

In[ ]:=

Print"(Eqn. 29) check the expression for α
μ ;

αμ

a
= +γ

μ
- ⅈkyρ(γ12

ρ
γ22

μ
+ γ22

μ
γ21

ρ
) + k2y2γ11

μ
- 2k2yμyργ11

ρ : ",

{0} ⩵ UnionFlattenTableFullSimplify
αμ[[μ]]

ca
- +γμ[[μ]] - ⅈ kc Sumημν[[ρ1, ρ2]] ×

y[[ρ1]]  γμ12[[ρ2]].γμ22[[μ]] + γμ22[[μ]].γμ21[[ρ2]], {ρ1, 4}, {ρ2, 4} +

kc2 xSQUARED[y] × γμ11[[μ]] - 2 kc2 y[[μ]] × Sum[ημν[[ρ1, ρ2]] × y[[ρ1]] ×

γμ11[[ρ2]], {ρ1, 4}, {ρ2, 4}] , {kc, b} ∈ Reals, {μ, 4}

(Eqn. 29) check the expression for α
μ ;

αμ

a
= +γ

μ
- ⅈkyρ(γ12

ρ
γ22

μ
+ γ22

μ
γ21

ρ
) + k2y2γ11

μ
- 2k2yμyργ11

ρ : True
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An equation that looks like one of Maxwell’s equations

In[ ]:=

Print"(Eqn. 30) check the Maxwell-like equation ; ∂
ρ ′

∂ρ
′
α
μ

- ∂
μ ′

∂ρ
′
α
ρ

= 12ak2γ11
μ : ",

{0} ⩵ Union

FlattenTableSum[ημν[[ρ1, ρ2]] × D[αμ[[μ]], y[[ρ1]], y[[ρ2]]], {ρ1, 4}, {ρ2, 4}] -

Sum[ημν[[μ, ρ2]] × D[αμ[[ρ1]], y[[ρ1]], y[[ρ2]]], {ρ1, 4}, {ρ2, 4}] -

12 ca kc2 γμ11[[μ]], {μ, 4}

Print["The appearence of γ11
μ means the current of the first

4-spinor ψ1 carries charge."]

(Eqn. 30) check the Maxwell-like equation ; ∂
ρ ′

∂ρ
′
α
μ

- ∂
μ ′

∂ρ
′
α
ρ

= 12ak2γ11
μ : True

The appearence of γ11
μ means the current of the first 4-spinor ψ1 carries charge.

The intrinsic gauge χ(y) must have symmetric second partials to preserve the Maxwell-like equation 
above, but is otherwise arbitrary. For a certain Lagrangian, see the article1, the following gauge 
removes all  dependence on intrinsic coordinates y, removes the intrinsic momentum πμ, and provides 
a mass term. 

In[ ]:=

Print"(Eqn. 39) The chosen intrinsic gauge ; χ =

-a[(1 -
m

4 aq
)yλγ

λ
+ ⅈ

k

2
y2(112 + 121) +

k2

3
y2yλγ11

λ
] +

1

q
yλπ

λ : ",

{0} ⩵ UnionFlattenχ[y] - -ca Sum ημν[[λ1, λ2]] 1 -
m

4 ca q
y[[λ1]] × γμ[[λ2]] +

ⅈ
kc

2
xSQUARED[y] one12 + one21 +

kc2

3
xSQUARED[y] × y[[λ1]] × γμ11[[λ2]] -

1

q ca
y[[λ1]] × πμ[[λ2]] , {λ1, 4}, {λ2, 4} 

(Eqn. 39) The chosen intrinsic gauge ; χ =

-a[(1 -
m

4 aq
)yλγ

λ
+ ⅈ

k

2
y2(112 + 121) +

k2

3
y2yλγ11

λ
] +

1

q
yλπ

λ : True
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In[ ]:=

Print"(Eqn. 40) the gauge-transformed intrinsic vector

potential ; α
μ

+ η
μλ
∂λ

′
χ = -a[-

m

4 aq
γ
μ

+ ⅈkyλ(γ12
λ
γ22

μ
+ γ22

μ
γ21

λ
)

+ 2ⅈkyμ(112 + 121) -
2

3
k2y2γ11

μ
+

8

3
k2yμyλγ11

λ
] +

1

q
π
μ : ", {0} ⩵ Union

FlattenTableFullSimplify + αμ[[μ]] + Sum[ημν[[μ, λ]] × D[χ[y], y[[λ]]], {λ, 4}]  -

-ca -
m

4 ca q
γμ[[μ]] + ⅈ kc Sumημν[[ρ1, ρ2]] × y[[ρ1]]

 γμ12[[ρ2]].γμ22[[μ]] + γμ22[[μ]].γμ21[[ρ2]], {ρ1, 4}, {ρ2, 4} +

2 ⅈ kc y[[μ]]  one12 + one21 -
2

3
kc2 xSQUARED[y] × γμ11[[μ]] +

8

3
kc2 y[[μ]] × Sum[ημν[[λ1, λ2]] × y[[λ1]] × γμ11[[λ2]], {λ1, 4}, {λ2, 4}] +

1

q
πμ[[μ]] , {ca, kc, m, y} ∈ Reals, {μ, 4} 

(Eqn. 40) the gauge-transformed intrinsic vector potential ; α
μ

+ η
μλ
∂λ

′
χ = -a[-

m

4 aq
γ
μ

+

ⅈkyλ(γ12
λ
γ22

μ
+ γ22

μ
γ21

λ
) + 2ⅈkyμ(112 + 121) -

2

3
k2y2γ11

μ
+

8

3
k2yμyλγ11

λ
] +

1

q
π
μ : True

In[ ]:=

Print["(Eqn. 41, matrix part) Matrix terms in the

lagrangian combine to make a mass term for the charged 4-spinor ψ1."]

Print" πλγ
λ

- qαλγ11
λ

- q∂λ
′
χ γ11

λ
= -m 111 : ",

{0} ⩵ UnionFlattenFullSimplifySumημν[[κ1, κ2]]

 + πμ[[κ1]].γμ[[κ2]] - q αμ[[κ1]] .γμ11[[κ2]], {κ1, 4}, {κ2, 4}  -

Sum[q D[χ[y], y[[κ]]].γμ11[[κ]], {κ, 4}] - -m one11, {ca, kc, m, y} ∈ Reals

(Eqn. 41, matrix part) Matrix terms in the

lagrangian combine to make a mass term for the charged 4-spinor ψ1.

πλγ
λ

- qαλγ11
λ

- q∂λ
′
χ γ11

λ
= -m 111 : True

Checks of various other equations in the article1

In[ ]:= (*Dirac gammas must obey the following*)

Print"check that γD
μ
γD

ν
+ γD

ν
γD

μ
= 2 η

μν1 : ",

{0} == Union[Flatten[Table[(γDμ[[μ]].γDμ[[ν]] + γDμ[[ν]].γDμ[[μ]]) -

2 ημν[[μ, ν]] × IdentityMatrix[4], {μ, 4}, {ν, 4}]]]

check that γD
μ
γD

ν
+ γD

ν
γD

μ
= 2 η

μν1 : True
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In[ ]:= (*Eqn. 6*)

Print"check Eqn. 6: γij
μ
γkl

ν
+ γij

ν
γkl

μ
= 2 δjk η

μν1il : ",

{0} == UnionFlattenTableTableγALL[μ][[i, j]].γALL[ν][[k, l]] + γALL[ν][[i, j]].

γALL[μ][[k, l]] - 2 IdentityMatrix[8][[j, k]] × ημν[[μ, ν]] × oneALL[[i, l]],

{i, 2}, {j, 2}, {k, 2}, {l, 2}, {μ, 4}, {ν, 4}

check Eqn. 6: γij
μ
γkl

ν
+ γij

ν
γkl

μ
= 2 δjk η

μν1il : True

In[ ]:= (*Eqn. 7*)

Print"check Eqn. 7: γ
μ

= γ11
μ

+ γ22
μ : ",

{0} == UnionFlattenTableγμ[[μ]] - γμ11[[μ]] + γμ22[[μ]], {μ, 4}

check Eqn. 7: γ
μ

= γ11
μ

+ γ22
μ : True

In[ ]:= (*Eqn. 8*)

Print"check Eqn. 8; σ
μν

= -
ⅈ

4
(γ11

μ
γ11

ν
- γ11

ν
γ11

μ
)-

ⅈ

4
(γ22

μ
γ22

ν
- γ22

ν
γ22

μ
): ", {0} ==

UnionFlattenTableσμν[[μ, ν]] - -
ⅈ

4
γμ11[[μ]].γμ11[[ν]] - γμ11[[ν]].γμ11[[μ]] -

ⅈ

4
γμ22[[μ]].γμ22[[ν]] - γμ22[[ν]].γμ22[[μ]] , {μ, 4}, {ν, 4}

check Eqn. 8; σ
μν

= -
ⅈ

4
(γ11

μ
γ11

ν
- γ11

ν
γ11

μ
)-

ⅈ

4
(γ22

μ
γ22

ν
- γ22

ν
γ22

μ
): True

In[ ]:= (*Eqn. 9*)

Print"check Eqn. 9: π
μ

= kγ21
μ : ",

{0} == UnionFlattenTableπμ[[μ]] - kc γμ21[[μ]], {μ, 4}

check Eqn. 9: π
μ

= kγ21
μ : True

In[ ]:= (*Eqn. 12*)

Print"check Eqn. 12: D(Λ,b) = ⅇ
-ⅈbμ π

μ

ⅇ
+

ⅈ

2
ωμν σ

μν

: ",

{0} == UnionFlattenDΛb[ω, b] - Simplify[

MatrixExp[Sum[-ⅈ ημν[[μ1, μ2]] × b[[μ1]] × πμ[[μ2]], {μ1, 4}, {μ2, 4}]]].Simplify

MatrixExpSum+ⅈ ημν[[μ1, μ2]] × ημν[[ν1, ν2]] × ω[[μ1, ν1]] × σμν[[μ2, ν2]]  2,

{μ1, 4}, {μ2, 4}, {ν1, 4}, {ν2, 4}, ω ∈ Reals

check Eqn. 12: D(Λ,b) = ⅇ
-ⅈbμ πμ

ⅇ
+

ⅈ

2
ωμν σμν

: True

In[ ]:= (*Eqn. 14*)

Print"check Eqn. 14; D(1,b)ψ8 = {{ψ1},{ψ2 - ⅈkbμγD
μ
ψ1}} : ",

{0} ⩵ UnionFlattenSimplifyD1b[b].ψ8 -

ψ8 - ⅈ Sum[ημν[[μ1, μ2]] × b[[μ1]] × πμ[[μ2]].ψ8, {μ1, 4}, {μ2, 4}], b ∈ Reals

check Eqn. 14; D(1,b)ψ8 = {{ψ1},{ψ2 - ⅈkbμγD
μ
ψ1}} : True
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1Intrinsic vector potential and electromagnetic mass 

Richard Shurtleff, Department of Sciences, 
Wentworth Institute of Technology, 550 Huntington Avenue, 
Boston, MA, USA, 02115,
shurtleffr@wit.edu

Abstract

Electric charges may have mass in part or in full because they charged. Supplying details is the electro-
magnetic mass problem. Here, the charge’s mass is associated with intrinsic quantum mechanical 
quantities so that the classical problems with extended charge distributions, for example, are irrele-
vant. An intrinsic vector potential is defined, based on intrinsic linear momentum. The charge-electro-
magnetic field interaction energy is gauge-dependent and the needed mass term is placed with the 
interaction energy in the intrinsic gauge. Traditional electromagnetism retains its gauge invariance. 
The field equations make no new predictions since all dynamic dependence on intrinsic quantities can 
be gauged away. The field equations describe a massive, charged 4-spinor Dirac electron-like particle 
and an uncharged, massless neutrino-like particle, formulas that have been a part of physics for nearly 
a century.

2Many equations appearing in the article are verified by the calculations in this notebook. The equa-
tions checked are equations numbered (6), (7), (8), (9), (10), (11), (12), (13), (14), (29), (30), (39), (40), and 
(41).

3The article is expected to be uploaded to Arxiv or Vixra by the end of November 2019. It has been 
submitted to The Foundations of Physics, and so it may appear there eventually. 

10     20191114IntrinsicVectorPotentialWolfram.nb


	20190911MatrixVectorPotentialEMmass2.pdf
	20191114IntrinsicVectorPotentialWolfram.pdf

