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l. Abstract.

Phase-transitions are normally known from physics, e.g. when a matter cha,nges its state of aggregation
while an appropriate transition-threshold changes into a decisive quality. Phenomena of such kinds are
not reserved for physics only, they can also be observed - detached from any physical application - in a
wide range of mathematical contexts. These scenarios - generally called as phase-transitions now - will
mediate between manifolds of different topologies. Some physics-examples are known where the threshold
of the appropriate transition is excelled by a fractal structure with the property of invariance in
renormalizations. Distribution of magnetized micro-cells in a Ferro-magnet at a critical temperature may
be mentioned as a typical exa,mple in this sense- Similar qualities can also be verified for phass-transiti«rns
in pure mathematical contexts, especially when the transitions between manifolds of different topologies
are mediated by fractals that turn out to be invariant in renormalizations. Therefore it seems, this kind of
phenomena will always happen in space a,s soon the aforementioned conditions are met.

2. Introduction.

A phase-transition is normally known in physical contexts, but which content may be behind this term,
shall now be described by the phenomenon of Ferro-magnetism.
A 2-dimeasional Ferro-magnet may subsequently be considered as a square-lattice subdivided into a
large number of small quadratic micro-magnets (sub-squares of the lattice).

o Likewise the north*poles of the micro-magnets are considered to be either up (positively) or down
(negatively) oriented.

o The micro-magnets can be summarized by renormalization of the lattice into objects of increasing
complexity on increasing scaling*levels. .*

o Magnetization of the whole lattice-system on a certain scaling-level results from the overlay of objects
of the appropriate level.

This may become more obvious by the following scenario:

r Initially SxS micro-magnets may be summarized into a new otrject. This new object will be either up or
negatively down depending on the orientation-majority of the included parts.

. Every new object consisting of 4 or less up and 5 or more down oriented parts will gain a negative
alignment. An analogous statement can be made with regard to a positive alignment of an. appropriate
object if its group of micro-magnets are alternatively oriented.

This may graphically tre represented in the following picture:

Renorrnalization of objects will be continued until an appropriate granulation of the lattice has been
reached. In this way the system will become more and more coarse*grained.
This renormalisation will enable to track changes of physical properties inside the lattice, if it is ,r,ssumesr
that neighbouring groups will try to interact with each other to gain alignment of their orientations.

o If the interaction is weak compared to the influencing temperature from outside, thermal fluctuations
will cause random orientation patterns arnong the renormalization-groups. No order of orientation can
be found inside the lattice, whatever the scaling*level will be. The lattice appears un*magnetized
macroscopically.

r As far as the interaction among the groups becomes strong compared to the in{luence of outside
temperature, various up and/or down oriented regions inside the lattice will arise.

r Because probabilities are equal for a positive or negative orientation, small disturbances of the
equilibrium will be enough 6e magrretize th.e whole lattice in one of the optional directions.
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Starting without interaction and turuing it oa slowly, various distributions arnong up and down magnetized
groups inside the lattice cam be observed. At a critical interaction this distribution suddenly keeps similar
throughout all renormalizations inside the lattice.

o The distribution of magnetized groups has become independent from renormalization-levels.
o This trehaviour at the critical ma.gnetiza,tion of the groups is typica,l for a phase-transition inside the

lattice.
o This critical distribution of magnetization marks the transition from a state without into a state with

macroscopic magnetization of the lattice.

In order to further clarify the just mentioned situations, the following picture should be observed.
On microscopic level it is hardly to decide whether the lattice is up (black) or down (white) magnetized.
Therefore it's advisable to look on it more coarse-grained. But only when the critical granulation finally
has been reached, the magnetizationwill become obvious macroscopically.

o Only if the interaction among the groups is beyond its critical value, the lattice can macroscopically be
considered a^s a Ferro-magnet, most of the lattice's groups are either up or down oriented.

r Below the critical value of interaction, no order can be found even if the lattice get constantly less
granulated; the lattice-system does not appear Ferro-magnetic.

e At the critical interaction of the groups within the lattice, the distribution of regions with positive and
negative orientations becomes a fractal and keeps similar on all scaling-levels during renormalizations.
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This example of phase-transition from physics is excellent by the topological properties:

r It occurs between 2 different 2-dimensional manifolds of a local Euclidean space.

o It is mediated by a fractal which keeps invariant in renormalization.

But this mathematical characterization is also valid for phenomena in a pure mathematical context,
completely detached from any application in physics. Some appropriate examples will be discussed next.

3. SIERPII{SK[-Gssket and its Relatives.

SIERPINSKI-gasket is:
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o A 2-dimensional, symmetric fractal with strict self-similarity and invariance in renormalizations.
o It may be generated from a square by applying ar appropriate Iterated Function System (IFS).

Modifying the IFS by operations from the symmetry-group of the square will enatrle to obtain all relatives
of the gasket. All these fractals will prove to be as self-similar and therefore invariant in renormalizations;
they mediate transformations tretween rna.nifolds of order and chaos. Thereby cha.os will be observed in a
rnanifold of random mor,es, while order occurs in manifolds which contain the fractals themselves.

3. l . Deterministic iterated Function-System IFS.

A Multi-Reduction-Copy-Machine (MRCM) is a collection of contractions (similarity-transformations
with angle*preservations) :

o Enabled by a system of reduction*lenses.
o The lens-system of MRCM can be described by a set of affine transformations w6=1*1.1.

o For a given initial image A, small a.ffine copies w«=r*N (A) are producedn which are finally superimposed
to a new image as output of MRCM try the HUTCHINSON-operator:
W(A) : wr(A)Uwr(a)U... U**(A). Running the MRCM in feedback*mode corresponds to iterating
the operator W(A). This is in essence the deterministic Iterated-Function-System (IFS).

In order to make IFS more obvious, the following scheme maybe helpful:

lnitial picture: Ao o
Affine transformations: w11vr21...,wN o O o

I nishtbel I I nbhtbeappliedtol I lsuperinposedtoll I vial + + +
Transposition v Contraction v Shearing v Rotation v Reflection a

Picture: A o
lasl +

w,(A) n w"(A) n... A w*(A) o
HUTCHINSON-operator: W(A) : wr(A)LJwr(A)U... Uw*(A) a a

I enables I +
Sequence of images: {A.,*, : W(Ar), J : 0,1,2,...,J} a a

I tendi,tg toward I +
Final oicture: A O o
I nbhtshtedby I +
Attractor of IFS o
A-: W(A-) a
Princiole of IFS

,:

The principle above will enable by the small modifications generation of an IFS appr«rpriate to specify the
topology of the SIERPINSKI-gasket:

o Affine transformations w, are limited to number of 3.

o Any picture will become contracted by a factor 0.5 for any iteration-step
o There after:

. wl keeps a picture in place from step before

. w2 moves a picture aside from the place of step Lrefore

. w3 moves a picture ahead from the place of step before

For details, please look into the scheme below:

AIkl = W(Alk-lI) = w,(AIk*1I) Jw,(Alk-1I )L Jw"(Alk-11) a a
I with + +

Positioning and contraction: (wr = X/2,Y /21 A (wr= [X+ll/2,Y /2) n (w* =X/2,1Y+11/2\ a a
I with +

Alrl = 
gr14J0l) 

= w, (Alol)U"or(A ol)t Jw.(Alol) I lim{k *o} a a
results in I + ,;i l +

IFS of SlERPlNSKl.qasket a
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I starts wilh I +

A[0]«":orr=ol1r:.7":oy(*:'/Y:1)(x=0/Y=1) = E
a

Blueprint: A[1] = A[001[ JAI1OII JAIor] o o
I wnerell lresultsinl + T

AIOOI [rr-n,--n,, r n orr-nr( o

A[01] rx=o /.,.=o s rrx=o-5,.'.:o,5) 
(x=0'5/Y:1xx =o/Y=1) o

A[10]/x:o-r /y=o',, *=r rr=or("=1/Y=o'5xx:o'5'Y=o'5) a
Atzl ='17v141r1 ) = w1(A[1] ) Uwz(Alrl ) uw3(A[1] ) a

AIk+l] = W(Alkl) = w,(Alkl)t Jw,(Alkl)[ Jw"(Alk]) o
Attractor: Alml =W(oo) o o

I represented hy I +

Blueprint = = Attractor o

IFS for the relatives can be easily obtained by some additions to the specifications from above:

o The former affine transformations will become extended by operations from the symmetry-group of the
square.

o Each optional relative will get one specific operation from the symmetric-group for every affine
transformation
{-r *, w3} individually.

Details can be found again in the scheme below:

IFS for Relatives of SIERPINSKI-qasket o
I nodified with retard to I +

IFS of SIERPINSKI-qasket o
lnt +

wr.n^z^ar(AlOl ) o o
I saoerinused to +

w =V . d^-, a a a
I wherel + +

[v1= (X/2,Y /2\l n fvr= (fx+tl/2,Y /2)l n [v, = x/2,V+Ll/2 o
doeto^1^2^3^4^5-6^71 a

I obtained fron +

do
d1

d2
Symmetry-group of A[O] = de

d4
d5
d6
dz

do dr d2 d" d,4 d5 dß dzl

a a a

O4

d"

d{
d7
d5
d6
do
d,2

d3
dr

d5
d6
d4
d7
d?
do
d1

d*

d6
d4
d7
d5
dr
d3
do
d,

dzl
dol
d. I

d. I

d, I

d, I

d, I

d;l
I whae 1 | inaatet ty I + !

fln = [identity-transformation : s = () u 1 * 2 - 3l a

(dr= [rotation= 3 - O* 1 - 2]) A (dz= [rotation= 2- 3* 0* 1]) o
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d"= lrotation= I * 2 - 3 * 0l a

(d, = lreflectior = 3 * 2 - 1 - O]) A (d. = lreflection = 1 * O * 3 * 2l) o

(du = [reflectiofl = 2 * 1 * O * 3] ) A (d? = [reflection = O * 3 * 2 * 1]) a
Cyclic qroup of the rotations (yellow marked) o

For the members of the family it is valid:

o Each one is specified by w, = vr-d.x (where J e [1,2,31 and K €1O,L,2,,3,4,5,6,fl)
o A number of 83 =512 different collages can be obtained.
r These may be divided into several sub-classes.

A comprehensive description of this is contained in the scheme below.

Number of relatives from SIERPINSKI-qasket: 83 = 512 a
I consistiog ofl +

Relatives non symmetric with respectto diaqonal: 2-224= 448 o o
I synnetric togetha with I +

Counterparts: O

Relatives symmetric with respect to diagonal: 64 o o

Subset of simply-connected fractals o a

Subset of not-simplv-connected fractals O o

Subset of disconnected fractals o a
I specified by exanple I + + + + +

a

\ il.\\ r§\"-r I '

\.d \{ I\\ \\\§\ \\!\

o

a
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3.4. Members of SIEKPINSKI-Faru\|y can be produced by a Chaos-Game.

Small particles of solid matter suspended in a liquid and observed in a microscope will shäw particle*
movements in an irregular, erratic way. This is the called BROWNIAN-motion due to the random
molecular impacts of nelghbouring particles. It may be an appropriate picture for a randomly steered
motion described next.

o Beginning at a point of the plane.
o A walk is started in a direction chosen 1anflomly, it moves for some distant and stops.
o Another ranflsm direction is chosen, it is walked along for some distant and again comes to rest.
r This procedure is repeated again and again.

r After hundreds or thousands of steps more or less the same pattern of the random move will become
evolved but each time a bit more dense.

o In any event there doesn't seem to be much to expect from randomness in conjunction with the images
in such generations.

o One may try a variant, which - on a first glance - could well belong to that category. Following M. F.
BARNSLEY a family of ga"mes is introduced, which can potentially change the intuitive idea of
randomness drastically.

One of these games considered next is apptied on SIERPINSKI-gasket and - with small additional
modifications - Later on its relatives as well:

Number of iterations: 103 r Number of iterations: 1O4 a a
Game-point in plane of markers: z* o

Game-point in plane of markerg: z, I Game.point in plane of marteßr 22 a o
I chosen fialf-way between I l + +

I will linally rcnerate I + +
lnitial qame-point in plane of markers: z" a o

Game-point in plane of markersl z, I Game.Doint in plane of markerc: z*, o a
Randomly chosen numbers in plane: 1 A 2 A 3 o

I as I I I is chosen aoart fron I + l
Makers:1/\2/\3 a o

I torl +
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Chaosgame = a

Randomlychosen marker:1 v 2 V 3 o o O
3

a

J!
t<r

f,;.r. :.i!ia,11..7. r'- r:
-t,dii{: ('rj!,::,<,.

r,'tt. +...-
/:i,!::. *j.,-rr.,.

,i.:'- '-;,r.. t'.1.?* -':';',
-,{l:,,*.,ä.#r.e.:-. -tii;'. i,.;....
oa

2

O

a

I neglected I + +
Spurious dots outside maker-connectinq lines a o

Ch aos-G am e gererafes §lERPlItISKl-Easkef

o SIERPINSKI-gasket has been generated in a completely random process as deterministic structure of
order inform of a self-similar fractal.
o Following the time-process step by step one cannot predict where the next game-point will settle

down.
o Nevertheless the pattern wtrich all game-points together leave behind is absolutely predictable.
o The SIERPINSKI-gasket discloses itself as structure of order in a phase-transition from random

moves.
o Relatives will tre generated principally in a similar way as the gasket in chaos-game from above.

o IFSs for the relatives will tre principally the same a^s for the IFS in case of SIERPINSKI-gasket.
o All game-points therefore will land on pictures A"as in game before although the wo.1r,2,r, have

been modified by the duu1s,1,2,3,4,b,6,21.

o This is guaranteed by the fact that the wp€[1,2,3] despite of their modifications remain qualitatively
the same with respect to the IFS-procedure.

":, ,:, 1.,: . .,1,.;

A .IULIA-set can be characterized:

e As a fractal in complex plane with the property of self-similarity and therefore of invariance in
renormalizations.

o Whether it is a connected or not, it encloses one or more sets of orbits converging to fix-points and it is
enclosed by another set of orbits escaping to infinity.



. ft acts a,s repeller for the enclosed and for the enclosing sets a.s well.

For the subsequent discussions a JULIA-set is considered as a connected one.

4.1. Determination of JULIA-Se|.

Orbits of kind h --* hz+t tota[y contained in the complex pla,ne a.re divided into hh which:

r Escape to infinity and thus trelong to the escape-set or
r Are influenced by fix-points from a limited area, called fix-points-set.
e The fix-points-set itself consists of the prisoner-set and the JULIA*set as disjunctive subsets.

A summary about the relations and individual properties of the sets is presented next:

Flow: (Ir,*=n r z r € C)+[*"+(l e C] a
I enters I +

Escape-set: E, = {ä,*=o.r.r...., I (h* - hx'+l) * infinity} o o

Fix-points-set: L, = {hr* = o.r_r.._, I (h^ - ltn2 + t) - fix-points} a o
I separated into I I

Prisoner.set: P,= {h,*:n, , , I (h* - h*'+l) * (attracting fix.point)} O o

JULIA-seL Jr=h,*=or, ,, l(h* -h*2+() - (repellingfix-point)) a o
I pashed away by I +

Repeller o
JULIA-set :J,= {P, fi {L, \P,}= {o}} o

Specification of{Escape-set} n {Lirnif-sef= {Prsoner-sef} [-l {JUtlA-sef }}

This shall tre more clarified by the example h---+hz+ O.1,2+O.74i. It shows:
o IIow JULIA-set and prisoner-set as subsets of nn applspriate fix-point-set can be specified.
o IIow they can be separated from each other by the properties of their fix*points only.

Fix-points of iteration: h4hz +( (. = O.72+O.74i O
I obtained by I +

Quadratic equation: h2-h+o.12+o.74i = o o o
I solved by I +

h,, = [1 +( 1- 4[O.r2 +O.7 4 i}r / 21 
/ 2 = lL +(O.52-2.96 ill / 2l 

/ 2 a o
I wherel +

(o.bz-2.96i)t/'= p+qf a o

o.52-2.96 i = (p+qi ) (p+ qi) = (p' -q') +(zpq) i O o
I leads to I +

(O.52 =p'-q') A (l-2.96= 2pql = [*1.48 = pol) o a

o.52=p'-2.19/p' O a
I leads to I +

po-o.52o'-2.19 = o o o o
lisll lhadstol + +

Quadratic equation for: p2 o
p" = [0.52+(0.27 +8.76\'/'1/2 = 1o.52+(9.o3)'/'1/2 = 1.762 a a

I hecaase I I I leads to I + +
(D' > 0) A rc.52 < (9-03)ri ') a

o= (1.762'11/2 * 1.33 o a a
I leads to I +

q;-1.48lp=-1.11 a a
I leads to I +

(O.52-2.96 il' /' * L.33-l.ll i o o
I leads to I l

lr, = [1+1.33 -L.Lt il / 2 = [f, .33-1. 11 il / 2 = L.t65-0-555i a o

h2 = [1-1.33+l-Llil/2 = [-O.33-1.1li1/ Z= -0.165+0.555ji a o
I teads n I + +
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l2h,l = 12.33-1. 1 1 f | = l([2.331'z +r1.1112')u 2l > | ol
12h,1= l-0.33+1.11f l= l([0.3312-[1.11]z)1/'z1 < 1 o

I thas identified as +l+
Repelling fix-point
Attractive fix-point

I hastotel l+
Element of JUL|A-set

Element of prisoner-set

Fixed-Points of Sink Sef

4.2. JULIA-Set may be obtained by a Chaos-Game.

A JULIA-set ca.n be obtained in a cha.os-game if a certain kind of orbits is considered; the appropriate
procedure works in the following way:

o One may think about the inverted transformation, i.e., the transfeln3lion that takes apoint g to the
point ä where g: FLz+l; effectively one is iterating backwards.

o With respect to this iteration the character of the JULIA-set changes temporarily from a repeller to an
attractor.

o The procedure to tre applied demands for solving hz-g*t = 0 and writing the appropriate solutions in
the form of ä1 = +(g-t)t/z alaLd. h2: -(g-e)a/2, as pre-images h12 of the point g.

This may be shown by the following example:

o The process starts at fix-point g:1.165-0.555f from JULIA-set.
r One of the two pre-images ä1,2 is selected at random aud replaces g. *
o g is replaced by the ä and the process is repeated this way again and again until enough points have

been collected-
r The calculated points drawn in series will show (depending on extent of the point-set) the following

picture of the JULIA-set appropriate for ä --+ h2+O.t2+O.74i-

There may be some region in the JULIA-set that are hard to go to. In these situations certain
modifications are appropriate to improve the method just mentioned (please look into [3]).

.IULIA-set is to be seen as the attractor in the chaos-game and this reveals an important fact on its self-
similarity.

o The situation is similar to that in a Multiple-Reduction-Copy-Machine (MRCM) where the whole
attractor becomes covercd by small copies of itself.

o This rnakes obvious, any copy is nothing else brrt an image of the whole attractor under the
transformations of the IFS.

o Similar applies to the JULIA-set in the chaos-game above.

One can deduce from that:



a

a

By applying one of the two transformations ht= *{*-t)'/' o, h, = -(g-t)t/z tn any point g of the
JULIA-set, one will obtain another point of the JULIA-set.
Therefore the JULIA-set is invariant with respect to the inverse transformation of ft---+fi,z+l.

Moreover, if ä is a point from the JULIA-set , hz+l cannot be part of the escape-set otherwise the
initial point g would have to be a point of the escape-set too, but g wa^s initially chosen from JULIA-
set.

r On the other halold,hz+t cannot be in the prisoner-set. Due to the continuity of the qua.dratic
transformation, it must be on JULIA-set (the boundary of sink-set).

And thus it follows: A JULIA-set is invariant with respect to:

r transformation h-+hz+l and,

o h: +(g-qrtz as well.

fn other words, the JULIA-set remains invariant under forward- and backward-iterations as well. This
property is called complete invariance.

The global structure of the JULIA-set must appear in its:

o Irnage and
o Pre-images as well.

This explains the appearance of self-similarity associated with ä ---+ fi,2+O.12+O.T4i showu in the next
picture:

The similarity is based on a non-linear transformation, thus the smaller copies contained in itself are not
exact copies but distorted in a way, that they are folded back on themselves.

o One may take any small section of the JULIA-set (i.e. the intersection of a small disk with the JUTIA-
set which is not empty) and apply the itera,tion h---+lf al to every point of the section.

r The result will be in a new typically larger subset of the JULIA-set. Iterating further in this way a finite
numtrer of times will reinstaJl the complete JULIA-set again.

This can be expressed by:

r The complicated global structure of the JULIA-set is a,lready conta,ined in any arbitrarily small seetion
of it, thus it is self-similar.

o The JULIA-set thus turns out to remain invariant under renormalizations.
o It can be considered as a phase-transition between orbits of the prisoner-set, converging to a finite

fix-point, and those of the escape-set, tending towards infiniteness.

Mh-
^d#*,^_4" irl

,{,*,nt;*!n

I

Ja
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5 . F inal - St at e s - C har a ct er i s t i c s of t h e Quadr at i c - It er at or w it hin dffir ent

The final-state-history of iterations (0 ( x1N-o --1 ( 1)---+ p.x*(1-x") are considered subsequently for the
parameter-ranges:

c p14
. p>4
It will follow that, whether iterations are approaching either p ---, 4 or p <- 4, the behaviour of the
appropriate histories will become qualitatively different. The transition between both regimes is mediated
by a threshold structured as a CANTOR-set, which shows the property of invariance in renormalization-
transformations.

The final-states from iteration with a specific parameter value can be obtained in the following way:

o An initial value xs € [0,1] is chosen randomly and iterated for ] 200 times.
o The appropriate iterations will settle dawn at one or more final-states.

The resulting plot for histories of final-states in the range 1 < p < 4 is made obvious in the next picture
(the famous FEIGENBAUM-diagram) :

(for supplement, please look into [4]).
o For interval 1 < p < 3 a final-state for each individual p-value can found.
o 'Wherea^s for increasing p-values in thc range 3 < p < p* = 3.5699456... a cascade of 2, 4,..., JJ=3-*J=3tm

final-states is created; p- = 3.5699456... is called FEIGENBAUM-point.
o For p* < p < 4 the final-states-distribution for p-value will become cha.otic and fills-up finally the

whole unit*interval perpendicular to the parameter-scale.
o The unit-interval shall be called for future-use as the prisoner-set for iterations for p-value of the

appropriate interval.

Prisoner-set will change qualitatively in (p > 4)-situations if compared to (p < 4)-cases from before;
details shall be discussed next.

In situatious where the parameter p exceeds a value of 4, only a subset of orbits will start inside [0,1] and
thus finally not end in the prisoner-set [0,1]. This alternate portion of orbits will escape to infinity and
therefore belong to the escape-set of the appropriate iterations. The question pops-up, what is now the



structure of the prisoner-set under these cha.nged conditions? A method to a;rswer the question is to follow
iterations:

r N«rt in forward-directions: p-x,*(1-x*) + XN+1,

e But in backward-directior: xN <- o.s.(p+[p2+4-p-***r]ti')

By backward-iteration orbits will be generated, which can be descritred try tree-structures. Given xN+t ore
will obtain 2 or 1 or 0 pre-images xN. fn cases where no further pre-images x*will exist, trees are pruned at
the corresponding branches.

For the following discussion the specific example for p = 4.5 is selected, the appropriate picture is shown
below. The backward-iteration will be started at Yo - 1.125, because all iterations beyond this value will
escape to infinity and therefore will definitely not have pre-images in the prisoner*set.

& ,- -x

The following scheme is provided in order to let become the method of construction in above picture more
otrvious:

Horizontal line a O O a
Vertical line O o o

Horizontal line from: Yo = 1.125 o o
I tanging with | | I interseas with I + +

I starting frsn I + + + + + + +
Top of graph g(X)= 4.5.X(1-X)at: Pt o O

I defines I +
lmaqe at: X^ = O.5 o

Main-diagonal of unit.square: P, a a
I interconnecß with I +
Graph-point: P a o

I interconnects with I +
Opposite qraph-pointl P, o o

I interconnecß with I +
Main-diagonal of unit-square: Pu o a

I interconnects with I +
Graph.point P^ o o

I interconnects wfth I +
Opposite qraph-point P o o

I interconnecß with I +
Main-diaqonal of unit-sguare: Po o

I inurceas with I +
Graph-points at: Y, A Y o o

I tetine I +
Pre-images of Xn = 9.5' Xr A X2 o

Imttg e ard, Pr e- I ma,g es o f X 1 n2 * 0.5. (4. 5* 120.25 + 4. 4.5. X olr
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To step forward this way, a few more backward-iterations will have to be considered, starting from the
pre*images obtained above.

r Several graphs S(X) = 4.5-X-(1-X) may be positioned in a way, that the first step can feed into the
second a.s.o.. Please consider the next picture below.

o One will observe, the resulting prisoaer-set of the graph g(x) will tend to a kind of CANTOR-set.

Usually a CANTOR-set is referred to as an interval from which the (open) middle thirds are removed
recursively:

r Therefore, all pieces in a certain stage of construction will have sarne lengths.
o The resulting limit-object is strictly self-similar (invariant under renormalization-trartsformations).

By the construction below one obtains something very similar,

o But the here pieces of a given step in construction have different sizes and therefore the limit-object in
the picture below (the prisoner-set of g(X) = 4.5.X.(1-X)) is not as symmetrical as the usual
CANTOR-set.

r It is a CANTOR-set slightly disordered but still invariant with respect to any renormalization of the
prisoner-set.

Similar results will be otrtained for;

o All 2-point intersections of images 0 < Y < Ys xrith quantitative, not qualitative modifications of
appropriate CANTOR-sets and appropriate situations.

o Appropriate situations with 4 <p < 4.5.

Thus, one may summarize:

o For p < 4 the prisoner-set is a connected interval.

Udo E. §teinemann, "Phase-Transition means: Fractal invariant in Renormalizations rnediates Transitions bcfuireen Manifolds of different Topologies", 20.3.2020.
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o While for p > 4 it becomes a fractal.

In other words, in going from p 14 to p > 4 a phase-transition tal<es place and the threshold for this event
changes from a connected to the disssnnected line of a CANTOR-set. This phenomenon is to be observed
independent from renormalizations of (X,Y)*mea,sures.

6. Conclusion.

From previous discussion of Ferro-magnetism a phase-transition had to been characterized by two
funda.rn ental properties:

o It mediates between two topologically different manifolds in space.

r Threshold for a change from one domain into the alternate one will have a fractal structure, which keeps
invariant at renorma"lizations.

This exarnple from physics shows a direct parallelism with a few events departed from any physical
applications in pure mathematical contexts:

o Random moves attracted by the SIERPINSKI-gasket and/or its relatives:
r The history of chaos formed by random-moves is topologically different from the history of order

according to the generations of appropriate fractals.
o The fra,ctals themselves media.te tra,nsformatious between order and cha,os.

o Each fractal is self-similar (overlay of small pieces of the attractor) and thus keeps invariant with
regard to renormalization-transformations.

o Orbit-history in C-plane inside and outside of a connected JULIA-set:
r The histories are topologically different from each other; inside the JULIA- settistury is tending

towards afix-point, outside the JULIA-set history escapes to infinity.
e The JULIA-set itself acts as repeller for a,nd object of mediation between both history-sets.
o The JULIA-set it is self-similar (ca.n be reproduced from any small part of itself) and therefore is

invariant with regard to renormalizations-
o The iteration xp+1 : a.xp*-1.(1- xtp--t) in JR-plane for Paxä.meter-value (a<A) ---+ 4 and 4 *- (a >4):

o The histories are topologically different from each other, for (a<4) ---+ 4 history tends chaotically
towards [0,1], for 4 <- (a >4) history partially escapes to infinity and partially tends to a
CANTOR-set on [0,1].

. The CANTOR-set is distorted with regard to the classical one but it is invariant with regard to
renormalizations. It mediates between history*sets from para.meter-regions (a<4) --+ 4 and
4 +-- (a >4).

Due to the fact that there exist strong similarities among these examples in such a way that the critical
tra"nsitions between the topological manifoldsobeys the same fundamental qualities mentioned in the
physical exa.mple above, it seems to be justified to classify all these transitions as phase-transitions; their
properties are:

e Mediations between topologically different manifolds.
o Fractals with invariance under renormalizations as mediation-thresholds.
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