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Abstract. The published theoretical data of few models (PHSD/HSD both with and without chiral
symmetry restoration) applied to experimental data from collisions of nuclei from SIS to LHC energies,
have been analised by using of the meta-analysis what allowed to localize a possible phase singularities
of nuclear matter created in the central nucleus-nucleus collisions: The ignition of the Quark-Gluon
Plasma’s (QGP) drop begins already at top SIS/BEVALAC energies at around

√
sNN = 2 GeV. This

drop of QGP occupies small part, 15% (an averaged radius about 5.3 fm if radius of fireball is 10 fm),
of the whole volume of a fireball created at top SIS energies. The drop of exotic matter goes through
a split transition (separated boundaries of sharp (1-st order) crossover and chiral symmetry restoration
(CSR) in chiral limit) between QGP and Quarkyonic matter at energy around

√
sNN = 3.5 GeV. The

boundary of transition between Quarkyonic and Hadronic matter with partial CSR was localized between√
sNN = 4.4 and 5.3 GeV and it is not being intersected by the phase trajectory of that drop. Critical

endpoint of 2-nd order has been localized at around
√
sNN = 9.3 GeV, a triple phase area appears at

12÷15 GeV, a critacal endpoint of 1-st order - at around
√
sNN = 20 GeV, the boundary of smooth

(2-nd order) crossover transition with CSR in chiral limit between Quarkyonic matter and QGP was
localized between

√
sNN = 9.3 and 12 GeV and between Hadronic and QGP on

√
sNN = 15 and 20 GeV.

The phase trajectory of a hadronic corona, enveloping the drop, stays always in the hadronic phase.

A possible phase diagram of nuclear matter created in the mid-central nucleus-nucleus collisions are also

presented in the same range of energies as for the central collisions.
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1 INTRODUCTION

This work uses the meta-analysis (the analysis of analyses) of the published theoretical and experi-
mental data. The meta-analysis extensively was used already in 18 − 19th centuries by Laplace [1]
and astronomers [2] though this idea had been appeared even earlier among astronomers in 17th cen-
tury and was developing further, especially after invention by Blaise Pascal the mathematical ways of
dealing with the games of chance used for gambling. The procedure of projection of the results of the
meta-analysis on a suitable phenomenology, in order to interpret the area of the worst description of
the experimental data by theoretical models, is the procedure intruded in the presented analysis.

The main goal of this work is to figure out the possible phase diagram of strongly interacting
matter using already available published material obtained during decades.

The work is organized as follows. In the next section, a simple form of the mathematical foundation
of the meta-analysis is shown. Section 3 is devoted to the application of the obtained formulas to
the published results from experimental and theoretical investigations in nucleus-nucleus collisions.
Section 4 contains conclusion.
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2 JUSTIFICATION OF THE METHOD

Let us consider some phenomenon P of an arbitrary nature. Let this phenomenon consist of several
sub-processes: P = {p1, p2, ..., py}. Let this phenomenon exist during a time interval and within
some spatial volume aP = {τf (P ) − τ0(P );Vf (P )}, and each sub-process also occupies own space-
time interval: api = {τf (pi) − τ0(pi);Vf (pi)}, such that api ∈ aP , ∀i. Let we observe a phenomenon
P through measurements of some set of observables B = {B1(κ1), ..., Bx(κx)}, where κi is a some
variable. Each Bi(κi) is responsible for several sub-processes which influence on Bi(κi): s(Bi(κi)) =

{pm, .., pr} ⊂ P , and
x⋃
i=1

s(Bi(κi)) = P . And each sub-process pi gives a contribution to several

observables s(pi) = {Bj(κj), ..., Bt(κt)} ⊂ B, and
y⋃
i=1

s(pi) = B. In this case this set of observables B

is called the complete set of observables - the sub-processes which influence on all observables of B
form the set P .

Let experiment can measure any observable Bi(κi) ∈ B within some interval of change of κi
defined by an experimental conditions and this interval is broken into nBi bins κi = {κi,1, ..., κi,nBi

}
(number of data points): Bexp

i = {Bexp
i (κi,1), ..., Bexp

i (κi,nBi
)}. A total set of measured observables

is Bexp = {Bexp
1 (κ1), ..., Bexp

x (κx)} = {Bexp
1 (κ1,1), ..., Bexp

1 (κ1,nB1
), ..., Bexp

x (κx,1), ..., Bexp
x (κx,nBx

)}. I
consider each point of data on an equal basis with each other point as a separate observable.

Let us consider a set of the theoretical models S(M) = {M1, ...,Ms} describing the considered
phenomenon P . Each model Mi describes a phenomenon P , considering its consisting of a set of the
sub-processes P (Mi) = {p1,i, ..., pw,i} defined within phenomenology of the model Mi. Note that the
number of elements of sets P and P (Mi) can be different. Let the model Mi allows to calculate the
whole set of observables B, giving a set BMi = {BMi

1 (κ1), ..., BMi
x (κx)} = {BMi

1 (κ1,1), ..., BMi
x (κx,nBx

)},
where model Mi had been applied to each data point.

Let us introduce some function:

fMk
(Bi,j) = f(BMk

i (κi,j), B
exp
i (κi,j), σB

Mk
i (κi,j), σB

exp
i (κi,j)), (1)

where σB
exp(Mk)
i (κi,j) is an experimental(theoretical) error in jth point ofB

exp(Mk)
i (κi), and fMk

(Bi,j)→
0 if BMk

i (κi,j)→ Bexp
i (κi,j). This function f is a criterion of comparison of the model with an experi-

ment in the given point.
Let us introduce the set according to (1) for all elements of sets Bexp and BMk : fMk

(B) =
{fMk

(B1,1), ..., fMk
(Bx,nBx

)}.
Now we need to recall the definition of a distance between two curves. Let two curves y(x) and

y1(x) are defined on the closed interval x ∈ [a, b]. Then distance between these two curves is a number
r > 0 : r = max|y1(x) − y(x)| defined at [a, b]. In our application points of y1 correspond to data
points (elements) of Bexp

i (κi) and points of y - to elements of BMk
i (κi). The function f taken in the

point which corresponds to distance between the model and an experiment for observable Bi(κi) is a
worst criterion:

fMk
(Bi)worst = f(BMk

i (κi,di), B
exp
i (κi,di), σB

Mk
i (κi,di), σB

exp
i (κi,di)), (2)

where dith point such that |Bexp
i (κi,di)−B

Mk
i (κi,di)| is a maximal in a comparison to other points of

B
exp(Mk)
i (κi). And fMk

(Bi)worst → 0 if BMk
i (κi,di)→ Bexp

i (κi,di).
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Let us reduce the set fMk
(B) having kept only criteria corresponding to distances between Bexp

i (κi)

andBMk
i (κi), ∀i: fMk

(B)worst = {fMk
(B1)worst, ..., fMk

(Bx)worst} ⊂ fMk
(B). Now number of elements

of fMk
(B)worst equal to the number of elements of B: n(fMk

(B)worst) = n(B) ≡ x. If Bexp
i (κi) contains

only one point then it keeps in the analysis in any case. Thus, for each Bi(κi) we have one number
fMk

(Bi)worst.
Thus we have reduced the sets Bexp and BMk to Bexp

worst = {Bexp
1 (κ1,d1), ..., Bexp

x (κx,dx)} ⊂ Bexp

and BMk
worst = {BMk

1 (κ1,d1), ..., BMk
x (κx,dx)} ⊂ BMk , and n(Bexp

worst) = n(BMk
worst) = n(B) ≡ x. Here,

again remind, dith point corresponds to where we have distance between Bexp
i (κi) and BMk

i (κi). Thus
we might say that for each observable as for the function with some number of points we kept only
one point where model Mk has the worst description of experiment because the used model does not
incorporate some sub-process (or sub-processes), or model wrongly includes its.

It sounds very confusing that we keep only few data points for analysis, having thrown out the
majority of them. But we need to recall that we use the complete set of observables defined in
the beginning. That is, the union of sets of sub-processes to which the observables from Bexp

worst are
responsible (which influence on them) is a set which, at least, is very close to the set P , thereby

forming the phenomenon investigated:
n(B)⋃
i=1

s(Bexp
i (κi,di)) = s(Bexp

worst) ⊆
n(B)⋃
i=1

s(Bi(κi)) = P .

Constructing the same expression for some modelMk which considers the phenomenon P consisting
of the set of sub-processes some of which do not exist in the phenomenon, thus {p1,k, ..., pw,k} 6= P ,

gives
n(B)⋃
i=1

s(BMk
i (κi,di)) = s(BMk

worst) 6=
n(B)⋃
i=1

s(Bi(κi)) = P . The use of the model Mk̄ considering the

phenomenon consisting of the set of sub-processes which all exist in P , thus {p1,k̄, ..., pt,k̄} ⊆ P , gives
n(B)⋃
i=1

s(B
Mk̄
i (κi,di)) = s(B

Mk̄
worst) ⊆

n(B)⋃
i=1

s(Bi(κi)) = P . Here is possible the case that w 6= t and both

not equal to n(P )(≡ y) (number of elements of set P ), then inevitably t < y.
Keeping for analysis all data points gives nothing new - the criteria of different models cover each

other in the most interesting physical areas where some of the most interesting sub-processes are being
suppressed by other ones, what distort the analysis, bringing us to a wrong conclusions [25]. This is
the main idea of the presented analysis - to find the data points with the worst coincidence to applied
theoretical models, which form again the complete set of observables or, at least, the set is a close to
the complete. We insist that if you have 10 observables, forming the complete set of observables in
your problem, each containing 100 data points then you may bravely throw out 990 points, having
kept for the analysis only 10 points (the worst points) - one point per one observable, and, we again
insist, you will not distort your analysis!

Now we can introduce the expression:

ΦMk
(B) =

1

n(B)
·
n(B)∑
i=1

fMk
(Bi)worst, (3)

which gives the averaged criterion of the model Mk which is equally spread over all area of the worst
description of the experiment by this model. And ΦMk

(B) → 0 if each BMk
i (κi,di) → Bexp

i (κi,di),∀i
(look at definition (2)). (In [25], this averaging was done with averaging over all data points of criteria
(only χ2), what hid the worst area, and next additional averaging was done between different models
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containing incompatible content, what made analysis useless.) If we use two models Mk and Mk̄ from
above reasonings then inevitably ΦMk

(B) > ΦMk̄
(B).

Having repeated calculation (3) for all models of set S(M) and knowing set P (Mk) = {p1,k, ..., pw,k}
for all k we may figure out which model missed which sub-processes, which model wrongly used some
of sub-processes comparing all ΦMk

(B),∀k, with each other. But question is what if all of the models
missed some sub-processes and there is not possibility to check them with existing level of mathematical
methods?

The only way is to apply to the analysis some set of phenomenologies F = {F1, ..., Fl}, l = n(F ),
each of which incorporates the missed sub-process/sub-processes together with considered in S(M)
(but still cannot apply their mathematical methods for comparison with experiment) what is possible
if the minimal value from all obtained ΦMk

(B), k ∈ [1, s], s ≡ n(S(M)), far away from zero. Of course,
this create some randomness in the finished result depending from taken phenomenologies F but this
randomness might be maximally decreased if we take the best modern phenomenologies, though this
choice has the element of individual taste.

Suppose each phenomenology Fi from F considers the phenomenon P consisting of the set of sub-
processes PFi = {pj , ..., pm} ⊆ P . When we obtained the sets of the worst criteria fMk

(B)worst,∀k
with corresponding set of average criteria {ΦM1(B), ...,ΦMs(B)}, s ≡ n(S(M)), the next step is to
make the projection of set of these averaged criteria on the phenomenological picture created by F :

Proj : {ΦM1(B), ...,ΦMs(B)} −→
n(F )⋃
i=1

PFi . (4)

That is, we make a mapping from set of the worst averaged criteria of the used set of models on the set
n(F )⋃
i=1

PFi . In principle, we need to consider the set of the worst averaged criteria {ΦM1(B), ...,ΦMs(B)}

as union of two (or even more) sets each containing the worst averaged criteria calculated for the
compatible models (models with not contradicting content).

Let we have h subsets of the compatible models M q = {Me, ...,Mn}q ⊂ S(M), q ∈ [1, h],
h⋃
q=1

M q =

S(M) and we know the sets of subprocesses used by each of those models inside qth subset P q(Mj) =

{p1,j , ..., pw,j}, j ∈ [e, n]. Then projection (4) is equivalent to other projection
h⋃
q=1

(
n⋃
j=e

s(B
Mj

worst))q −→

(
n(F )⋃
i=1

PFi), where (
n⋃
j=1

s(B
Mj

worst))q ⊆
n⋃
j=e

P q(Mj). The main task is to find the ith set of compatible

models which is maximally close to P : (
n⋃
j=e

s(B
Mj

worst))i −→ (
n(F )⋃
i=1

PFi) ⊆ P , visible over minimum of

the value ΦMq=i = ΦMe(B) ⊗ ... ⊗ ΦMn(B) ≡ 1
n(Mq=i)

∑n
j=e ΦMj (B) in comparison with other sets of

compatible models, and with use of the set F (with use of
n(F )⋃
i=1

PFi) to build the most possible picture

of phenomenon.
In final, the formula (4) may be rewritten:

Proj : {ΦM1 , ...,ΦMh} −→
n(F )⋃
i=1

PFi . (5)

4



As each phenomenology Fi from F cannot calculates the observables because of mathematical
predicaments, they have deal with some physical parameters derived from set PFi . Therefore projection
(5) is assumed to be done on the set of physical parameters. The possibility of correlation of criteria
with the parameters of a physical system is shown for the relative criteria in the next section.

Let some subprocess pε ∈ P happens in a negligible space-time interval apε = {τf (pε)− τ0(pε);Vf (pε)},
which is a tiny in the comparison with space-time interval of the phenomenon P and all other sub-
processes from P : apε � aP , apε � api , ∀i 6= ε. Let this subprocess gives a contribution into the
measured observables from set sexp(aε) = {Bexp

β (κβ), ..., Bexp
µ (κµ)} ⊂ B. Each Bexp

i (κi) ∈ sexp(aε) is

influenced by several subprocesses from set s(Bexp
i (κi)) = {pm, .., pr} ⊂ P . At first sight, this is im-

possible to distinguish subprocess pε since it is suppressed by a contribution from other subprocesses.
Now we should take into account that for an experimental observable Bexp

i (κi) ∈ sexp(aε) there is a
set of measurements for all nBi data points: Bexp

i (κi) = {Bexp
i (κi,1)±σexp(Bi(κi,1)), ..., Bexp

i (κi,nBi
)±

σexp(Bexp
i (κi,nBi

))}. Let’s introduce a hypothesis H.

H : Among all observables from sexp(aε) ⊂ B there is at least one, Bexp
i (κi), i ∈ [β, µ], which has

at least one such gth point of data, Bexp
i (κi,g) ± σexp(Bi(κi,g)), which is influenced by subprocess pε

in the not small degree at least comparable to the influences of other subprocesses. I.e., in a very
narrow area of measurements corresponding to this gth point of data, subprocess pε gives a largest
contribution in the comparison to its influences in the other data points.

Let there is a set of mutually compatible models M(p̄ε) ∈ S(M) each of which does not assume
existence of the subprocess pε in the phenomenon P . According to hypothesis H each of these theories
should have the maximal difference between theoretically calculated and measured observable in gth
point of data of Bexp

i (κi,g) in comparison with distances for other data points. If we use only one point
of data of each observable, where difference between model and measurements is largest, we artificially
separate the area with, probably, the largest manifestation of the pε. Having calculated and averaged
criteria calculated for such points over all observables and having combined all compatible models,
the obtained criteria ΦM1(p̄ε)⊗...⊗Me(p̄ε)(B), Mi ∈M(p̄ε), i ∈ [1, e], should be maximal if pε appears in
P .

Otherwise, for a set of mutually compatible models M(pε) ∈ S(M) each of which assumes existence
of subprocess pε in the phenomenon P the worst criterion ΦM1(pε)⊗...⊗My(pε)(B) should be less than
ΦM1(p̄ε)⊗...⊗Me(p̄ε)(B).

Let us make assumption that formula (3) does not work - the value calculated by its does not reflect
degree of coincidence of the model with experiment because of especial properties of model (does not
matter which properties - laws of symmetries/conservations and so on) - that value may be very large
even for the excellent coincidence of the model with an experiment: ΦMk

(B) → M � 0,M ∈ R,

if each BMk
i (κi,di) → Bexp

i (κi,di), ∀i. This is meaning that ΦMk
(B) depends from some parameter

λk which characterizes (reflects) those especial properties of particular model Mk: ΦMk
(B, λk). But

obtained new function violates our definition of averaged criterion given in (3) because these are two
absolutely different functions. Therefore our supposition concerning of an existence of models with
especial properties is wrong.

Imagine an object O, one part of which O1 we can observe, and the other part O2 we cannot observe,
and even imagine in general, and O = O1 ∪ O2; O1 ∩ O2 = �. According with Kant’s definition of
the phenomenon as ”the sensible concept of an object” [3], any phenomenon can be expressed as a
set of sub-processes which are understandable completely by human brain with inherited to us on
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birth the senses of time and of space [4], [7], i.e. the phenomenon (O1) can be investigated by the
experimentally-mathematical (scientific) methods (which strongly rely on the space and time notions),
and this cognition of an object is possible up to the some limit - up to a noumenon ∂O2 ⊂ O2 which
is a boundary of our understanding of an object [5]. Then O1 = {p1, p2, ..., py} ≡ P . Thus O2 is a
set (the exterior of set O1) which cannot be understood with use of a space and time notions (i.e.,
it cannot be investigated by the experimentally-mathematical (scientific) methods) - object(thing) in
itself [6]. O2 is the insensible concept of an object O connected over noumenon ∂O2 to a phenomenon
O1 and which can be never understood by means of human brain. Thus each object O can be cognized
up to some limit ∂O2 behind which the rationality loses sense. As we observe the phenomenon O1

over measuring the complete set of observables B what permit us to localize the phenomenon inside
space-time interval of its existence aP we may rewrite expression for an object O = {Bexp, B̄exp},
where B̄exp is now a set of anti-observables which cannot be measured in the space and time because
the elements of B̄exp are influenced by a set O2 associated with a thing in itself. Having kept for the
analysis the reduced set of observables Bexp

worst we reduce the number of elements in the set O without
losing its meaning O ⊇ {Bexp

worst, B̄
exp}. Thus, we move the analysis maximally closer to a noumenon

of the studied phenomenon, i.e. we make analysis staying on the very brink of our knowledges about
phenomenon.

In the following analysis, we use a set of observables taken for central nuclear collisions, which is
at least close to complete. A deviation from this rule was made for semi-central collisions of heavy
ions, although since the construction of the QCD phase diagram for this case was largely based on the
results obtained for central nuclear collisions, we believe that the picture is not distorted significantly.

Since this analysis involves the use of theoretical models already superimposed on the experimen-
tal data, the procedures with fitting different sets of parameters before applying the model to the
experimental data have nothing to do with the presented method.

3 APPLICATION OF THE METHOD

In this work, I use the set of worst criteria {∆worst, δworst, χ
2
worst}, where ∆worst is a maximal absolute

deviation, δworst is the worst relative criterion and the last is the worst χ2-criterion. χ2-criterion and
relative criterion were calculated only for that point of data of each observable where absolute deviation
is maximal in comparison to all other points. Thus, I have excluded, in some degree, the dependence of
χ2 from experimental error, and relative criterion from relative scale, applying upon them restriction
- take for analysis only criteria with maximal absolute deviations (see below).

Calculation of criteria was done by the next formulas:

∆worst(Bi) = max

∣∣∣∣Bexp
i (κi,j)−Bth

i (κi,j)

∣∣∣∣, j ∈ [1, nBi ], (6)

δworst(Bi) =

∣∣∣∣∆worst(Bi)

Bexp
i (κi,di)

∣∣∣∣± σ(δworst(Bi)), (7)

χ2
worst(Bi) =

(∆worst(Bi))
2

σ2
exp(Bi(κi,di))

± σ(χ2
worst(Bi)), (8)
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where κi is a some of the variables shown below, Bi(κi,di) is a some dith data point of observable Bi(κi),
corresponding to the distance between theoretical and measured values: |Bexp

i (κi,di) − Bth
i (κi,di)| >

|Bexp
i (κi,j)−Bth

i (κi,j)|, ∀j 6= di. σexp(Bi(κi,di)) is an experimental error for this dith point of data. If
error σ(δworst(Bi)) > δworst(Bi) (or σ(χ2

worst(Bi)) > χ2
worst(Bi)) then such criterion was thrown out

from analysis to reduce a resultant error and other data point satisfying the above demands had been
taken if it existed for given observable. (The reason of this is that we need to pull out the sub-processes
which are negligibly influencing on the system but having crucial importance for understanding the
evolution of fireball.) In result, statistics is different for different models and criteria.

The next set of models was used: S(M) = { HSD, PHSD, HSDwCSR, PHSDwCSR }, where
Hadron-String Dynamics without chiral symmetry restoration (HSD) transport approach applied to
experimental data for central nucleus-nucleus ultra-relativistic collisions from SIS/BEVALAC to top
RHIC energies was taken from [8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18], Parton-Hadron-String Dy-
namics without chiral symmetry restoration (PHSD) transport approach applied to experimental data
for central nucleus-nucleus ultra-relativistic collisions from top SIS to LHC energies was taken from
[8],[9],[12],[13],[18],[19],[20],[21],[22]; Hadron-String Dynamics with chiral symmetry restoration (HSD-
wCSR) transport approach applied to experimental data for central nucleus-nucleus ultra-relativistic
collisions from AGS to SPS energies was taken from [18], Parton-Hadron-String Dynamics with chiral
symmetry restoration (PHSDwCSR) transport approach - from [18]. PHSD differs from HSD by in-
corporation of the partonic degrees of freedom (QGP formation) in the dynamical processes. HSD and
PHSD models has different versions in the used literature, but all versions were combined together
(their averaged criteria, obtained by (3), were averaged also) because each next version does not con-
tradict to preceding one, the new included sub-processes could be considered as mutually compatible
to the other sub-processes.

The next set of observables taken from above mentioned articles was used in the analysis: the
transverse mass κ1 = mT or momentum κ2 = pT (or total momentum κ3 = p only for BEVALAC/SIS

energies) distributions of invariant yields B1−3(κ1−3) = 1
(mT ,pT )

d2N
d(mT ,pT )dy (mT , pT ), E d3σ

d3p
(p), the lon-

gitudinal rapidity κ4 = y distributions B4(κ4) = dN
dy (y), the hadronic yields measured at midrapidity

B5(κ5) = dN
dy

∣∣∣∣
y=0

, the total yields measured within 4π solid angle B6 = Y (one wide bin for rapidity)

and dilepton invariant mass distributions B7(κ7) = dNll
dMll

(Mll). First six observables were taken for
light flavor and strange hadrons, and B2(κ2) was taken also for direct photons. The neutral transverse
energy distribution for the opposed charged dimuons dN

dET
(ET ) is also used (only for

√
sNN = 17.3

GeV). Calculation of the worst criteria was done separately for each type of particles (using (6)-(8))
and then their averaged values (obtained according with (3)) had been again averaged according with
formulas at Fig. 1. The same formulas are used for the worst χ2-criteria at Fig. 2.

Taking into account reasonings (taking into account phenomenologies) from [18] (F1), [23] (F2)
and [24] (F3), interpretation of Fig. 1 and Fig. 2 is next. The separation of the worst χ2-criteria of
PHSD and HSD models already at

√
sNN = 2.7 GeV (they only touch each other by errors) could

be caused by ignition of QGP at top SIS energies (the full star at Fig. 3). (Here the projection (5)
of set of the worst averaged criteria {< χ2(HSD) >,< χ2(PHSD) >,< δ(HSD) >,< δ(PHSD) >}
was done on the set {T, µB}, formed by the set PF3 , taken above of the line of deconfinement at large
µB and finite T of Fig.5 of [24]. The correlation of criteria with parameters of system is shown below
for relative criteria.) The next mapping goes also from results at Fig. 1 and Fig. 2 to the set {T, µB}
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Figure 1: The worst relative criteria of comparison between models and experimental data as a
function of the energy of central nucleus-nucleus collisions. The formulas are demonstrating the
method described in the text. LF, S are a sets of light flavor and strange hadrons respectively. The
symbol of tensor product is to show that used versions of models do not contradict to each other in
contrast with [25] where, for example, the mix of 3FD with 1-st order phase transition and PHSD
with crossover was made what is a nonsense. The points are connected by the lines to guide the eye.
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depicted at Fig.5 of [24]. Remind that dependence of the worst χ2-criterion from an experimental error
is reduced as described above. As partonic degree of freedom uses at most 40% of the collision energy
at top SPS energies [23] then it would be possible to say that at top SIS energies this QGP state of
matter should occupy small part of a volume of the created fireball (other its largest part of volume
consist of hadronic matter). Then the fireball can be regarded as consisting of a drop of the hot and
dense exotic matter with temperature greater than temperature of the fireball’s peripheral hadronic

corona (
3⋃
i=1

PFi). The separation of the worst relative criteria of PHSD and HSD models at around
√
sNN = 3.5 GeV could be explained by the transition of QGP phase into Quarkyonic phase of matter

- phase trajectory of a system (of a drop of exotic matter) intersect phase boundary (the point 3.5
GeV at Fig. 3).(Because of imposing of χ2 for both models I admit, despite the separation of relative
criteria, the crossing of the line of deconfinement by phase trajectory of a drop at this energy. Thus
we make projection of set of worst criteria on the set of temperature and baryochemical potential on
line of deconfinement at Pic.5 of [24].) The phase trajectory of hadronic corona stays in the hadronic
phase at this energy of collisions (Corona’s trajectory up to the point 3.5 GeV at Fig. 3). The energy
pumped up into the fireball during nuclei collision is not enough to support the QGP phase in the
drop at

√
sNN = 3.5 GeV because of increased volume of the fireball in comparison with its volume

at top SIS energies (the estimation of volume is shown below). The separations of the worst relative
criteria on interval

√
sNN = 4.3 GeV - 5.2 GeV and the worst χ2-criteria of PHSD and HSD models

on interval
√
sNN = 4.6 GeV - 5.5 GeV give hint that at energy around

√
sNN = (4.3+4.6)/2 = 4.45

GeV the phase trajectory of a drop reaches the boundary between Hadronic and Quarkyonic states
of matter (the point 4.4 GeV at Fig. 3). (I admit that temperature should be constant during phase
transition and looking at Fig.5 of [24] we inevitably hit against the mentioned boundary.) That is,
the pumped up energy into the fireball at

√
sNN = 4.4 GeV is not enough to support Quarkyonic

phase of matter of a drop because of, again, the increased volume of the fireball. The phase trajectory
does not intersect this boundary but goes along it (the matter stays in the pre-Quarkyonic phase
which is a some kind of confined matter which is different from pure hadronic one [26], and for such
supposition I take into account the large values of both types of the worst criteria for HSD/PHSD

models at that energy interval. I admit next phenomenology F4 from [26] but with changes (
4⋃
i=1

PFi).)

up to point corresponding to the energy around
√
sNN = (5.5 + 5.2)/2 = 5.35 GeV (the point 5.3

GeV at Fig. 3).(Thus, we made projection of set of worst criteria on the set of T and µB are around
the boundary between Hadronic and Quarkyonic matter at Fig.5 of [24].) Subsequent overturn of
the worst χ2-criteria of HSD and PHSD relatively to each other and coincidence of the worst relative
criteria of both models could be interpreted as returning phase trajectory of a drop into the Quarkyonic
phase after

√
sNN = 5.35 GeV. That is, the pumped up energy into the fireball is enough to return

drop’s matter in the Quarkyonic phase. (We are projecting the set of worst criteria, corresponding to
energies above

√
sNN = 5.35 GeV, on the set {T, µB} taken inside Quarkyonic phase close to Triple

Point and line of deconfinement of Fig.5 of [24].) At point corresponding to around
√
sNN = 9.3

GeV the phase trajectory reaches the critical end point moving on inside of the Quarkyonic phase
[24] (there the position of critical end point inside Quarkyonic phase was considered and I admit of
reaching it from inside the phase) - I take into account the sharp decreasing of the worst relative
criterion and χ2-criterion of PHSD after 8.8 GeV with their local minimums at

√
sNN = 9.2 GeV

and divergence of the worst relative criteria for PHSDwCRS and HSDwCRS after 9.2 GeV (taking
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Figure 2: The worst χ2-criteria of comparison between models and experimental data as a function
of the energy of central nucleus-nucleus collisions. The points are connected by the lines to guide the
eye.

into account criteria’ errors) and their the worst χ2-criteria after 10 GeV: 8.8+9.2+9.2+10
4 = 9.3 GeV.

As PHSD assumes transition to QGP over smooth (2-nd order) crossover, the next similar behavior
of two types of the worst criteria with their intersections at around

√
sNN = 12.3 GeV I interpret

as the subsequent moving of the phase trajectory of a drop, after critical end point, along boundary
of transition with a smooth crossover between Quarkyonic and QGP phases up to Triple Point (Fig.5
of [24]). (Because both types of criteria for PHSD are increasing from the local extremums (local
minimums) I admit the moving of phase trajectory of a drop in the QGP phase closely to a boundary
up to the

√
sNN = 12.3 GeV after which the trend is changing to a decreasing of PHSD criteria.)

After Triple Point corresponding to around
√
sNN = 12.3 GeV (the intersection is visible there for

both types of criteria; the projection of set of criteria at
√
sNN = 12.3 GeV on the set {T, µB}

at Triple Point on Fig.5 of [24]) phase trajectory of a drop remains in the QGP phase. The phase
trajectory of corona’s matter stays in the hadronic phase at all range of considered energies of nuclear
collisions. At the Fig. 3, a possible scenario of phase trajectory of a drop at low SIS/BEVALAC
energies (dash dot line) was shown but other models (and phenomenologies) are needed to figure out
that phase trajectory.

Temperature and baryon chemical potential at Fig. 3 are understood by me as a values averaged
over all time of existence of drop or corona and over their volumes, but not as commonly used
a freeze-out values [27]. That is, let the drop (corona) exist during time interval ∆d(c) = τf −
τ0, where τ0 is a time of formation of a drop (corona) and τf is a time of disappearing of a drop
(corona). The temperature of a drop is higher than corona and it increases toward center of a drop.
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Moreover, it is a function of time. The averaged volume of a drop (corona) over time interval its
existence is Vd(c) = 1

∆d(c)

∫ τf
τ0
Vd(c)(t)dt. Then averaged temperature of a drop (corona) is T ≡ 〈T 〉d(c) =

1
∆d(c)·Vd(c)

∫ τf
τ0

∫
v Td(c)(t, ~r)dtd

3~r, 〈T 〉d > 〈T 〉c. And I assume that 〈T 〉d > 〈T 〉fball, where the average

temperature of whole fireball obtained analogously. The same for the baryon chemical potential:
µB ≡ 〈µB〉d(c) = 1

∆d(c)·Vd(c)

∫ τf
τ0

∫
v µBd(c)(t, ~r)dtd

3~r.

Let us now estimate the radius of a drop and volumes of a drop and corona created in the central
collisions of nuclei. I assume further that shape of a drop in any time of its existence has an arbitrary
topology. Let experiment measures the yield of particles created during time of fireball’s existence
and produced overall volume of fireball Y exp

fball. Assume that the phase of the matter of a drop is A
and the phase of the matter of a corona is B. Let model M1 describes fireball evolution paying no
attention to co-existence of phase B with A, assuming only phase’s A existence. Then model M1

predicts yield of particles from phase A: YM1
A . Let now model M2 describes fireball evolution paying

no attention to co-existence of phase A with B, assuming only phase’s B existence. Then model
M2 predicts yield of particles from phase B: YM2

B . But experimental value Y exp
fball equal to sum of

yields of particles from both phases: Y exp
fball = YA + YB and those summands cannot be measured

separately by experiment. Suppose that there are such numbers (there are such properties of created
matter) a1(2) that a1 = Y exp

fball/YA ≈ Vfball/Vd, a2 = Y exp
fball/YB ≈ Vfball/Vc, where Vd,c,fball are an

averaged volumes of a drop, corona, fireball over their life time up to freeze-out. Then relative

criterion δ = |(Y exp
fball − Y

M1(2)

A(B) )/Y exp
fball| = |1 − Y

M1(2)

A(B) /Y
exp
fball| = |1 − Y

M1(2)

A(B) /(a1(2)YA(B))|. Now let
models M1(2) can be regarded as very good. I.e., although they can strongly deviate from experiment:

Y
M1(2)

A(B) 6= Y exp
fball, but at least approximately Y

M1(2)

A(B) ≈ YA(B). Therefore, δ ≈ |1− 1/a1(2)| ≈ |1−
Vd(c)

Vfball
|.

Thus, the averaged relative criteria for yields over all type of particles give possibility to estimate
averaged volume of different phases of the fireball. Exactly saying, the averaged relative criterion for
yields of all type of particles shows an averaged volume which is not occupied by phase considered
by used model. In [28] I used larger statistics for yields than in this work because did not exclude
criteria with large errors, what smeared the picture, but in result Fig.1 of [28] shows not only the
agreement of the model with an experiment, but and relative volume of HG (hadron gas) in the range
from AGS to RHIC energies. For example, the average volume which is not occupied by HG (3FD,
3-Fluid Dynamic, with hadronic EoS model) in the fireball created in the central heavy ion collisions
at
√
sNN = 63 GeV is 100%, what means that at this energy QGP phase fills a whole volume of the

fireball. At
√
sNN = 2.7 GeV, all 3 versions of used model, HG version and two QGP versions of

3FD, have the averaged relative criteria around 15%. It is logically to assume that not occupied by
HG (3FD with hadronic EoS does not assume coexistence of other phases) the averaged volume is
15%: VHG = 85%, then VQGP = 100− 85 = 15%. If we take radius of fireball created at

√
sNN = 2.7

GeV is 10 fm [29], then radius of a drop of QGP is around 5.3 fm. Analogously, the volume of exotic
drop at

√
sNN = 3.2 GeV (Fig.1 of [28]) is around 10% of whole volume of fireball, therefore the

drop’s radius is around 5.1 fm if radius of fireball has been increased up to, for example, 11 fm. That
is, small volume of QGP’s drop does not mean its small radius because of cubic dependence between
them. Now, let’s take density of QGP is 0.7 fm−3 [29], then averaged distance between partons is 0.55
fm. Taking reasonings (taking phenomenology) from [30] (F5) that if germ of new phase, immersed in
the other phase, has size (5.1 fm) between the mean interparticle distance (0.55 fm) and the system
size (11 fm) then this is a mesoscopic system ”with deconfinement being rather a sharp crossover”
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(1-st order) [30]. So, at around
√
sNN = 3.5 GeV the preferential transition is a sharp crossover and

taking into account reasonings from [31] this sharp crossover transition is split from CSR transition.
Their boundaries meet in critical endpoint at

√
sNN = 9.3 GeV. According to [31] (F6), this splitting

is a small (it lays inside the limits of theoretical uncertainties) and temperature of CSR is higher than

deconfinement, sharp crossover in our case, temperature (
6⋃
i=1

PFi).

Suppose that the relative criterion cannot be used for figuring out the properties of the system.
Let criterion (relative, absolute deviation or any other) is a function of theoretical and experimental
observables f(BM

ξ (κ), Bexp
ξ (κ)). Let some parameter of the system a(λ,Bexp

ξ (κ)) depends from values

one of which is experimentally observable Bexp
ξ (κ) and other λ is a not experimentally observable value.

Let model M cannot exactly describe Bexp
ξ (κ) because of different reasons - difficult mathematical

predicaments, absence of the knowledges about structure of a considered system and so on. Suppose
that phenomenology, used in the M , might give possibility to simplify the system’s structure regarding
the value BM

ξ (κ) closely coincides with λ. Then a ' a(BM
ξ (κ), Bexp

ξ (κ)). Next supposition that
functional dependence from variables in f and a coincides make approximate equality between them:
f(BM

ξ (κ), Bexp
ξ (κ)) ≈ a(λ,Bexp

ξ (κ)). Thus, the first supposition about impossibility is wrong.
Deep downfall of both types of criteria for HSD at around

√
sNN = 2 GeV I interpret as de-

confinement transition of a drop of exotic matter. The Figure 4 of [18] shows that at
√
sNN = 4.9

GeV rapidity distribution of charged pions is better described by HSDwCSR (I now veer from criteria
calculations, returning to the standard analysis on a naked eye), rapidity distribution of K+ and pro-
tons - by both PHSDwCSR and HSDwCSR in equal manner, rapidity distribution of K− - by both
PHSDwCSR, HSDwCSR and PHSD in equal manner, and rapidity distribution of Λ + Σ0 - by both
PHSDwCSR and HSDwCSR in equal manner only for y around 0, and by HSD and PHSD in equal
manner for |y| ≥ 0.4, and all of them in equal manner at |y| ' 0.3. All these force me to conclude
that around

√
sNN = 4.9 GeV we have partially restored chiral symmetry, what means that chiral

order parameter (with respect to the quark mass) begins decrease starting from boundary transition of
hadronic matter to quarkyonic. And in addition to this, from Figure 7 of [18] we see better agreement
of HSDwCSR and of PHSDwCSR with K+/π+ ratio at

√
sNN = 3.3 and 3.8 GeV, and HSD and

PHSD with (Λ + Σ0)/π− ratio at
√
sNN = 3.3, 3.8 and 4.2 GeV. Thus, we may assume that chiral

order parameter gets zero (chiral limit) on the boundary of deconfinement at around
√
sNN = 2 GeV,

and after
√
sNN = 3.5 GeV it begin increases after passing deconfinement boundary by phase tra-

jectory of a drop, moving from QGP, with increase of energy of collisions up to around
√
sNN = 4.4

GeV where it gets the pre-Quarkyonic matter.
The Figure 5 of [18] shows that at

√
sNN = 7.6 GeV rapidity distribution of charged pions

and proton (only one point) is better described by PHSDwCSR and HSDwCSR in equal manner,
rapidity distribution of K+ - by HSDwCSR, rapidity distribution of K− - by PHSDwCSR, and rapidity
distribution of Λ + Σ0 - by both PHSDwCSR and HSDwCSR in equal manner for |y| ≤ 0.8, and by
HSD and PHSD in equal manner for |y| ≥ 1.2, and by PHSDwCSR, HSD and PHSD in equal manner
at |y| ' 1. Two last cases relate to not central rapidity region. All these force to conclude that
at
√
sNN = 7.6 GeV the phase trajectory of a drop came closely to a boundary where chiral order

parameter gets a chiral limit. In addition to this, from Figure 7 of [18] we see better agreement of
HSDwCSR with K+/π+ and (Λ + Σ0)/π− ratios at

√
sNN = 7.6 GeV.

The Figure 6 of [18] shows that at
√
sNN = 17.3 GeV rapidity distributions for all particles

are better described by PHSDwCSR and HSD in equal manner, what forces to conclusion that at
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Figure 3: The sketch of the phase diagram of strongly interacting matter and the phase trajectories
(with arrows) of a systems created in the central nucleus-nucleus collisions: Corona’s phase trajectory
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√
sNN = 17.3 GeV, though the phase trajectory of a drop is located in QGP phase, the state of

matter of a drop is close to a hadronic phase on QCD phase diagram (the phase state of a drop is
”feeling” the neighboring environment). This means that phase trajectory of a drop goes closely to a
boundary of deconfinement transition (though I depict it on the Fig. 3 at larger distance for clarity
of the picture). And in addition to this, from Figure 7 of [18] we see better agreement of HSD and
PHSDwCSR with K+/π+ and (Λ + Σ0)/π− ratios at

√
sNN = 17.3 GeV.

I assume that area of triple point is prolonged from around
√
sNN = 12 GeV to 15 GeV what

explains close trend of both types of criteria for HSD and PHSD models between
√
sNN = 12 and 17

GeV (in limit of errors). Therefore, the more conveniently to call it a triple phase area.
Parallel trend of both types of criteria for HSD and PHSD after

√
sNN around 20 GeV I interpret

as existence some singularity around this energy. Relying on [32] (rapid crossover at high temperature
and zeroth baryochemical potential - F7) I should conclude that after

√
sNN = 20 GeV (µB close to

zero) there is a deconfinement boundary of the rapid crossover with, probably, CSR in chiral limit.
That is we have the critical endpoint of first order at around

√
sNN = 20 GeV. Relaying on [33] I

admit coincidence of CSR with deconfinement transition F8 at µB close to zero (
8⋃
i=1

PFi).

Looking at Figure 2 of [28], we may immediately construct a QCD phase diagram of strongly
interacting matter created in mid-central collisions of heavy ions (

√
sNN = 2.7 ÷ 27 GeV), taking

into account that used now observable, the directed flow of charged hadrons, sensitive to initial state
of created matter [34], therefore this diagram is corresponding to non-equilibrated matter [35] (F9)
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(Fig. 4). I not assume reaching by phase trajectory of a drop to the deconfinement boundary at top
SIS energies, during its initial time of existence, because both types of criteria for 3FD crossover EOS
have large values starting from

√
sNN = 3.2 GeV (note that here we have not the worst criteria but

averaged over all data points of observable); before this energy it coincides with criteria for others
EOS. The positions of singularities of matter are shifted to the higher energies of mid-central heavy-
ion collisions in comparison to central ones. I assume that up to

√
sNN close to 30 GeV the phase

trajectory of a drop does not enter in the QGP phase. Thus, I suggest existence in the hadronic phase
the hadronic drop and with lower temperature the hadronic corona starting after around

√
sNN = 23

GeV (
9⋃
i=1

PFi).

Thus, we have used the set of phenomenologies with nine elements F = {F1, ..., F9} each of which
contains some assumptions, which are impossibly to check experimentally at present time. We can tell
that we have made the mapping of the main phenomenology F3 ([24]) by means of results of the meta-
analysis, where the starting reference point of mapping has been taken in the point corresponding
to
√
sNN = 2.7 GeV, which we have placed in a QGP phase (for central nuclear collisions). And

further we inserted all others phenomenologies F\F3 in the picture (in the Fig.5 of [24]) according

with mapping, thereby forming a union
9⋃
i=1

PFi of (5).

4 CONCLUSION

Application of the meta-analysis has allowed to separate HSD and PHSD models already at energy√
sNN = 2.7 GeV of central nucleus-nucleus collisions. The meta-analysis has figured out the possible

position of a critical endpoint of second order at around
√
sNN = 9.3 GeV, a critical endpoint of first

order at around
√
sNN = 20 GeV, a triple point at around

√
sNN = 12 GeV (it probably occupy wide

region, a triple phase area, on QCD phase diagram corresponding to around
√
sNN = 12÷ 15 GeV)

and the boundaries of a states of nuclear matter on QCD phase diagram: the transition at
√
sNN = 3.5

GeV corresponds to a split sharp crossover (1-st order) transition and CSR in chiral limit (the last
one at higher temperature, though this splitting lay in limit of theoretical uncertainties) between
QGP and Quarkyonic matter, the boundary of transition with a partial CSR between Hadronic and
Quarkyonic matter was localized between

√
sNN = 4.4 and 5.3 GeV, though it is not being crossed by

phase trajectories of a drop or corona. The boundary of a smooth crossover (2-nd order) transition
with CSR in chiral limit between Quarkyonic matter and QGP was localized on interval

√
sNN = 9.3

and 12 GeV, and between Hadronic matter and QGP on interval
√
sNN = 15 and 20 GeV. After√

sNN = 20 GeV we have boundary of a sharp crossover transition with CSR in chiral limit between
QGP and Hadronic matter.

The ignition of QGP’s drop happens when phase trajectory of a drop goes through a split boundary
transition of sharp crossover and CSR in chiral limit at around

√
sNN = 2 GeV. The volume of this

drop occupies about 15% of the total fireball volume.
Phase trajectory of a drop of matter of fireball created at mid-central heavy-ion collisions at energy

range
√
sNN = 2.7÷27 GeV do not reach the QGP state at these energies and during initial space-time

interval of drop’s evolution before getting an equilibrium state.
Other models are needed to figure out the phase trajectories of a system at lowest SIS and BE-

VALAC energies.
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