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Abstract

The paper uses the structure and math of Prime Generators to show there are an infinity
of twin primes, proving the Twin Prime Conjecture, as well as establishing the infinity of other
k-tuples of primes.

1 Introduction
In number theory Polignac’s Conjecture (1849) [6] states there are infinitely many consecutive
primes (prime pairs) that differ by any even number n. The Twin Prime Conjecture derives
from it for prime pairs that differ by 2, the so called twin primes, e.g. (11, 13) and (101, 103).

K-tuples are groupings of primes adhering to specific patterns, usually designated as (k, d)
groupings, where k is the number of primes in the group and d the total spacing between its first
and last prime [4]. Thus, Polignac’s pairs are type (2, n), where n is any even number. Three
named (2, n) tuples are Twin Primes (2, 2), Cousin Primes (2, 4), and Sexy Primes (2, 6). The
paper shows there are many more Sexy Primes (in fact they are the most abundant) than Twins or
Cousins, though an infinity of each, and an infinity of any other (2, n) tuple.

I begin by presenting the foundation of Prime Generator Theory (PGT), through its various
components. I start with Prime Generators (PG), which as their name implies, generate all the
primes. Each larger PG is more efficient at identifying primes by reducing the number space they
can possibly exist within. They thus structurally squeeze the primes into a smaller set of integers
that contain fewer composites, in a very systematic manner.

Each PG has a characteristic Prime Generator Sequence (PGS), a repeating pattern of
gaps between the residue elements of its PG. These gap patterns illustrate, and adhere to, a
deterministic set of properties. I use them to systematically show once a PGS gap size between
residues exists it will be repeated with higher frequency for all larger PGS. I then show every residue
gap will, with certainty, become a gap between prime pairs. This will be used to establish the infinity
of twin pairs, and other k-tuples. I provide data and graphs to empirically show this.

The epistemological model for developing PGT is highly visual, and most easily explained
and understood through pictures to establish its properties. Some may not find this “rigorous”
and insufficient to meet its claims. However, it will be seen its foundation provides a consistent
mathematical framework to qualitatively explain, and quantitatively produce, empirically verifiable
results derived using other methods and techniques.

At the time of writing, the largest known twin prime is 2996863034895 · 21290000 ± 1 [5] (2016),
which resides on restracks P5[29:31] and P7[29:31] for those PG. There are an infinity of larger
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twin primes, which will reside on some twin pair restracks for every PG. The same will be true for
other k-tuples.

I have previously used Prime Generators to construct, and implement efficient and very fast
prime sieves, to find all the primes up to a finite N, or within a finite range, including the fastest
and most efficient prime sieve method to find twin primes. See [1], [2], [3]

2 Prime Generators
A prime generator Pn is composed of a modulusmodpn and a set of residues ri with residue count
rescntpn (determined by Euler’s Totient Function, ϕ(n)= n

∏
(1− 1/pi), which have the form:

Pn = modpn · k + {ri} (1)

modpn = pn# =
∏

pi = 2 · 3 · 5 · ... · pn (2)

rescntpn = (pn − 1)# =
∏

(pi − 1) = (2− 1) · (3− 1) · (5− 1) · ... · (pn − 1) (3)

where pn is the last PG prime. A PG’s residues are the set of integers ri ε {1...modpn-1} coprime
(no common factors) to its modpn, i.e. their greatest common divisor is 1: gcd(ri, modpn) = 1.
They exist as modular complement pairs, such that modpn = ri + rj and therefore (ri +
rj) mod modpn ≡ 0. Thus, we only need to generate the residues ri < modpn/2, and the other
half are rj = modpn - ri.

For P5 then, modp5 = 2 · 3 · 5 = 30, with rescntp5 = (2 - 1) · (3 - 1) · (5 - 1) = 8. P5’s
8 residues are {1, 7, 11, 13, 17, 19, 23, 29}, which are used as {7, 11, 13, 17, 19, 23, 29, 31}, to
always have the first residue in its sequence be prime, with the last set to 1 ≡ (modpn + 1) mod
modpn. Thus we have:

P5 = 30 · k + {7, 11, 13, 17, 19, 23, 29, 31} (4)

We can now construct P5’s prime candidates (pc) table, here up to N = 541, the 100th
prime, where each k ≥ 0 index residue group (resgroup) contains pc values along each residue
track (restrack|rt).

Fig 1.
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A table of prime candidates can be created for every PG. All the primes > pn occur mostly in
equal numbers (i.e. statistically uniformly) along each restracks. The marked cells in Fig 1. are
prime multiples (composites) of the residue primes, that have been sieved out to identify the primes
within the range. See [1], [2]. P5 is the largest Pn for which all its residues are prime. All larger
will have residues consisting of primes and their consecutive coprime multiples < modpn.

3 Prime Generator Sequences
Each prime generator has a characteristic Prime Generator Sequence (PGS). This is the se-
quence of the differences (gaps) between consecutive residues defined over the range r0 to r0 +
modpn where r0 is the first residue of Pn, which is the next prime > pn.

Let’s construct the first prime generator P2, and its PGS.

For P2: modp2 = 2, with rescntp2 = (2 - 1) = 1, with residue {1}, but use its congruent value {3}.

Thus, P2 = 2·k+3, produces the pc sequence: 3 5 7 9 11 13 15 17... ∞, i.e the odd numbers.
So for P2, its PGS is a single element of gap size (r0 - 1) = (3 - 1) = 2: PGS P2: [r0 = 3] 2 |

Now let’s construct P3: modp3 = 2 · 3 = 6; rescntp3 = (2 - 1) · (3 - 1) = 2, with residues {1, 5}.
P3, thus, has the functional form: P3 = 6·k+ {5, 7}. Its pc table is shown below up to k = 16.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rt0 5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101
rt1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Fig 2.

For P3, each resgroup (column) contains prime candidates forming a possible twin pair, extending
into infinity. Except for (3, 5), every twin prime can be written as 6n ± 1 for some n ≥ 1 values.

The last two residues for all prime generators > P2 are modpn ± 1, thus they have at least one
twin pair set of residues. For larger prime generators there are more twin pair residues, and
others. To illustrate this, we examine the PGS for increasing prime generators Pn.

For P3 we see its PGS contains the gaps 2 and 4, which occur one each, with the last (r0 - 1) = 4.

PGS P3: 5 7 11 13 17 19 23 25 29 31 35 . . . ∞
2 4 | 2 4 | 2 4 | 2 4 | 2 4 |

For P5 we see from Fig 1. its sequence of prime candidates, with its PGS spacing.

PGS P5: 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 . . . ∞
4 2 4 2 4 6 2 6 | 4 2 4 2 4 6 2 6 |

Again we see the gaps 2 and 4 occurring with the same (odd) frequency, with the last three gaps
now having the form (r0 - 1) 2 (r0 - 1), where r0 = 7 is the first residue for P5.

We are beginning to see some of the inherent properties of prime generators emerge. Each larger
Pn (P7, P11, P13, P17, etc) will conform to these properties, producing an increasing number of
gaps, with a defined number of specific gap sizes, systematically distributed within the sequence.
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4 Characterizing PGS
Each prime generator sequence is defined over the range r0 to r0 + modpn, therefore the number
of gaps equals the number of residues, and the sum of the gap sizes equals the modulus. Let ai be
the frequency coefficients (number of occurrences) for each gap of size 2i, i ≥ 1, thus:

rescntpn =
∑

ai (5)

modpn =
∑

gapi =
∑

ai · 2i (6)

Therefore for PGS P3: [r0 = 5] 2 4 | → modp3 = 6 = (1) · 2 + (1) · 4
and PGS P5: [r0 = 7] 4 2 4 2 4 6 2 6 | → modp5 = 30 = (3) · 2 + (3) · 4 + (2) · 6

For P7, modp7 = modp5 · 7 = 210, and rescntp7 = rescntp5 · (7 - 1) = 48, with the residues:

{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193,
197, 199, 209, 211}

PGS P7: [r0 = 11] 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2
4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 |

With: modp7 = 210 = (15) · 2 + (15) · 4 + (14) · 6 + (2) · 8 + (2) · 10

Again we see for P7, there are an equal odd number of occurrences for gaps 2 and 4. This il-
lustrates a property of every prime generator with modulus of pn#, coefficients a1 = a2 have form:

a1 = a2 = (pn − 2)# =
∏

(podd − 2) = (3− 2) · (5− 2) · (7− 2) · ... · (pn − 2) (7)

We also see the consistent pattern that the last gap term is (r0 - 1), and starting with P5, the
last three gaps have the pattern (r0 - 1) 2 (r0 - 1). This occurs because the last two residues are
always twin pairs of form modpn ± 1, and the second from last is the modular complement of
r0, i.e. (modpn - r0).

We now also notice that the number of unique gap sizes for each generator Pn are of order pn−1.
Through observation of increasing Pn this is seen as a consistent property (for nonzero coefficients).
Thus the PGS for P3 has two (2) gaps, for P5 three (3) gaps, for P7 five (5) gaps sizes, and so on.

5 PGS Symmetry and Distribution
Because the residues exist as modular complement pairs they produce a mirror image gap
distribution around a midpoint pivot term. The PGS pattern up to the pivot will exist as its mirror
image after.

Starting with P5, we know the last 3 gaps for all Pn have the form (r0 - 1) 2 (r0 - 1), thus
their sum is 2r0, and the remaining odd number (rescntpn - 3) gaps must equal (modpn - 2r0).
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This requires for P5, the (8 - 3) = 5 gaps at the front of its PGS must sum to (30 - 2·7) = 16.
If all the gaps were 2 you would need 8, which is too many, if all were 4 you need just 4, which is
too few. The gap structure is numerically constrained to generate the unique combination of gap
sizes to satisfy both requirements (5) and (6) that represent each Pn.

In addition, these (rescntpn - 3) odd gaps exist with a symmetric mirror image distribution
around a mid pivot gap that is always of size 4.

To show this, excluding the last 3 term of PGS P5 we have the gap sequence: 4 2 4 2 4
Here the terms 4 2 are the mirror image of 2 4 and are symmetric around midterm 4.

For PGS P7 we get: 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4
2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2

and again see a similar mirror image symmetry of each half around the midterm 4.
For P7, in order for the (48 - 3) = 45 gaps in its PGS front to sum to (210 - 2·11) = 188 we see

new gaps of 8 are introduced (mirrored in both halves) close to the middle pivot point.
As the PG moduli increase, new larger gaps will emerge and be included toward the pivot

element. This amounts to pushing the preexisting gaps toward the front and back. This expansion
process ensures all preexisting residue gaps will eventually exist for the primes < r02 for some Pn.

Each PGS shows a1 = a2 are odd because gap size 4 is the pivot term and a gap 2 is part of the
last three sequence terms. (I provide the numerical basis for this at the end of the paper.) Every
other gap term is part of each mirror image and/or occur in even numbers. Thus as similar to the
residues, we only need to (computationally) determine the first (rescntpn - 4)/2 gap terms.

6 The Infinity of Primes
Starting with just the first two primes 2 and 3, we can show the infinite progression of primes.

Using the first two primes we create: P3 = 6·k + {5, 7}, k ≥ 0.

From Fig 2. the pc < r0
2 = 52 = 25 are prime, which are the primes {5, 7, 11, 13, 17, 19, 23}.

We now use the new found primes 5. . . 23 to construct P23, with modp23 = 223092870, whose
r0 = 29. All the residues between 29 and 292 = 841 will be primes. The primes counting function
π(x) tells us there are exactly 137 primes from 29...841, the last being 839. We now have a
repeatable deterministic process to identify all the primes, into infinity .

Thus, any prime p can be treated as r0 to a Pn modulus composed of all the primes < p, whose
residues from p to p2 are new primes. We can repeat this progression of primes process forever,
to always generate new primes. Thus from this exact process, we can generate a list of consecutive
primes for any Pn, from which we can then exactly determine their prime gaps distribution.

In fact, an estimate of the number of new primes generated in any range p to p2 will be of order:

πest(p, p
2) =

p2

log(p2)
− p

log(p)
=
p · (p− 2)

2 · log(p)
(8)

For p = 29, this produces an estimate of 116 primes from 29 to 841, compared to the actual of
137. (See Appendix for fuller elaboration.)
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7 Prime Generator Properties
Given what we’ve observed, and now know about prime generators and their sequences, we can
codify their inherent and immutable properties, and use them in a logically consistent manner to
empirically establish and project the nature, numbers, and distribution of all prime gap k-tuples.

Though mathematically simple expressions, prime generators reveal an astounding breadth of
knowledge about the nature of prime numbers, embedded in their inherent immutable properties.
When I refer to their properties as being ‘inherent’ these are natural aspects and characteristics of
their structure that are discernible easily through visual observation. Once observed they could be
mathematically described and characterized to formulate a consistent framework for application.

As an example, it is an inherent property of base ten numbers that the least significant digit
(lsd) of an even integer must (only) be the digits, 0, 2, 4, 6, 8, and conversely 1, 3, 5, 7, 9 for
odd. However when we change the base system, say to a binary (base two) system, even|odd has
a different expression, i.e. the least significant bit (lsb) of an even number is a ‘0’ and a ‘1’ for
odd. We performed no calculation to determine this, these are observable characteristics that are
inherently associated with the concepts of even and odd for each base system.

Using these inherent properties of even|odd for base ten numbers, we can apply them through
observation to ‘prime’ numbers. It is an inherent property of prime numbers that, other than for
the prime 2, all others are odd, which means their lsd aren’t 0, 2, 4, 6, or 8. So by mere observation
you know 341786 isn’t prime. You didn’t need to perform a calculation to confirm this, if you
understood this natural inherent property of prime numbers it’s observably obvious.

Also, other than for the prime 5, all other primes lsd can only be 1, 3, 7, or 9. This means at
minimum 60% of all integers (those with lsd of 0, 2, 4, 5, 6, and 8) can’t be primes. This is an
inherent property of numbers. If you know a little bit more number theory, you also know that
while 11 and 101 could be primes (they are) 111, 1011, and 1101 observably could not. Why?
Because for base ten numbers, if the sum of their digits is a multiple of 3 then it’s divisible by 3,
and thus not prime.

Thus it is an inherent property of Twin Primes their lsd can only be {1, 3}, {7, 9}, or {9, 1} e.g.
for (11, 13), (17, 19), and (29, 31). It’s also inherent for all prime numbers > 2, the gaps between
them are even because each is odd. You don’t have to ‘prove’ this (though the proof is simple), it
is an inherent property of odd numbers.

Thus, when I refer to the inherent properties of prime generators, these are observable char-
acteristics and patterns that emerge naturally from their structure which I have mathematically
codified. They are also immutable because they are the same for all generators constructed as
shown, and can’t change.

Constructing the Pn modulus as the primorial of primes pn totally determines its structure, as
the residues count is determined by the Euler Totient Function, their values by the gcd test, and
the residue values determine their gap sizes, whose distribution is determined by the symmetric
properties of their modular forms. There is nothing random in this process.

So while there is a clear deterministic numerical foundation for PGT, visualization of its elements
reveal and explains it best. You have to draw pictures, e.g. Fig 1. and generator sequences,
and produce enough examples to visually reveal their patterns. You cannot imagine these
properties into existence just from numerical analysis, you have to observe them first .

Now that I have described and given examples of prime generators and their sequences, I will
list their observable inherent properties, which I have codified into a mathematically consistent
framework for application.
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Major Properties of Prime Generators
• the modulus of every prime generator with last prime pn has primorial form: modpn = pn#

• the number of residues are even with form: rescntpn = (pn - 1)#

• the residues occur as modular complement pairs to its modulus: modpn = ri + rj

• the last two residues of a generator are constructed as: (modpn - 1) (modpn + 1)

• the residues include all the coprime primes up to modpn

• the first residue r0 is the next prime > pn

• the residues from r0 to r02 are primes

• each prime generator has a characteristic sequence of even sized residue gaps

• the last 3 sequence gaps have form: (r0 - 1) 2 (r0 - 1)

• the gaps are distributed in a symmetric mirror image around a pivot gap of size 4

• the residue gaps sum from r0 to r0 + modpn equals the modulus: modpn = Σai· 2i

• the coefficients ai are the frequency of each gap of size 2i

• the sum of the coefficients ai equal the number of residues: rescntpn = Σai

• coefficients a1 = a2 are odd and equal with form: a1 = a2 = (pn - 2)#

• the coefficients ai are even for i > 2

• the number of nonzero coefficients ai in the sequence for Pn is of order pn−1

These inherent and immutable properties form a bounded set of constraints which characterize the
formation and distribution of primes, and thus also the distribution of all their prime k-tuples.

These discrete mathematical properties and operations form a striking correlation to calculus,
where for distance x(t) its first derivative is velocity = dx(t)/dt and its second derivative is accel-
eration = dv(t)/dt. For prime generators, distance is the number span covered by modpn, and its
derivative are the number of residues|gaps. Taking the derivative of the number of gaps gives us
the actual gap size coefficients.

Calculus Prime Generators

x(t) = S v(t)/dt modpn = Σai·2i =
∏
pi

v(t) = S a(t)/dt rescntpn = Σai =
∏
(pi - 1)

a(t) = S A(t)/dt a1 = a2 =
∏
(pi - 2)

While calculus integration is analogous to discrete summation, it is not intuitive that discrete
summation correlates to primorial operators for prime generators. Or is it? Actually we see a
similar relationship with the Riemann Zeta series and its equivalent Euler primes product form.

∑ 1

ns
=
∏(

1− p−s
)−1

=

∏
ps∏

(ps − 1)
⇒ modps

rescntps
(9)
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8 Proof of The Infinity of Twin Primes and other k-tuples
Theory of Proof

For every Pn with largest modulus primorial prime pn, its residues contain the consecutive primes
pi from r0 ≤ pi ≤ pn# + 1, and their coprime composites, whose total is (pn − 1)#. In general,
we don’t know which residues are primes over the whole range. However, if we limit the range
of interest to r0 to r02 we know those residues are consecutive primes (as r0 = pn+1 is the first
prime > pn, the residues from pn+1 to p2n+1 are the consecutive primes > pn and < p2n+1 coprime
to pn#). Thus the gaps between these prime residues constitute the distribution of their prime
pair k-tuples. Since we know the residue gap distribution over the whole range, we can estimate
with high accuracy their distribution in this range. We find as the residue gaps increase in size and
frequency as pn increases, the prime gaps from pn+1 to p2n+1 similarly increase, for any gap size n
as pn →∞. Thus, for the infinity of residue gaps sizes n there are an infinity of (2, n) prime tuples.

Thus the simplest and elementary proof of the infinity of k-tuples establishes their endless
progression in the range r0 to r02, for as Pn increases: 1) the residue gaps coefficients ai (for gap
sizes n = 2i) increase for size and frequency, without end, and 2) as there are an infinity of r0 = p
primes, and ranges p to p2, they will contain an increasing number of prime pairs for any gap size
n, without end, as pn →∞.

We start by noting again for all Pn:

modpn = pn# =
∑

ai · 2i (10)

rescntpn = (pn − 1)# =
∑

ai (11)

Proposition 1. As Pn increases, residue gap coefficients ai increase infinitely in size and frequency.

Proof. From (11) as modpn increases by pn the number of residues increase by (pn − 1), which
equal the number of residue gaps. From (10) we also know the sum of occurrences for each gap size
equals the modulus value. The smaller ai gaps occur first, and in highest frequency, as a function
of increasing pn, while larger gap sizes ak are functions of the smaller ones, and also systematically
increase in frequency with pn. Thus as Pn increases by pn, the number of unique residues gap sizes
and their frequency of occurrence increase, without end as pn →∞.

Proposition 2. As pn →∞, within r0 to r02 the ai gaps increase infinitely in size and frequency.

Proof. Because the residues exist as modular complement pairs, they have a mirror image symmetry
distribution. Smaller residue gaps generally occur with much higher frequency, and large gaps
systematically lower, among their total, and sub ranges. As pn increases, the residues become less
dense and have more separation, and thus larger gaps, in higher frequencies, will be reflected within
the primes r0 to r02. As the range grows by p2 the number of primes grows : p2/log(p2) and
contain proportionally more k-tuples, which increase without end as pn →∞.

Fig 3. empirically shows the systematic increase in the size and frequency of the residue gaps
for increasing Pn, required by (10) and (11). Fig 4. shows the slow initial, but then rapid, growth
of the primes in r0 to r02, while Fig 5. shows the steady growth of their k-tuples as pn increases.
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Because coefficients a1 = a2 have a clear deterministic expression for all Pn, we can formulate
a good estimate for prime gaps 2 and 4 (Twins|Cousins) for all Pn. We can simply say it’s the
percentage of their gaps to its residue count times the number of primes from r0 to r02, i.e. π(p, p2).
For computational simplicity we can use πest(p, p

2) = p · (p− 2)/2 · log(p), for a weaker estimate.

Twins|Cousins count ' d(a1/rescntpn) · π(p, p2)e (12)

If we substitute the expressions for a1, rescntpn, and πest(p, p
2) we get:

Twins|Cousins count '
⌈∏

(pi − 2)∏
(pi − 1)

· p · (p− 2)

2 · log(p)

⌉
(13)

To verify it works, let’s first use the parameters for P7, with r0 = p = 11, rescntp7 = 48, and
a1= 15. The actual primes count π(11,121) = 26, thus: Twins|Cousins count ' d15 · 26/48e = 9.
Using the weaker primes estimate of d(11)(11 - 2) / 2·log(11)e, we get d(15)(11)(9) / 96·log(11)e = 7
Twins|Cousins primes. We see previously for P7 (and Fig 5.) the actual Twins|Cousins counts are
8|9 in the range 11 to 121, thus we get accurate estimates from both calculations.

To test for a larger range, let’s use P97, whose r0 = p = 101.

rescntp97 =
∏
(pi−1) = (2−1)·(3−1)·(5−1)·...·(97−1) = 277399690427737839953078806118400000

a1|2 =
∏
(podd−2) = (3−2) · (5−2) · (7−2) · ... · (97−2) = 44148215542940151628274967912609375

π(101, 1012) = 1227 πest(101, 101
2) = d(101) · (99)/2 · log(101)e = d1083.3e = 1084

Strong estimate: Twins|Cousins ' d(a1/rescntp97)·1227e = d195.3e = 196
Weaker estimate: Twins|Cousins ' d(a1/rescntp97)·1084e = d172.5e = 173

From Fig 5. we see the computed Twins|Cousins counts are 220|197 in the range 101 to 1012.
To establish with certainty an infinity of Twins|Cousins, et al, it’s only necessary to show at

least one additional larger pair continually exists for some set of (not even all) Pn as pn →∞. Here
it’s established there is an estimable increasing large number of pairs for every Pn as pn →∞.

The computational forms for gap coefficients a3 to a7 (see Appendix) have also been determined,
and reveal the structured deterministic relationship between all gap sizes. Each larger gap size
frequency is a function of all smaller gaps. Thus their values can also be calculated for all Pn, and
estimated within the range r0 to r02 for them. Once an ai comes into existence it can not then
vanish (go to 0), or even decrease, as that would violate the constraints on the PGS gap structure.

Thus we’ve established with certainty, prime gaps will always increase in frequency and size,
precluding a last prime pair for any gap n as pn →∞. Thus there are an infinity of all k-tuples.

9 Proof By Contradiction
To say there are not an infinity of all k-tuples (i.e. a finite number) means empirically for all ai
they become and remain zero (0) starting with some Pn. This mathematically requires the residues
structure starting with this Pn to change in a mathematically permissible manner. Is this possible?
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The structure of this proof is applicable for every gap coefficient ai, but I need only demonstrate
it for a1 = a2, as all other gaps are numerically related to them.

Let’s imagine for some unknown Pn? with modulus pn?#, a1 = a2 reach some constant value,
as pn increases. Under this scenario we know there still would be an infinity of Twins|Cousins,
because all there needs to be at minimum is one additional larger pair continually found for just
some Pn (let alone every Pn) as pn →∞.

Thus for there to be a finite number of Twins|Cousins, et al, we must have a1 = a2 = 0 starting
with some Pn, and remaining so forever. But we know (see Appendix) that a3 is a function of a1|2,
a4 a function of a3, etc, etc, thus it’s mathematically impermissible for this scenario to occur. It’s
a mathematical absurdity for all the gap coefficients be zero, as there would be no residue gaps.

Thus we have a clear contradiction. In addition, a1 = a2 conform to a deterministic relationship
solely based on the modulus primes, and rapidly increase as pn →∞. Thus a1 = a2 are never zero,
and in fact increase within the range r0 to r02 for every Pn, precluding a last Twin|Cousin prime.

To require an existing ai to permanently vanish creates a set of mathematically contradictory
scenarios. For some Pn, its residues count would no longer be determined by the Euler totient
function (so there are either more|fewer residues per modulus), and|or the residues are no longer
modular complements (so their residues gaps distribution symmetry has changed). But the residue
gaps cannot change without the residue values changing, which are the coprimes to modpn.

Every conceivable scenario to establish a finite number for any gap size requires mathematical
contradictions or absurdities. In fact, it’s easier to imagine by intuition alone there must be an
infinity of k-tuples, than somehow mathematically envision and numerically establish their finality.

Thus, to have a finite number for any prime gap requires its ai to become and remain zero,
requiring a Pn’s structure to change in multiple impossible ways, which will affect every other gap.
As there can be no finite number for any residue gap then consequently so too for any prime gap.

10 Predictive Results
Ultimately, any proof must be able to explain known empirical results, and predict future ones.
It’s shown we can compute a good minimum estimate for Twins|Cousins (and others) for any Pn.
We can also establish when any residue gap first appears in some Pn, and then determine when it
appears within the range r0 to r02 for some larger Pn.

For example, a50, which denotes residues gaps of 100, first occurs for P59 (because its PGS has
on order 53 coefficients). Fig 5. shows a prime gap size of 100 first occurs for 503 < p < 1009. The
exact value is p = 631; i.e. between 631 and 6312 the first prime pair of gap size 100 occurs among
those 33,599 primes. Thus, while in general gaps of 100 start occurring between residues with P59,
it takes until P619 to establish with certainty the first prime residue pair of this size, a span of 98
prime generators. While this simple process may not seem rapid, it is mathematically certain.

The following list are the first prime pairs with the first multiple of 100 gaps sizes shown.

• first instance of prime gap of 100 is (396,733; 396,833)

• first instance of prime gap of 200 is (378,043,979; 378,044,179)

• first instance of prime gap of 300 is (4,758,958,741; 4,758,959,041)

• first instance of prime gap of 400 is (47,203,303,159; 47,203,303,559)

• first instance of prime gap of 500 is (303,371,455,241; 303,371,455,741)
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(It should be noted, the gaps don’t necessarily occur in linear order, as the first prime gap for 210,
for the pair (20,831,323; 20,831,533), occurs well before the first prime pair gap 200.)

Because their are an infinity of primes pn there are no theoretical upper bounds on this process.
As the gap sizes increase their first, etc, prime residue pairs will become unimaginably large. But
that’s OK. We need not determine their actual values, but merely establish with certainty (with
this simple process) that they exist, and that there are an infinity of them of any size.

11 Conclusion
The properties of Prime Generators allow for direct examination of the structure of the gaps between
primes. They empirically show prime numbers, and their gaps, conform to a deterministic structure
that determines their nature, numbers, and distribution. We see residue gaps of any size n will
first exist for some Pn, and occur in larger numbers for all larger generators. These residue gaps
will ultimately appear and remain in the range r0 to r02, becoming prime gaps for some Pn, and
all larger. Thus, this simple process establishes that all residue gaps only increase, and eventually
with certainty become prime gaps, whose k-tuples will only increase without end as pn →∞.

Notes
This is the second paper revision, first released 2019/11/29, with first revision 2019/12/13.
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Data
The following data was derived using Ruby|Crystal scripts to generate and count the prime gaps.

Listed here are all the residue gap coefficients ai for the first few prime generators. We observe:
the sum of the columns for each Pn equals its residues count; the sum of the products of each ai
by its gap size 2i equals modpn; and for each Pn there are on order pn−1 unique coefficients. Also
for the Pn shown, the first instance for aprime (a3, a5, a7, etc) equal 2.

We also see the gaps frequency values oscillate up and down as they increase in size, with the
smaller gaps numerically dominant in their frequency, and larger gaps initially occur with relatively
much much lower frequency. This characteristic is a function of the computational forms of the ai,
where each larger gap has a defined numerical relationship with the preceding smaller gaps and pn
for its generator.

Residue gap coefficients ai for all gaps 2i for given Pn
pn 2 3 5 7 11 13 17 19 23 29 31

a1 · 2 1 1 3 15 135 1,485 22,275 378,675 7,952,175 214,708,725 6,226,553,025
a2 · 4 1 3 15 135 1,485 22,275 378,675 7,952,175 214,708,725 6,226,553,025
a3 · 6 2 14 142 1,690 26,630 470,630 10,169,950 280,323,050 8,278,462,850
a4 · 8 2 28 394 6,812 128,810 2,918,020 83,120,450 2,524,575,200
a5 · 10 2 30 438 7,734 148,530 3,401,790 97,648,950 2,985,436,650
a6 · 12 8 188 4,096 90,124 2,255,792 68,713,708 2,206,209,208
a7 · 14 2 58 1,406 33,206 871,318 27,403,082 903,350,042
a8 · 16 12 432 12,372 362,376 12,199,404 423,955,224
a9 · 18 8 376 12,424 396,872 14,123,368 512,670,088
a10 · 20 0 24 1,440 61,560 2,594,160 106,604,280
a11 · 22 2 78 2,622 88,614 3,324,402 126,682,650
a12 · 24 20 1,136 48,868 2,100,872 88,337,252
a13 · 26 2 142 7,682 386,554 18,298,102
a14 · 28 72 5,664 324,792 16,461,600
a15 · 30 20 2,164 154,220 9,169,532
a16 · 32 0 72 10,128 833,688
a17 · 34 2 198 15,942 1,075,458
a18 · 36 56 7,228 620,632
a19 · 38 2 570 77,042
a20 · 40 12 1,464 128,988
a21 · 42 272 40,636
a22 · 44 12 3,516
a23 · 46 2 1,795
a24 · 48 1,296
a25 · 50 504
a26 · 52 20
a27 · 54 84
a28 · 56 12
a29 · 58 2

Fig 3.
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As new larger gaps appear within a PGS, it takes some time (i.e. some progression of generators)
for them to appear within the range p to p2 of larger Pn where they become strictly prime gaps. The
number of these residues constitute a dwindling percentage of the residue count for larger Pn, as
shown below. This affects the rate of progression of Pn necessary to identify the strictly primes gaps.

Pn 7 11 13 17 19 23 29
residues count 48 480 5,760 92,160 1,658,880 36,495,360 1,021,870,080
r0 to r02 count 26 34 55 65 91 137 152

% of total residues 54.2 7.08 0.955 0.071 0.055 0.000375 0.0000149

Fig 4.

Below shows the progression of gaps frequency within p to p2 for gap sizes shown, and the max gap.

Frequency of prime gaps (not complete) between p and p2

p 11 53 101 503 1,009 5,003 10,007 50,021 100,003
max gap 8 34 36 86 114 210 220 320 354
gaps of 2 8 74 202 2,585 8,278 130,543 440,666 7,816,170 27,412,929
gaps of 4 9 78 197 2,575 8,239 130,201 440,606 7,816,884 27,410,258
gaps of 6 7 99 296 4,165 13,715 224,001 769,338 13,979,458 49,393,480
gaps of 8 1 37 103 1,692 5,643 96,432 334,491 6,221,667 22,161,302
gaps of 10 39 121 2,120 7,169 123,641 430,458 8,059,613 28,765,142
gaps of 12 27 107 2,267 8,134 151,420 530,008 10,420,167 37,589,303
gaps of 14 15 54 1,199 4,302 81,767 293,529 5,774,452 20,944,700
gaps of 16 6 33 795 2,929 59,224 216,032 4,347,314 15,888,865
gaps of 18 8 40 1,283 4,995 104,769 385,207 7,933,971 29,190,859
gaps of 20 2 15 601 2,433 53,704 203,194 4,366,505 16,296,757
gaps of 22 4 18 555 2,211 46,822 176,170 3,748,342 13,954,841
gaps of 24 2 15 604 2,278 66,815 257,882 5,701,980 21,488,356
gaps of 26 1 3 274 1,195 30,588 119,624 2,720,294 10,348,264
gaps of 28 0 6 271 1,261 32,971 129,739 2,963,462 11,288,578
gaps of 30 0 11 414 1,959 55,436 223,137 5,345,019 20,707,409
gaps of 32 0 1 97 558 16,563 68,384 1,695,929 6,641,679
gaps of 34 1 3 113 563 17,262 71,351 1,785,000 6,997,115
gaps of 36 1 149 779 27,127 114,180 2,927,973 11,593,976
gaps of 38 75 337 12,068 51,843 1,38,1811 5,518,125
gaps of 40 90 436 14,320 60,853 1,640,477 6,576,788
gaps of 42 83 486 19,568 86,754 2,438,771 9,920,126
gaps of 44 23 205 7,745 34,939 1,001,765 4,107,209
gaps of 46 24 158 6,514 29,372 866,337 3,580,246
gaps of 48 29 203 10,790 49,904 1,501,630 6,251,179
gaps of 50 16 110 5,803 27,544 857,165 3,607,941

Fig 5.
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Here I use the data for p = 100 to visually show the oscillatory behavior of the gap sizes. We
see from the data in Fig 5. this characteristic becomes more pronounced for larger p gap ranges.
Larger ranges will have more local maxima|minima as they will generate more larger gaps. Each
generator, thus, will have its own signature curve. We also see the local maxima|minima gap sizes
exhibit an interesting characteristic: most of these ai indices are primes, i = 2, 3, 5, 11, 13, 17, or
are powers of 2 or 3, i = 2, 4, 8, 9, 16, 27. It will be interesting to see the pattern for much larger
gap sizes for increasing Pn.

Prime gaps from p to p2 for p = 101
gaps 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
freq 202 197 296 103 121 107 54 33 40 15 18 15 3 6 11 1 3 1

Fig 6.

We also clearly see the prominence of the smaller gaps and their expansion property. All the
preexisting gaps are pushed toward the front for the first half mirrored gaps (as new ones are
included toward the middle) and they will appear first, and in greater frequency than larger gaps,
for each larger generator.

The data also clearly shows there will always be more gaps of 6 than 2 and 4 (Twins|Cousins), or
any other individual k-tuple. According to [4] gaps of 6 are called Sexy primes, which includes any
gap of 6 between nonconsecutive primes, e.g. (5, 11) and (7, 13). For the purpose of nomenclature
then, I’ll define Super (or Strictly) Sexy Primes as consecutive primes with gaps of 6, e.g. (23, 29)
and (53, 59), which I think look better anyway. (Sex is so complicated.)
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Here I show in more detail the slow growth rate of max gap sizes for increasing ranges p to p2.

Max prime gap sizes from p to p2

p 11 19 31 59 101 179 317 563 1,009 1,783 3,163 5,623
log10(p) 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75
max gap 8 14 20 34 36 72 72 86 114 148 154 210

p 10007 17783 31627 56237 100003 177823 316233 526337 1000003
log10(p) 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
max gap 220 248 282 320 354 456 464 486 540

Fig 7.

This graph quantifies the slow expansion. As p increases orders of magnitude its PGS max gap
grows much slower. For p of order 103 the max gap reaches 102, but only increases to 5 · 102 for p
of order 106. We can create growth curves for all the other gap sizes to see their growth rate.

It should be noted again, though while this graph is technically accurate, it doesn’t tell the
whole story, as the gaps don’t always occur in linear order. For example, the first prime gaps for
210, 220, 248, etc, occur for prime values much smaller than for the first prime pair with gap 200.

Also, primes gaps seem to occur in clusters. Primes with (relatively) small gaps seem to cluster
in progression. As we journey higher into the number space we start to observe more and larger
prime gaps (in fact an infinity of them), regions I call prime vacuums. The smaller gap clusters
exist between the vacuums, which makes searching for larger Twins, Merseene Primes, etc harder.
You ideally want to be able to identify where the vacuums are and avoid them. We can use the
residue gaps profiles for PGS to confine searches accordingly based on the goals. See [1].

Thus the data illustrate the distribution of primes is not random, but in fact deterministic, and
conform to the described properties manifested within the structure of prime generators.

15



Appendix
Infinite Progression of Primes

From the Prime Number Theorem (PNT) (https://en.wikipedia.org/wiki/Prime_number_theorem)
it has been proved the number of primes up to any value x is on order x/log(x), or better Li(x) (log
integral x). I use in (8) (for computational simplicity) x/log(x) to estimate the number of primes
between any random prime p (or really any value x ) and p2, per the PNT.

The Pn residues are the integers pn < ri < modpn coprime to modpn. The Euler Totient
Function (ETF) tells us their exact number. Thus it’s clear, the {ri} must include all the primes,
and their coprime multiples < modpn, necessary to satisfy the ETF residues count.

Each Pn eliminates all its modulus primes multiples from consideration. Since the first residue
r0 of every Pn is the next prime > pn, its first multiple in its residue set (pc table) is the multiple
with itself, i.e. r02. Therefore, the residues between r0 to r02 can only be the consecutive primes
in that interval, as they are not multiples (the only non-multiples) of the modulus primes < r0

2.
And the PNT estimates their numbers are of order p

2

/log(p
2

) - p/log(p), or better Li(p
2

) - Li(p).
However, for each specific generator Pn we can compute easier a simpler estimate. We know the

number of modulus primes for any Pn, I’ll note as π(modpn). Thus the primes < r0
2, for r0 = p

are: p
2

/log(p
2

) - π(modpn). For the previous example for P23, with r0 = 29, a simpler calculation
is then: d(841)/log(841) - 9e = d115.87e = 116 as before. In fact, we can just use p

2

/log(p
2

), here
d841/log(841)e = d124.88e = 125, as π(modpn) is relatively so much smaller as p2 becomes larger.

Thus, since we know each generator Pn always generates the consecutive primes r0 to r02, we
can use these primes to construct a larger Pn, and keep repeating this process as many times as
we want to generate as many consecutive primes groups we want, and thus can also then observe,
record, and count, the exact gap structure of all the primes, into infinity.

Modular Complement Property

Using clock math , we see residues exist as modular complement pairs, and prime generator
sequences have mirror image symmetry , as a direct property of their modular forms.

Any even n can be the modulus for a cyclic integer generator (technically a ring Zn) we
can visualize as a clock of n hours. A 12 hour analogue clock has a modulus of 12 with residues
1 – 12, placed equidistance around the clock. It’s easy to see, if we draw horizontal lines between
residues (hours), left-to-right, their sums equals 12 (the top|bottom residues are really (0:12) and
(6:6)), and also see this if we fold the clock on its vertical axis.

When we form the prime generator P12, for mod12 we only use the residues coprime to 12, i.e.
{1, 5, 7, 11}, where (1, 11) and (5, 7) are modular complement pairs. Eliminating the non-coprime
residues shows the P12 generator, with its 4 residues, with its mirror image gap distribution. Any
even n > 2 will have a modular form with these modular complement properties, for every Pn.
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Gap Coefficients

It was previously established: a1 = a2 = (pn−2)# =
∏
(podd−2) = (3−2)·(5−2)·(7−2)·...·(pn−2).

I have now determined the computational forms for a1 - a7. For any generator Pn, with last modulus
prime pn, its gap coefficients ai are a function of pn and the preceding generator coefficients a′i.

a1 = a′1 · (pn − 2)
a2 = a′2 · (pn − 2)
a3 = a′3 · (pn − 3) + a′2 + a′1
a4 = a′4 · (pn − 4) + a′3
a5 = a′5 · (pn − 5) + a′4 · 2 + a′3
a6 = a′6 · (pn − 5) + a′5 · 6 − a′4 · 2
a7 = a′7 · (pn − 7) + a′6 · 3 − a′5 · 3 + a′4 · 4

The P37 gap coefficients distribution has now also been directly generated, and is shown below.
a1 = 217,929,355,875 a2 = 217,929,355,875 a3 = 293,920,842,950 a4 = 91,589,444,450
a5 = 108,861,586,050 a6 = 83,462,164,156 a7 = 34,861,119,734 a8 = 16,996,070,868
a9 = 21,218,333,416 a10 = 4,814,320,320 a11 = 5,454,179,550 a12 = 4,073,954,144
a13 = 918,069,454 a14 = 857,901,000 a15 = 535,673,924 a16 = 58,664,256
a17 = 69,404,898 a18 = 46,346,428 a19 = 7,381,190 a20 = 10,176,048
a21 = 4,153,336 a22 = 526,596 a23 = 291,342 a24 = 239,760
a25 = 91,392 a26 = 8,912 a27 = 25,320 a28 = 2,952
a29 = 1,654 a30 = 452 a31 = 26 a32 = 48
a33 = 24

We can now calculate the gap estimates within the range p to p2 for a1 - a7. Comparing data
from Fig 5. let’s calculate the estimates for a1 - a7 for p to p2 for r0 = p = 53. This means we have
to find all those coefficients values up to P47. Below are their calculated values starting from P37.

Calculated residue gap coefficients ai for gaps 2i for given Pn
pn 41 43 47
a1 8,499,244,879,125 348,469,040,044,125 15,681,106,801,985,625
a2 8,499,244,879,125 348,469,040,044,125 15,681,106,801,985,625
a3 11,604,850,743,850 481,192,519,512,250 21,869,408,938,627,250
a4 3,682,730,287,600 155,231,331,960,250 7,156,139,793,803,000
a5 4,396,116,829,650 186,022,750,845,750 8,604,610,718,954,250
a6 3,474,628,537,016 151,047,124,809,308 7,149,653,083,144,936
a7 1,475,437,583,074 65,082,209,263,162 3,119,286,820,258,154

Fig 8.

We can now use P47’s calculated ai to find their range estimates: gapsi ' dai·π(p, p2)/rescntp47e

For p = 53, π(p, p2) = 394, and rescntp47 =
∏p47

p2 (pn − 1) = 85287729364992000, gives values:

gaps 53 to 532 a1|a2 a3 a4 a5 a6 a7

observed 74|78 99 37 39 27 15
estimated 73 102 34 40 34 15

Fig 9.
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Numerical Gap Derivations

The ai coefficients can be numerically determined by the constrained system of equations for Pn:

modpn = pn# =
∑

ai · 2i = 2 · a1 + 4 · a2 + 6 · a3 + ...+ 2n · an (14)

rescntpn = (pn − 1)# =
∑

ai = a1 + a2 + a3 + ...+ an (15)

As pn# is an even value c1 and (pn − 1)# an even value c2 we can reduce the equations to:

c1/2 = a1 + 2 · a2 + 3 · a3 + ...+ n · an (16)

c2 = a1 + a2 + a3 + ...+ an

Oddness of a1 and a2

For P2 we only need to use:
2# = 2 = 2a1 (17)

This numerically establishes a1 = 1 for P2 as the single (odd) value for gap size 2 for its PGS.
For P3 we have c1 = 3# = 6 and c2 = (2 − 1) · (3 − 1) = 2, and we are constrained to only

having the two nonzero coefficients a1 and a2, which gives:

3 = a1 + 2a2 (18)

2 = a1 + a2

The only solution is a1 = a2 = 1, matching the known odd occurrences for gaps 2 and 4 for P3.

For P5 we have c1 = 5# = 30 and c2 = 8, and are constrained to only having the nonzero
coefficients a1, a2, and a3 which gives:

15 = a1 + 2a2 + 3a3 (19)

8 = a1 + a2 + a3

We now create the system of equations: 2R2 - R1 and 3R2 - R1,

1 = a1 − a3 (20)

9 = 2a1 + a2
which after rearranging gives:

a3 = a1 − 1 (21)

a2 = 9− 2a1

We solve this by picking the value for a1 that produces a2 and a3 that satisfy equations (19).
Notice a2 is odd for any value of a1, and because we know a3 is even a1 must be odd, and constrained
to 1 or 3 (5 makes a2 negative). Only a1 = 3 works, producing a2 = 3 and a3 = 2, the known PGS
values for P5. Again we see, now purely through numerical methods, that a1 = a2 and numerically
required to be odd, which matches the computational form for these Pn: a1|2 = a′1|2 · (pn − 2).
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Let’s continue for P7, with c1 = 7# = 210 and c2 =
∏p7

p2(pn − 1) = 48.

105 = a1 + 2a2 + 3a3 + 4a4 + 5a5 (22)

48 = a1 + a2 + a3 + a4 + a5

Now do R1 - R2, to eliminate a1, and R1 - 2R2, to eliminate a2, and after rearranging gives:

a2 = 57− 2a3 − 3a4 − 4a5 (23)

a1 = −9 + a3 + 2a4 + 3a5

Again, a1 and a2 are odd as a3|4|5 are even (due to their mirror symmetry). This problem is
solvable using linear programming algorithms e.g. the Simplex Method. It can be characterized
using their prime generators properties to produce the ai values for P7, i.e. a1 = a2 = 15, a3 = 14,
a4 = 2, and a5 = 2.1 For all larger Pn, a1|a2 will have similar forms as (23) with more ai terms.

Solving for larger ai

However, we really want a system of equations where the larger gap coefficients are functions of the
smaller ones, to reflect the order of their relational structure we see empirically expressed in their
computational forms. Thus, because we know a1 = a2 we can transform (22) to:

(105− 3a1) = c3 = 3a3 + 4a4 + 5a5 (24)

(48− 2a1) = c4 = a3 + a4 + a5

We now create a new system, solving for a5, and performing 5R2 − R1 and solving for a4:

a5 = c4 − a4 − a3 (25)

a4 = 5c4 − c3 − 2a3

We can now pick a3 to determine a4, and then a5, which gives us all the ai. For P7, a1 = a2 = 15
gives c3 = 60 and c4 = 18 creates:

a5 = 18− a4 − a3 (26)

a4 = 30− 2a3

Because a3|4|5 are > 0 and even, requires 2 ≤ a3|even ≤ 14, the only solution is, again, a3 = 14,
a4 = 2, and a5 = 2.

Creating the equations in this order provides for computation of the lower values for larger gaps.
As the gaps become larger we’ll see more of the oscillating nature of their values as functions of
smaller gaps, as shown in Fig 6. Thus we illustrate again using numerical methods, the properties
of prime generators determine the unique solution to the system of constraints for each Pn, which
show the gap coefficients ai will only increase in frequency value for all gap sizes, as the Pn moduli
pn# increase as pn →∞.

1Using Simplex Calculator at http://cbom.atozmath.com/CBOM/Simplex.aspx?q=is with following constraints,
produces known ai values: MIN Z = x1 + 2x2 + 3x3 + 4x4 + 5x5 subject to: x1 + 2x2 + 3x3 + 4x4 + 5x5 = 105;
x1 + x2 + x3 + x4 + x5 = 48; x1 <= 15; x2 <= 15; x3 <= 17; x4 <= 13; x5 <= 10; x1 >= 3; x2 >= 3; x3 >= 2;
x4 >= 2; x5 >= 2; and x1, x2, x3, x4, x5 >= 0.
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Closing Thoughts

Since the 2013 release of Yitang Zhang’s paper2 that for some integer N < 70 million there are
infinitely many pairs of primes that differ by N, there has been a fury of activity to reduce its bound
to a smallest gap size. Included now is the quest to solve problems regarding questions of small
and large gaps.3 The work presented here proposes to establish with certainty there are an infinity
of prime pairs that differ by any gap size, large and small.

Using strictly numerical approaches will likely continue to be fruitless to definitively answer
questions about prime gaps. If you want to understand and characterize the nature of prime gaps
the most direct (and easiest) approach is to strictly work within the domain of prime gaps. Prime
Generator Theory (PGT) provides the theoretical, philosophical, and numerical framework to do
this, which current analytical and numerical methods alone are not equipped to do.

At the beginning of the 20th Century, Relativity Theory was imagined by Einstein to provide
both a qualitative and quantitative framework to better understand and explain how nature works.
Initially it was resisted, but ultimately was (had to be) embraced because it worked. It could
quantitatively answer questions about the known behavior of nature other theories couldn’t, and
accurately predict and explain previously uncontemplated behavior. And continual experimental
testing has reaffirmed its validity (for the reality we are aware of), over and over.

Here at the start of the 21st Century, I believe PGT shares a similar role in the field of math. It
provides a better framework to qualitatively and quantitatively understand, characterize, explain,
and predict the behavior of primes. Resistance has run mostly along the lines of questioning
language, the meaning of terminology, being too simplistic, the perceived lack of rigor, etc. These
are complaints more about its qualitative nature, and|or epistemological basis for knowing, than a
refutation of its theoretical foundations or its empirical results and predictions.

The content herein is a major revision of the earlier versions, to present its findings in a clearer
and more “mathematician friendly” format, and to present new information and findings. I would ask
whatever it may seem to lack in traditional mathematical rigor not be a deterrent from recognition
of its mathematically sound theoretical under girding. Judge it on the merits of the evidence of its
findings and results, which I contend overwhelmingly establish with certainty it claims.

Undoubtedly the work presented here touches just the surface of a body of knowledge begging
to be explored and revealed. Hopefully the curious will take up the challenge to do just that, and
share their findings, and apply them to the myriad of known problems waiting to be solved, while
contemplating and proposing new ones heretofore unimagined.

2Bounded gaps between primes; https://annals.math.princeton.edu/2014/179-3/p07
3Small and Large Gaps Between the Primes; https://www.youtube.com/watch?reload=9&v=pp06oGD4m00&t=425
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