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Abstract

In this paper the quantised version of Newton Second Law is derived
assuming merely the existence of de Broglie matter-waves and their basic
properties. At the same time we keep an eye towards interpretations of
quantum mechanics and will realise that the two most different interpre-
tations –Copenhagen interpretation and the de Broglie-Bohm theory– owe
their difference to two fundamentally different approaches to ‘Harmoni-
sation’. In this regard we shall see that the guiding equation of the de
Broglie-Bohm theory currently found in literature is not the most complete
equation possible; as a result we answer one of the important questions
in interpreting quantum mechanics, namely that ‘when does the concept
of classical path (trajectory) makes sense in quantum mechanics?’ More-
over, in light of special-relativistic considerations we shall easily see that
in the Number-Division approach, i.e. that of de Broglie-Bohm, the wave
operator no longer appears, making it in turn impossible the application
of Clifford algebras (Dirac’s ‘square root’ of the wave operator). With
a quantum theory expressed entirely in terms of local forces at hand we
shall investigate yet another important problem in foundations of quan-
tum mechanics: the Aharonov-Bohm problem.
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1 Introduction

One of the most important constituents of our current understanding of
the universe is the theory of quantum mechanics, on its exemplary util-
ity in analysing microphysics we have almost no doubt. Apart from the
measurement problem, which is almost certain to be resolved only by a
complete change of paradigm, the theory faces dead-ends in three main
categories:

• Significance of Potentials, in light of the Aharonov-Bohm effect.

• Perturbation theory, from the standpoint of epistemology it is not al-
ways applicable and leads to divergences requiring the ad-hoc reme-
dies of renormalisation. From an ontological perspective, a realist
physicist tend to believe that nature is not perturbative.

• Application to Dissipative systems. This problem is not a funda-
mental one as we tend to believe that non-conservative forces exist
only to represent a whole lot of complicated stories going on in a
‘lower’ level when we choose to be in a domain which is ‘not fun-
damental enough’. Nevertheless from a practical point of view it is
inevitable to consider such problems in domains like Molecular and
Atomic physics.

In this paper we shall only deal with the first of these issues, plus some
matters of interpretation of quantum theory; it is possible that the present
work can help in solving the second and third problem –as it is applicable
to general forces– but unless we can show that our approach is able to
solve renormalisation issues in the quantum field theories, we prefer not
to claim that.

1.1 ε = ~ω
From the considerations of Planck [1] and Einstein [2] we can at most say
Monochromatic radiation of low density (within the range of validity of

2



Wien’s radiation formula) behaves thermodynamically as though it con-
sisted of a number of independent energy quanta of magnitude 2Rβω/2πN .1

There are two critical assumptions

• The wave under consideration is a monochromatic (harmonic) one.

• We are within the range of validity of the Wien’s radiation law
(Wien’s approximation). i.e. the frequencies with which we are
working are bounded below by ωmin.

Yet a wave in general does not know any of the concepts frequency or
wave number. These are concepts which appear when we choose a basis
–the Fourier basis– for our function space; by the principle of relativity,
A physical theory should not depend on our choice of basis2, so
ε = ~ω must be a special case of the –still unknown– quantum condition,
on which ‘hypotheses non fingo’. Apart from incompleteness in its current
form, it encounters serious inconsistencies. First, if according to de Broglie

mc2 = ~ω

then for a massless particle it means

~ω = 0 =⇒ ω = 0

which undermines the whole idea! one of the most important experimental
evidences of E = ~ω is for photons in the celebrated Photoelectric effect.
Thus either photons are not massless, which is a serious difficulty leading
to many conceptual problems, revival of the Luminiferous aether among
them, or E = ~ω is not a complete law of nature.
Second, in this form there is a tension with relativity since a particle’s
intrinsic energy must transform as –E is its rest-frame energy–

E → γE

while for E = ~ω we have
E′ = ~ω

γ
This problem was realised by de Broglie himself and he gave a partial
solution to it in his thesis[3], called the theorem of phase harmony, le
théorème de l’harmonie des phases:
A periodic phenomenon is seen by a stationary observer to exhibit the fre-
quency ω = mc2/~γ that appears constantly in phase with a wave having
frequency ω = mγc2/~ propagating in the same direction with velocity
v = cγ.
But the tension with relativity is still there! since v = cγ ≥ c. essentially,
the theorem of phase harmony prefers to make nature non-local than con-
sistent with special relativity. so we have here chosen non-locality and
superluminal signaling. we shall not be surprised to see this non-locality
returning as we further develop quantum mechanics. quantum mechanics
is non-local by assumption.
For the moment let us neglect these inconsistencies and focus on develop-
ing quantum mechanics further, being aware that we should not expect
to arrive at a fully consistent theory!

1from the english translation of Einstein’s paper. I changed ν to ω/2π for the sake of
uniformity of notation.

2This is not exactly the principle of relativity but essentially it is of the same spirit.
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1.2 Role of Potentials in quantum mechanics

Schrödinger equation

i~ ∂
∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V ψ(x, t)

contains only V , not its gradient. Taking Schrödinger equation as a fun-
damental law of nature, not derivable from the most fundamental law of
classical mechanics, F = dp/dt, this might lead one to think that poten-
tials, and not local forces, are the primary ontological entities in nature.
But potentials are fundamentally non-local and Aharonov and Bohm, in
[4] devised of an experiment which showed that such non-localities, can
have observable effects3, if schrödinger equation is a fundamental law of
nature. But is it? We shall argue that Schrödinger equation is not a
fundamental law of nature, at least not more fundamental than Newton
Second Law. All that we can say is that the fundamental laws of nature
are the Newton Second Law and the de Broglie relation for matter-waves.
These two laws would suffice to build the whole edifice of quantum me-
chanics. We will not embroil ourselves in subtleties of trying to analyse
the Aharonov-Bohm setup, neither do we embark on trying to see what
mechanism is at work to account for the apparent peculiarities. Instead
we take the most simple-minded approach: Forget everything you know
or like about the Aharonov-Bohm effect. In the Aharonov-Bohm setup
all that there is, is a free particle. What does a quantised Newton second
law say about a free particle?
In what follows we shall pave the way to prove that Schrödinger equation
is derivable from Newton Second Law, assuming only the existence of de
Broglie matter-waves and their basic properties.

1.3 Harmonisation

What should we do then if we are desparate enough to assume every
wave as harmonic? In order to develop quantum mechanics we accept
this as a bare fact and brute-force everything to be harmonic, by giving
harmonicity to all waves; a process which we refer to as Harmonisation.
Let us see how we can find an expression for frequency and wavevector in
terms of the wavefunction itself4, assuming all waves are harmonic,

ψ(x, t) = ei(k·x−ωt)

if we apply the gradient operator to both sides we have,

∇ψ = ikψ

3Many physicists share the position that the AB effect is a real quantum-topological ef-
fect, unexplainable by classical physics, supported by observations. On this issue much has
been written, both physical and philosophical. Among most interesting ones is Timothy H.
Boyer’s[5] seminal paper. We prefer to remain neutral about this controversy and only trust
what equations say, for it is quite natural for experiments –even more today, because of ex-
treme technical difficulties and limitations– to be misinterpreted or even, to be wrong.

4Note that this is not the most general harmonic wave we can write. Moreover notice that
in these definitions only forward-in-time waves are considered. it is not clear whether this
preference of time direction affects the theory; this being said it should not be a big surprise
if this time-asymmetry shows up somewhere later.
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and similarly for the (partial) time derivative operator,

∂

∂t
ψ = −iωψ

so we have two possibilites for harmonisation. One possibility leads to
ordinary quantum mechanics –Copenhagen interpretation– and the other,
to a more complete formulation of the de Broglie-Bohm theory.

1.3.1 First approach: de Broglie-Bohm theory

In this approach which we call Number-Division approach, we use the
following definition

k := −i∇ψ
ψ
. (1)

But this definition has singularities, when ψ = 0. Nevertheless, this is
the approach which eventually leads to the de Broglie-Bohm theory.5 To
see this we use the polar representation of a complex-valued function
ψ : R3 × R→ C

ψ(x, t) = R(x, t)eiS(x,t)

where R : R3 × R→ R and S : R3 × R→ R. Now we apply the quantum
condition (de Broglie relation)6

p = ~k =⇒ p = −i~∇ψ
ψ

= −i~ 1

ψ

(
∇ReiS(x,t) + iR∇SeiS(x,t)

)
p = −i~∇R

R
+ ~∇S (2)

in natural units (~ = 1)

p = −i∇R
R

+∇S

while in the context of de Broglie-Bohm theory (see, for example[6])

p = ∇S

so there is a missing term:

−i∇R
R

.

In the literature one usually uses the non-relativistic momentum p = mv
to find the velocity field of the particle as

v =
∇S
m

the complete relation, however, is

v = −i~∇R
mR

+ ~∇S
m

(3)

5We can now see why in the de Broglie-Bohm theory one can have a number for veloc-
ity/momentum of the particle; because the way the theory proceeds is aimed at avoiding using
linear operators and eigenvalues.

6Assuming here ψ ∈ C1, at least.
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But classical velocity cannot be complex. The only remedy would be to
let ∇R = 0, (R 6= 0) which gives

ψ(x, t) = CeiS(x,t)

where C is the constant of integration. Using the Copenhagenian ter-
minology, we can conclude that the concept of a classical path makes
sense only for a uniform probability density function (wavefunctions with
constant amplitude only).

1.3.2 Second approach: orthodox quantum mechanics

The second –and more aesthetically appealing– approach would be to
‘promote’ wavevector to a linear operator k̂ ∈ L(L2(R)) defined as

k̂ = −i∇ (4)

and say instead that we are dealing with an eigenvalue problem, which
is exactly what people do in orthodox quantum mechanics. Similarly for
frequency we have

ω̂ = i
∂

∂t
(5)

in (+,−,−,−) metric signature we know the four-gradient covariant vec-
tor is given as,

∂µ =

(
1

c

∂

∂t
,∇
)

and the four-wavevector Kµ by,

Kµ =
(ω
c
,−k

)
.

therefore if we promote the four-wavevector Kµ to an operator we have

K̂µ =

(
ω̂

c
,−k̂

)
=

(
i

c

∂

∂t
, i∇

)
so the complete covariant quantum condition would be

p̂µ = ~K̂µ = i~∂µ. (6)

It is important to notice two important radical changes that are forced
upon us once we assume all waves as harmonic:

1. i, bringing about complex numbers, which are hard to interpret phys-
ically and were sofar assumed to be only tools. Now they are more
than tools. We cannot assume all waves as harmonic unless we pay
the price: complex numbers.

2. Eigenvalue problem and Linear Operators, bringing about
Hilbert spaces.

Now that we have these, unlike Schrödinger[7], without appealing to any
opto-mechanical analogies we can get the Schrödinger and Klein-Gordon
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equations7.
From the special-relativistic energy relation

E · E = c2p · p +m2c4

Applying the de Broglie operator equation we have

(~ω)2 = ~2c2k · k +m2c4

−~2∂2
t = ~2c2∇2 +m2c4 (7)

which is the Klein-Gordon operator equation.
For a massive non-relativistic particle in a potential V , approximately we
have

E =
p · p
2m

+ V

which –as we know– yields the schrödinger equation, after using the quan-
tum condition p = −i~∇ :

i~ ∂
∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V ψ(x, t).

If we insist on this solution we must as well have a definition for the
propagation velocity of a general wave. It must be

ĉ := ∂t∇−1

which is not generally defined.
Another possibility is

c := ±i ∂tψ|∇ψ| (8)

which has a sign ambiguity. It might have two possibile remedies: Either
we should have only one kind of waves (backward-in-time or forward-in-
time) but not both; which treats time asymmetrically.
In the second remedy we use second derivatives to define

c :=

√
∂2
t ψ

∇2ψ
(9)

which is again problematic due to its singularities and multivaluedness of
complex functions.

2 Quantisation of Newtonian mechanics

Given ‘sufficient’ initial conditions, in classical mechanics, Newton second
law solves a mechanical problem completely; therefore we expect this to
be also the case in our new quantum mechanics.
However, there is a crucial difference in quantum mechanics: in view of de

7It is of course nothing new, and familiar to every physicist, we are only trying to change
the perspective.
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Broglie’s wave-particle duality, all classical variables become fields (vector
or scalar) in quantum mechanics. It turns out that the classical law of
motion (Newton second law and related definitions) is easily extended to
the quantum case if we treat our classical dynamical variables as functions
of trajectory and time, viz. if V is a classical dynamical variable, then the
correct treatment in quantum mechanics should see it like

V = V(x(t), t).

2.1 Operator-Eigen approach to Harmonisation

2.1.1 Non-relativistic case

Using chain rule8

F =
dp(x(t), t)

dt
=
∂p

∂t
+ v · ∇p =

∂p

∂t
+

1

m
p · ∇p (10)

in Euclidean space we have the following identity

p · ∇p =
1

2
∇(p · p)

proof:
∇(p · p) = ∂µ(pρpρ)

where µ, ρ = 1, 2, 3.

∂µ(pρpρ) = (∂µpρ)p
ρ + pρ∂µp

ρ

in either term, lower one ρ and raise the other. since pα = −pα, we can
say

∂µ(pρpρ) = 2pρ∂µp
ρ =⇒ ∇(p · p) = 2p · ∇p

thus

F =
∂p

∂t
+

1

2m
∇(p · p)

If we now quantise this equation using the quantum mechanical operator
p = −i~∇, and act on ψ, we get the quantised Newton second law,

Fψ(x, t) = − ~2

2m
∇∇2ψ − i~ ∂

∂t
∇ψ (11)

If we have a conservative force field F(x) = −∇V (x), after substitution
we have,

−∇V ψ = −i~∇ ∂

∂t
ψ − ~2

2m
∇(∇ · ∇)ψ

which is

i~∇ ∂

∂t
ψ = ∇

(
V − ~2

2m
∇2

)
ψ (12)

8We need not worry here about possible non-commutativities familiar from ordianry quan-
tum mechanics. such non-commutativities happen for canonically conjugate (Fourier dual)
variables only. no use of Fourier transform/duals is made in our discussion.
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i.e. ‘the gradient’ of the Schrödinger equation.
We now observe that even for a conservative force field, schrödinger equa-
tion ‘kills’ some solutions, because

∇
(
− ~2

2m
∇2 + V − i~ ∂

∂t

)
ψ = 0

=⇒ ∃g(t) : R→ R, s.t.

− ~2

2m
∇2ψ + V ψ − i~ ∂

∂t
ψ = g(t) (13)

This non-homogeneity can be interpreted in two different ways:

• Incompleteness of the theory. Although we expected that Newton
second law can solve our new quantum-mechanical problems com-
pletely, it is possible that the new quantum theory lacks a law –for
whatever reason– to fix g(t).

• The theory demands more information of boundary conditions. We
need not to try to ‘drop’ the gradient; we can solve a third-order
PDE instead, which of course needs one more boundary condition.

We have seen, therefore, that the Schrödinger equation is essentially the
conservation of energy and in comparison to the quantised Newton second
law it contains less information. More on this issue will be said in the next
section.

2.1.2 Relativistic case

In a similar manner we can have an educated guess about how to quan-
tise the Relativistic Newton Second Law. Note that in light of special
relativity, in the non-relativistic case t was only a parameter; so here that
instead of t we have τ we should treat it similarly.

Fµ =
d

dτ
Pµ(xν(τ), τ) = (∂νP

µ)
dxν

dτ
+
∂Pµ

∂τ
(14)

since
dxν

dτ
= Uν =

1

m
P ν

Fµ =
1

m
P ν(∂νP

µ) +
∂Pµ

∂τ
as

Pµ = i~∂µ

therefore9 after substitution and acting on ψ(xλ)

=⇒ Fµψ(xλ) = −~2

m
�∂µψ(xλ) + i~ ∂

∂τ
∂µψ(xλ) (15)

9Notice an important use we have made here of the commutativity of the covariant deriva-
tive of the Minkowski space-time, i.e. ∂µ to make the wave operator appear. This is obviously
not possible in presence of gravity and it can be a reason for difficulties involved with quan-
tising gravity.
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2.2 Number approach to Harmonisation

2.2.1 Non-relativistic case

In this case the quantum condition takes the following form:

p =
−i~∇ψ
ψ

as

F =
dp(x(t), t)

dt
=
∂p

∂t
+ v · ∇p =

∂p

∂t
+

1

2m
∇(p · p)

F = −i~ ∂
∂t

∇ψ
ψ
− ~2

2m
∇(
∇ψ · ∇ψ

ψ2
)

If we denote by log the principal values of the complex logarithm function,

F = −i~ ∂
∂t
∇ logψ − ~2

2m
∇(∇ logψ)2 (16)

2.2.2 Relativistic de Broglie-Bohm theory

Pµ =
i~∂µψ
ψ

as

Fµ =
1

m
P ν∂νP

µ +
∂Pµ

∂τ
=
−~2

m

∂νψ

ψ
∂ν(

∂µψ

ψ
) + i~ ∂

∂τ

∂µψ

ψ

If we denote by log the principal values of the complex logarithm function,

Fµ =
−~2

m
(∂ν logψ)(∂ν∂

µ logψ) + i~ ∂
∂τ
∂µ logψ (17)

Here comes the critical observation: in the de Broglie-Bohm approach, op-
erators are already ‘fed’ ! Unlike the Operator-Eigen approach, we cannot
here make the wave operator appear. Evidently this is a serious obstacle to
quantum electrodynamics, for Dirac’s ideas of Clifford algebras –roughly
said, taking the ‘square root’ of the wave operator– are not applicable
here.

3 Does the Energy Conservation theo-
rem solve a dynamical problem completely?

It is familiar from classical mechanics that except for a scleronomic system
with only one degree of freedom, conservation of energy does not yield to
complete integration and solution of the problem.(see [8])
For the case with rheonomic systems (e.g. time-dependent potentials), if

E =
1

2
mṙ2 + V (r, t)

=⇒ 0 =
dE

dt
= ma · ṙ +

∂V

∂t
+ ṙ · ∇V

which is

ma · ṙ + ṙ · ∇V = −∂V
∂t
.
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this is all we can say. As an example, take the famous case of a –non-
relativistic– charged particle in an electrodynamical field. The equation
of motion is given by the Lorentz force law, while it is impossible to derive
this force from the Lagrangian

L(r, ṙ; t) =
1

2
mṙ2 − e(φ(r, t)− ṙ ·A(r, t))

if we are going to use solely the conservation of energy; more informa-
tion is needed to find the equation of motion, which is given to us by the
Euler-Lagrange equations.
Since we know that the schrödinger equation is essentially the conservation
of energy, without any further application of the rest of the Hamiltonian
mechanics, i.e. Hamilton’s equations, we should be sceptic and careful
about its application to time-dependent potentials; no ontological conclu-
sion shall be infered from a possibly-incomplete theory, i.e. what such
theory says about physical reality cannot be easily trusted.

4 Free particle and the Aharonov-Bohm
problem

In this problem, essentially we have a free particle, F = 0. As we saw
earlier, for a free particle, the quantised NSL is

− ~2

2m
∇2ψ + V ψ − i~ ∂

∂t
ψ = f(t) (18)

for some differentiable real-valued function f(t).
We do not need any solution of this equation at hand to observe that the
solutions will have no dependence on any undefined quantity like poten-
tials whatsoever, let alone electromagnetic ones.
One might say that the function f(t) will ‘transmit’ the non-local effects
of potentials and the problem still remains. However, note that

• As we pointed earlier, the appearance of f(t) can only show our
lack of information; either of some yet-unknown law of quantum
mechanics or of boundary conditions. even if we neglect this crucial
point:

• The function f is only a function of time, and as we are in the
domain of non-relativistic classical mechanics, time is an absolute
entity a priori and cannot be affected by fields evolving in it. even
if the electromagnetic potentials altered the geometry of space, they
could not affect time!10

• From the viewpoint of special relativity, potentials defined on space-
time cannot affect the invariant dτ (proper time parameter).

10We are considering here the ‘hard’ scenario where the time-independent vector potential is
responsible for the effect. If we focus on the Electric Aharonov-Bohm effect, where the poten-
tial is time-dependent we can immediately resolve the issue by pointing that the schrödinger
equation is not even applicable in such case! even if applicable, it will not solve the problem
completely, and if we do not know the complete answer of a theory in a particular situation,
how can we deduce such important ontological conclusion from it?!

11



• From the standpoint of general relativity it is true that TµνEM can
alter the structure of spacetime, as a source for Einstein Field Equa-
tions. but TµνEM is expressed entirely in terms of local fields E and
B. This case has no tension with locality: E and B alter the geom-
etry of spacetime and the change in geometry transmits to the time
parameter of the above non-homogeneous equation (in infinitesimal
regions where we can approximate the spacetime as flat and solve
the schrödinger equation). This is a perfectly local explanation.

5 Conclusions

In this paper we showed that

• The famous claim of the advocates of the de Broglie-Bohm theory,
that quantum mechanical particles do have path is wrong. such
particles can have classical path defined for them only in special
circumstances.

• Schrödinger equation is derivable from Newton Second Law. It is
therefore not more fundamental than Newton Second Law. It is
highly unlikely that ‘the classical limit problem’ makes a valid as-
sumption. classical mechanics is not a special case of quantum me-
chanics.

• Schrödinger equation is not the most complete quantised equation
of motion for de Broglie matter-waves. In particular, it is not ap-
plicable to rheonomic systems (e.g. time-dependent potentials) nor
applicable in presence of non-holonomic kinematical constraints. If
applied in such situations, we will not get a complete solution of
the mechanical problem under consideration, because conservation
of energy only for scleronomic system leads to a complete solution.

• The so-called Aharonov-Bohm effect cannot exist in the first place.
It would be better to refer to it as the Aharonov-Bohm problem.
Most probably it does not exist as a physical phenomenon.
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