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Abstract

The writing intends to bring out certain inconsistent aspects relating to the Taylor expansion. The Taylor

series is not an identity that leads to a host of problems.

Introduction

The Taylor series is well known for its application in mathematics and in physics. The article brings out

some anomalous features about the Taylor expansion
Various Inconsistencies
Case 1.
We consider
fGc+2n) = f((x+h)+h) (1)

Expanding about (x + h)
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f(x+2h) =f(x+h)+%f’(x+h)+%f”(x+h)+%f”’(x+h)+---

Expanding about x = x
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f(x+2h) = f(x) +%f’(x+ h) +%f”(x +h) +%f”’(x +h)+ -

From (2) and (3)

2 3
fCx+h) +%f’(x+h)+%f”(x+h)+%f”’(x+h)+---....
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f(x+h)—f(x)1+ [f'(x+h) = 2f"(x)]

+ [f”( +h) - 4f”(x)]+ h[f”’(x+h) 8f"" (x)]
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f(x+hz_f(x)%+[f,(x+h}2_f,(x)] f}(lx) [f”(x+h) 4f”(x)]

+ %h[f”’(x +h) = 8f""(x)] + hl.....] =0(5)

Equation (5) is considered for h # 0. Even when we go for h — 0, h does not become equal to zero. It is
in the neighborhood of zero without becoming equal to zero]
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=0 (6)
We are considering a function for which
Limy_oh[f"" (x + h) = 8f""(x)] + h[.....] =0
Then
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We apply L’ Hospital’s rulel*! to obtain
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As claimed we have brought out an aspect of inconsistency with Taylor Series.

Case 2.Let us have another situation for our analysis. We write the Taylor series

h h? h3
flxo+h) = fxo) + Ef’(xO) + Ef”(xo) + 5f”'(xo) + .. (9).

The increment h may be sufficiently large subject to the fact that the series has to converge.

9 h h?
% = F (o) + hf"(x) + 5 £/ (xg) + - (10).
9 h
limp_o % = f'(x0) (11)

limh_)th(xO + h) = f’(xO)

The limit f'(x,) is independent of h.This is an example of uniform convergence . We may analyze as
follows:

af(x) _9f(xo+h)
oh oh

is evaluated for different values of h: [ af(x)]h , [ af(x)]h , [ JAC)
1

on on Ip,’L on lp,

The limit f'(x,) is independent of x

Therefore we can interchange the derivative and the limit!?..
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limy,.q M[W} —0 (12)
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0 |0f(xo + h)] 0
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wherex =xy + h

We now have,

limhﬁo% =0(13)
2f0]
[ 0x2 L=x =0

0

But x = x could be any arbitrary point.
By differentiating (10) we obtain the expected result

*fxo+h)
oz - [ (x0)(14)
which contradicts the earlier result given by (13)unless f''(x,) = 0

Direct Calculations

We write the Taylor series



h h? h3
fGc+h) = f(x) +ﬁf'(x) +§f”(x) +§f”'(x) + e (15).
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From (10) and (11) we have,

0 0
af(x+h) =ﬁf(x+h) (18)

Differentiating (10) with respect to x + h[holding x as constant]

d

dCc + h)f(x +h) (19)

0
af(x-l-h):

o] =[] e

%f(y) = %;x) is a constant on (x, x + h). This notion may be considered to show that%&cx) is constant

everywhere.[we take (x,x + h), (x + h,x + 2h), (x + 2h, x + 3h) ....and consider the proof given over
and over again]

;—xf(x) = const :aa—;f(x) =0

which we got earlier

Now [treating f as a function of x and h we may write

df (x + h) = %f(x + R)dx +%f(x + R)dh (21)

Again
0
df(x+h) =mf(x+h)d(x+h) (22)
R 9
=>df(x+h)—mf(x+h)dx+mf(x+h)dh (23)
From (21) and (22) we have,
0 0 0 0
[mf(x+h)—af(x+h)]dx+[mf(x+h)—ﬁf(x+h) dh=0



0 dJ 9
mf(xﬂl) = fOcHh) = fGc+h) (24)

. df. . . d?
We clearly see that the function d—ils a constant function that is Tz 0

Further Considerations

We recall (9)

h h? h3
f(xo+h) = f(xo) + Ff’(Xo) +§f”(x0) + gf”’(xo) + ... (9
We differentiate the above with respectto x = xo + h'; h' < h

2
[M] = f'(x0) + h'f" (x0) +h—f”'(XO) + o= f'(xo + B (25)
|, 2t

df(xo+h) _df(xo+h) dh  df(xo+h)
d(xo +h)  dh d(xo+h)  dh

df (xo + h) _ df(xo +h)
d(xo +h)  dh

(26)

af (o th) from (

We obtain an indication of constancy of 26) and keeping in mind equation (18) we have

df (x + h)

9 9
oG =5 fle+h) =2

Next we consider a truncated Taylor series which has been approximated with ‘n’ terms. Now we have
an equation and not an identity and there are discrete solutions for h. Since we have taken an
approximation to the Taylor series it is least likely the corresponding roots will cause a divergence of the
infinite series in the Taylor expansion. It would be better to take a truncation which is not an
approximation but the infinite Taylor series is convergent for it. These solutions for ‘h’ will not satisfy
the entire Taylor series with an infinite number of terms. Suppose one solution of ‘h’ from approximated
equation[equation with finite number of terms] satisfied the infinite Taylor series, we will have (9) as
well as a truncated (9)[approximated up to ‘n’ terms. The situation has been delineated below

We noOwcconsider the Maclaurin expansion for e*

2 2 n

. x x* x x
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. x x* x? x™

e —1+ﬂ+§+§+'"+m+€n(x) (26)

€,(x): Remainder after the nth term count starting from zero: n=0,1,2.......



€(x) =e*—1
Differentiating (26) with respect to ‘x’ for a fixed ‘n’'we obtain

dex—-1+-x-+x24—x2+- + " 4—dﬂix) 27
dx 1 21 2! (n—1)! dx (27)

x2

e¥=1++—+

x2+ N x™ 1 +den(x)
21 2! (n—1)! d

= (28)

den(x)
dx

- &) =22 (29)

The nth terms should vanish for n tending to infinity. Also by direct limit evaluation we may show that
n

. X
llmn_,oo F =0

With n tending to infinity

dew (x)
dx

—€,(x)=0

Ine,(x) = x+C" (30)

If C'=0
€o(x) = e*
IfC"#0,C" =InC
€o(x) = Ce*
€o(x) = Ce*

Again
C=0=>C"=—w
That means we used —oo as the constant of integration in equation (30)
Conclusions
As claimed we have arrived at some inconsistent aspects of the Taylor expansion
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