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Abstract

This paper shows that a simple and relativistic extension
of Newtonian gravity leads to predictions that fits super-
nova observations of magnitude versus redshift very well
without having to rely on the hypothesis of dark energy.
In order to test the concept, we look at 580 supernova
data points from the Union2 database.
Some relativistic extensions of Newtonian gravity have

been investigated in the past, but we have reason to be-
lieve the e↵orts were rejected prematurely, before their
full potential was investigated. Our model suggests that
mass, as related to gravity, is also a↵ected by standard
relativistic velocity e↵ects, something that is not the case
in standard gravity theory, and this adjustment gives su-
pernova predictions that fit the observations. Our find-
ings are reflected in several recent research papers that
follow the same approach; that work will also will be dis-
cussed in this paper.
Key Words: Supernovas, redshift, dark energy, rela-
tivistic Newton modification.

1 Relativistic Newton Extension

Somewhat ad-hoc relativistic extensions of Newtonian
gravity have been suggested in the past. In the 1980s,
Bagge [1] and Phillips [2], for example, both suggested
the following relativistic extension of Newtonian gravity

F =

M
mq
1� v2

c2

R2
(1)

This idea was in line with Einstein’s [3] special rel-
ativity theory, where a moving mass can be seen as a
relativistic mass of the form mq

1� v2

c2

. The idea must be

that the small mass is moving relative to the larger grav-
itational mass and therefore appears to be relativistic
from the perspective of the larger gravitational mass.
Phillips initially claimed that his relativistic Newton

extension led to a prediction of the perihelion precession
of Mercury that was equal to the predictions from Ein-
stein’s [4] general relativity, which has been confirmed
by experiments. In 1986, Peters [5] claimed that Phillips

had made a mistake in his calculations and in reality, the
Phillips extension only predicted half of the needed per-
ihelion precession of Mercury. Shortly after that revela-
tion, Phillips [6] acknowledged the mistake, but claimed
that the approach was still interesting and should be in-
vestigated further. The Phillips and Bagge model was,
for similar reasons, also criticized by Ghosal [7] and Chow
[8].

However, we will claim that an additional mistake ap-
pears in the relativistic logic here. Looking at the astro-
nomical system, it is mainly the Sun that acts on Mer-
cury and naturally both the Sun and the Mercury are
moving relative to the Earth. In this case, Haug [9, 10]
has therefore suggested that the relativistic model should
be extended as follows
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That is, we are simply using standard logic from spe-
cial relativity. We are standing in a third reference frame,
Earth, and are observing two masses moving relative to
us, namely the Sun and Mercury. Clearly, both masses
must be relativistic, not only one of them. Further, R
must represent the center to center distance between
Mercury and the Sun and this length, as seen by an
observer outside this system (the Earth), will undergo
length contraction. This simply follows relativistic logic.
Previous researchers may have missed the point that, in
the case of the Sun’s e↵ect on Mercury, we are outside
observers. Haug [10] has recently shown that this more
logical relativistic extension of Newtonian gravity seems
to give the correct precession of Mercury. As with the
Philips prediction, the work should be checked by sev-
eral independent researchers before any final conclusion
is made.

A central issue in such investigations is that relativis-
tic extensions to Newtonian gravity must follow logic in a
realistic manner. If we are standing on Earth, for exam-
ple, and are completing gravitational predictions about
the Moon then the large mass is the Earth, and we are at
rest with respect to the Earth. The Moon is a relativistic
mass relative to Earth, and the radius, center to center,
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from Earth to the Moon is observed from the rest frame,
that is from Earth. This means that the relativistic ef-
fects will only be present for the small mass, and in this
case we should have the Bagge and Philips formula:

F =

M
mq
1� v2

c2

R2
(3)

Another case to consider would address a di↵erent
phenomenon - observing the red-shift of a supernova as
viewed from Earth, for example. In this case, the large
mass M is the supernova, and the lab frame is the small
mass and the relativistic Newton formula must actually
be

F =

Mq
1� v2

c2

m

R2
(4)

In this case, the large gravity mass is the supernova that
is moving relative to Earth. Further, the distance R runs
from the center of the supernova to the Earth, and this
distance is not undergoing length contraction, because
the distance between the Earth and the supernova it-
self is not moving, even though it is expanding due to
the supernova moving relative to us. It seems we must
have three versions of the relativistic Newton formula
depending on the situation. These three situations are
illustrated in Figure 1. In the upper panel, the Earth is
the laboratory frame and at the same time it is the mass
M , and the moon is the mass m. Here the small mass
is relativistic relative to the lab frame. In the middle
panel, we are studying the Sun’s gravitational e↵ect on
Mercury from the Earth. That is, both the Sun and Mer-
cury must be moving relative to the observer-frame (the
Earth). Here both of the masses in the Newton formula
must be relativistic. In the lower panel, we are observ-
ing the gravity e↵ect on light sent out from a supernova
from our base on Earth. That is, the large mass M is the
supernova, and the supernova is moving relative to the
Earth. These all follow from the most logical steps in rel-
ativity theory as applied to Newtonian gravity. To our
surprise, even after an extensive ”library” search, only
the formula in the upper panel has been discussed in the
physics literature, and it was, in our view, incorrectly
applied to the situation in the second panel. This led to
an incorrect prediction and may have caused researchers
to abandon further investigation of relativistic Newton
extensions prematurely.

Using the correct relativistic extension based on spe-
cial relativistic logic combined with Newtonian gravity
even fits supernova redshift data very well using baryonic
matter only. We will look at this in the next sections and
show a striking result - that no dark energy is needed.

Figure 1: The figure shows two di↵erent situations and
how they a↵ect which masses (also in gravity) should be
seen as relativistic and which mass is a rest-mass. This
depiction follows standard logic from SR.

2 Do We Need Dark Energy?

Here we will look at our Newton relativistic model to see
if it predicts supernova data correctly. Our model needs
to take both Newton relativistic e↵ects and relativistic
Doppler e↵ects into account. The Einstein relativistic
Doppler shift is given by

z =
1� v

cq
1� v2

c2

� 1 =

s
1� v

c

1 + v
c

� 1 (5)

Solved with respect to v, this gives the well-known
formula

vpec(z) = c
(1 + z)2 � 1

(1 + z)2 + 1
(6)

where the luminous distance (as a first approximation)
is given by

D ⇡ z
c

Ho

(1 + z)2 � 1

(1 + z)2 + 1
(7)
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where Ho is the Hubble constant. However, in the time
light takes to travel the distance D, that is tD = D

c , then
the emitting object will move away tDvpec. This was
not taken into account by Davis and Lineweaver [11], for
example, as first pointed out by MacLeod [12] and also
discussed by Brissender [13] . The corrected emitter time
is therefore given by

te = tD +
tDvpec

c
= tD(1 + v/c) (8)

This means the relationship between the proper time
at the emitter te and the proper time at the observer to
is given by

to =
teq
1� v2

c2

=
tD(1 + v/c)q

1� v2

c2

= tD

s
1� v/c

1 + v/c
= tD(1+z)

(9)
This means the luminous distance is actually given by

D = tDc =
c

Ho

(1 + z)2 � 1

(1 + z)2 + 1
(1 + z) (10)

The e↵ective magnitude is found by using the following
formula is

mB(z) = 5logHoD +MB (11)

where MB is the absolute magnitude in the B-band at
the maximum light curve and log is the log with base
10. Be aware that the Hubble constant cancels out with
the Hubble constant in the distance formula, so the for-
mula is, in reality, not dependent on the Hubble constant.
Davis and Lineweaver suggest that MB should have a
value of around 3.45, as found from data; we will use the
same value here. We can say this is what special rela-
tivity alone will predict. Davis and Lineweaver compare
the SR model with supernova data and conclude, “SR
fails this observational test dramatically being 23� from
the general relativistic ⇤CDM model?”. The SR model
Davis and Lineweaver uses is the one before taking into
account the supernova moves during the time it takes for
the light to travel from the supernova to the observer, so
it is better than they claimed. Still, we agree that SR
cannot explain the supernova data alone. In addition,
we need to take relativistic e↵ects in the Newton theory
into consideration. The supernova is the large mass M

in the Newton formula, and we are observing it from the
Earth. If the supernova is moving, the mass will be a rel-
ativistic mass in relation to us and is not mathematically
identical to the rest-mass, as it is in the standard Newton
formula. That is, the following formula is relevant

F =

Mq
1� v2

c2

m

R2
(12)

This again leads to a gravitational redshift (as observed
from a weak gravitational field) of approximately

zgr ⇡
G

Mq
1� v2

c2

Rc2
(13)

This is equal to the standard GR gravitational redshift
multiplied by �M = 1q

1� v2

c2

. It is important that this can

be derived independent on GR, as shown by researchers
in the past, something we discuss in more detail in Ap-
pendix A. We must adjust our luminous distance with
this factor to get the correct prediction. This will then
give what we can call an apparent distance that, in ad-
dition to distance, reflects the missing relativistic mass
adjustment for the supernova. Our model will therefore
simply be

mB(z) = 5log(HoD�M ) +MB (14)

The di↵erence between this and pure SR is the additional
�M factor. Our result is mathematical “equivalent” to a
theory recently suggested by Brissender [13]. However,
in his theory the � factor comes from a speculative idea
that proper velocity is what is relevant and not the ve-
locity, so he claims vpec� is relevant. Proper velocity is
defined as taking the distance, as measured from the lab-
oratory frame (“stationary” frame), divided by the time
traveled as measured in the moving frame. Brissender
has shown that this fits very well with supernova obser-
vations. However, there is no deep theory on why we
should use proper velocity here rather than the velocity,
and, in fact, we will claim the logic falls in the opposite
direction; that it is the velocity that should be used and
not the proper velocity.

In other approaches, Kipreos [14] has what we would
call a structural equivalent mathematical model, where
he argues that his � factor adjustment relative to SR
is due to the need for a suggested time-contraction ra-
tio. In order to get a � factor here, he needs to use the
Mansouri and Sexl [15] transformation rather than the
Lorentz transformation, something we will get back to
later. So, Kipreos work is basically identical to ours in

that the time must be adjusted by a �z = 1/
q
1� v2

pec

c2 .
However, again, there is no deep theory for why he has to
do this suggested time-contraction ratio (by this we do
not mean the lack of a solid transformation theory, but
rather, why he needs the time-contraction in the first
place).

We propose that we may have found the correct expla-
nation for why there is time adjustment needed, namely
because we also need to do relativistic adjustments for
the mass in the Newtonian gravity formula. In short, we
need to take into account that masses moving relative to
an observer are observed as relativistic masses and not
rest-masses. We will discuss this further in the coming
sections.
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3 Testing the model against 580
supernova 1A data points

To assess the prediction power of our model, we test it
against 580 data points from the Union-2 supernova 1A
database, [16]. Figure 2 show the observations in black
points. The red line corresponds to our Newton rela-
tivistic model in addition to SR. The red line will be the
predictions from the Brissender model and also from the
Kipreos model. However, these approaches have very dif-
ferent interpretations than our model. The blue line is
when we are only taking standard SR into account; as
stated previously, our model is simply a logical exten-
sion of SR. That is, we assume any mass when moving
relative to us is a relativistic mass. Further, we do not
see the logic for why there should be di↵erent masses for
gravitational and non-gravitational phenomena.

Figure 2: The figure shows 580 supernova data points
from the Union-2 database, in black. The red line repre-
sents the predictions from our relativistic Newton grav-
ity, the blue line is predictions from SR only, and the
green line is what we call the naive SR model where we
do not take into account that the supernova is moving
during the time it takes for the light to move from the
supernova to the observer.

The green line is an even more naive use of SR, where
we neglect to take into account that the supernova have
moved even further away in the time it takes for light to
travel the distance from the supernova to the observer
(Earth); this corresponds to using formula 7.

4 Summary and Discussion

In this paper, we have introduced three basically math-
ematical “identical” models that all predict supernova
observations without relying on dark matter. Naturally
there may be some debate on whether or not they are re-
ally identical mathematically, as the inputs and assump-
tions are not the same for all of them. To be clear, these

are then three considerably di↵erent models in their as-
sumptions and interpretation of explanatory causes that
give the correct prediction of supernovas. However, these
models are basically identical, from a structural point of
view. We summarize the three alternatives plus the stan-
dard GR, Newton model below

1. The relativistic modified Newtonian model pre-
sented here simply states that we need to take
into account relativistic masses for moving objects.
Gravitational masses are no exception. Since the
standard model does not do this, we get a correc-

tion factor of �z = 1/
q
1� v2pec/c

2. This gives a

nice fit to supernova observations. This model was
suggested in 2020 and is fully consistent with Haug’s
[9] recently presented quantum gravity theory that
unifies gravity with quantum mechanics.

2. The model presented by Brissender in 2019 in re-
lation to predicting supernovas is mathematically
“identical” to the model above, but it has very dif-
ferent interpretation. In the Brissender model, the
� adjustment factor is due to what we would claim
is a speculative idea: that it is the proper super-
nova velocity that is relevant and not the standard
velocity. We doubt this explanation. That said, the
Brissender paper together with the Kipreos model
made us think more deeply about the need for a �

correction to get the correct supernova predictions.
Taken together with our view that we must also have
relativistic masses in the Newton gravity model, this
helps to develop a new perspective.

3. The Kipreos [14] model published in 2014, where
the end result is mathematically identical to the two
models described above. This model also has a �

factor that it claims is a correction factor for time
dilation of the signal sent in the past versus the one
received in the present. The explanation for exactly
why this should be the case seems to be the weak-
ness in this approach. Still, this paper strongly indi-
cates that something may be missing in the standard
theory and pointed us towards the need for further
research.

4. The standard gravity model. This model needs
dark energy in order to be consistent with super-
nova data, but we strongly suspect that dark en-
ergy is simply a fudge factor. Unfortunately, much
money has gone into this model and it has consid-
erable prestige. Many of the best-known physicists
working in cosmology today are heavily invested in
this model, which leads to biases against consider-
ing the findings from the three alternative models
explained in this paper.

The Kipreos [14] interpretation relys on the absolute
transformation by Mansouri and Sexl [15] that again
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is linked to absolute simultaneity rather than relativity
of simultaneity, something that has been supported by
some recent research [17–20]. The Mansouri and Sexl
transformation has the same length transformation as
the Lorentz transformation, but the time transformation
is just t0 = t� compared to the Lorentz time transforma-
tion of t0 = (t�vx/c

2)�. The suggested interpretation in
this paper seems to be compatible both with SR and with
the Mansouri and Sexel transformation. This is because
it does not rely on any time-transformation; the same
seems to be the case with the Brissender interpretation.
Therefore, the essential question is: what is the most
likely cause for the � adjustment that leads to a good fit
of supernova predictions? Is it the time adjustment sug-
gested by Kipreos? Is it that we should rely on proper
velocity? Or is it simply that the masses in the New-
ton gravity formula are also relativistic? We believe that
the last suggestion, as presented in this paper, makes the
most sense. In particular, this is true since this method
also seems to lead to the correct prediction of Mercury
precession, gives an escape velocity that is compatible
with a Planck mass particle, and is, in general, a more
consistent and logical theory, see [9, 21].

It is worth pointing out that there is no Lorentz trans-
formation of a relativistic mass. Recent research indi-
cates there are strong parallels between mass and clocks.
Elementary particles are likely ‘ticking” at the Comp-
ton time interval, as suggested by [9]. That mass is
linked to the Compton frequency also has some recent
observational support, see [22, 23]. The mass follows a
transformation similar to simple time dilation, and not
equal to Lorentz time transformation. This means the
mass follows a transformation equal to the time trans-
formation in the Mansouri and Sexl transformation. The
link between our theory and the Kipreos approach [14]
is therefore closer than it may seem at first sight. We
have pointed out that the clock is the mass, and that the
relativistic mass indeed follows a transformation identi-
cal to the time transformation in the Mansouri and Sexl
transformation. However, the relativistic mass is also
consistent with special relativity.

We will claim it is not very logical to assume that
masses are observed to be relativistic in SR, but then sud-
denly should not be observed to be relativistic in relation
to gravity. Even in a weak gravitational field why should
the gravitational observation not be a↵ected by the ve-
locity of the gravitational object? We think the original
error occurred in the 1980s and 1990s, when Bagge and
Phillips suggested that only the small mass was relativis-
tic. In other words, they did not explore the idea fully
before it was rejected by the science community, perhaps
prematurely.

5 Conclusion

Both Kipreos [14] and Brissender [13] have recently sug-
gested basically “identical” mathematical models that
seems to predict supernova 1A data very well without
relying on dark energy. However, we question the as-
sumptions behind their models. Here we have shown a
third alternative that is mathematically “identical” to
the two other models, but provides a very di↵erent ex-
planation for why this adjustment is needed. We claim
the mass in gravity and, more precisely, in the Newton
formula it is not exonerated from velocity related rela-
tivistic e↵ects. By taking into account relativistic mass
correctly, we create a model that predicts supernova 1A
data, and that addresses redshift versus magnitude cor-
rectly without relying on dark energy.

This also shows the importance of letting speculative
ideas be published and circulate, even if they are in
conflict with mainstream models (such as the dark en-
ergy hypothesis). The Kipreos model and the Brissender
model, for example, are much more speculative than our
model. Still, they both show how a small adjustment to
SR doppler shift leads to correct prediction of supernovas
without relying on dark energy. Instead of ignoring this
work, we have investigated these lines of thought fur-
ther and have developed a robust and sound explanatory
model for both simple multibody planetary system and
also for supernovas. It is logical and consistent to say
that there only is one type of mass at the most funda-
mental leven and that this mass is a↵ected by velocity
from the perspective of the observer as well as in relation
to gravity. Further study is merited.
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Appendix

In 1965, Adler and Bazin [24] showed that one could
derive gravitational redshift completely independent of
general relativity. From Einstein’s energy mass relation,
we have

E = mc
2 (15)

We also have that the equivalent mass of a photon
must be

m =
E

c2
=

hf

c2
(16)

Now, for the conservation of energy we must have

hf �G
Mm

R
= hf �G

Mhf

Rc2
(17)

Further, when R ! 1 we must have f ! 1. This
means we have

hf �G
Mhf

Rc2
= hf1

f �G
Mf

Rc2
= f1

f1 � f

f
= �GM

Rc2
(18)

which is identical to the gravitational redshift pre-
dicted by GR in a weak field. See also [25] for discussions
on this. We have just extended this to assume the large
mass is moving relative to the observer, and claim we
then must have

hf �G

Mp
1�v2

M/c2
m

R
= hf �G

Mhf

Rc2
(19)
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that will lead to

f1 � f

f
= �

G
Mp

1�v2
M/c2

Rc2
(20)

This di↵erence between the GR prediction and our pre-
diction is what leads to our model fitting supernova data
without relying on the hypothesis of dark energy.


