ON THE NUMBER OF INTERSECTIONS OF TUBES Johan Aspegren

ABSTRACT. In this article we will prove that if the number of δ -tubes is $N=\delta^{1-n}$ and if the δ -tubes intersect on the unit cube, then the number of their intersections of order μ is bounded by $C_n \frac{N^{n/(n-1)}}{\mu}$. This implies that the number of (central) line intersections of order μ is bounded by $C_n \frac{N^{n/(n-1)}}{\mu}$. After making a dyadic decomposition and summing the orders together we will find that the number of (central) line intersections of N lines is bounded by $C_n N^{n/(n-1)}$. Given a finite number of lines we can always assume that they intersect on the unit cube, so we have a essentially sharp bound for the number of line intersections. An extremal case is the standard gris in \mathbb{R}^n . Previously this has been studied for special kind of line intersections called joints. Moreover, we will prove a generalized lemma of Córdoba.

1. Introduction

In \mathbb{R}^n a joint is formed by the intersection of n lines whose tangent vectors are linearly independent. It's a fact that the number of joints formed by N lines are bounded by $C_nN^{n/(n-1)}$. This fact has quite an elementary proof [3]. In our paper we control all line or tube intersections in all scales. Our bound for the total line intersections is essentially sharp. An extremal example is a standard grid of N lines. A line l_i is defined as

$$l_i := \{ y \in \mathbf{R}^n | \exists a, x \in \mathbf{R}^n \text{ and } t \in \mathbf{R} \text{ s.t. } y = a + xt \}$$

We define the δ -tubes as δ neighbourhoods of lines:

$$T_i := \{ x \in \mathbf{R}^n | |x - y| \le \delta, \quad y \in l_i \}.$$

The order of intersection is defined as the number of tubes (lines) intersecting. We use P_{μ}^{δ} as the set of δ -tube intersections of order μ and P_{μ} as the set of line intersections of order P_{μ} . Moreover, P^{δ} and P mean the set of δ -tube intersections and the set of line line intersections, respectively. If $\mu > 1$ then

$$P_{\mu}^{\delta} := \bigcup_{j=1}^{M_{\mu}^{\delta}} \bigcap_{i=1}^{\mu} T_{ij}$$

We define

$$\#(P_\mu^\delta)=M_\mu^\delta$$

and the total number of intersections is

$$\#(P^{\delta}) = \sum_{\mu} M_{\mu}^{\delta}.$$

In a same way we define $\#(P_{\mu})$ and #(P). Our main theorem is the following:

1

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 42B37; Secondary 28A75. Key words and phrases. Incidence geometry.

Theorem 1.1. Let $N = \delta^{1-n}$. Given N δ -tubes that intersect on the unit cube, it holds for the number of order $\mu > 1$ intersections that

(1.1)
$$\#(P_{\mu}^{\delta}) \le C_n \frac{N^{n/(n-1)}}{\mu}.$$

Corollary 1.2. Let $N = \delta^{1-n}$. Given N δ -tubes that intersect on the unit cube, it holds for the number intersections that

(1.2)
$$\#(P^{\delta}) \le C_n N^{n/(n-1)}.$$

Corollary 1.3. Given N lines it holds for the number of intersections of order μ that

(1.3)
$$\#(P_{\mu}) \le C_n \frac{N^{n/(n-1)}}{\mu}.$$

Corollary 1.4. Given N lines it holds for the number of intersections that

$$\#(P) \le C_n N^{n/(n-1)},$$

Our other result is the following: a generalization of a lemma of Corbóda.

Lemma 1.5. [A generalization of a lemma of Corbóda] For tube intersections of order 2^k it holds that

$$\left| \bigcap_{i=1}^{2^k} T_i \right| \lesssim \delta^{n-1} 2^{-k/(n-1)}.$$

It's not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ -tubes:

Lemma 2.1 (Corbòda). For any pair of directions $\omega_i, \omega_j \in S^{n-1}$ and any pair of points $a, b \in \mathbb{R}^n$, we have

$$|T_{\omega_i}^{\delta}(a) \cap T_{\omega_j}^{\delta}(b)| \lesssim \frac{\delta^n}{|\omega_i - \omega_j|}.$$

A proof can be found for example in [2]. For any (spherical) cap $\Omega \subset S^{n-1}$, $|\Omega| \gtrsim \delta^{n-1}$, $\delta > 0$, define its δ -entropy $N_{\delta}(\Omega)$ as the maximum possible cardinality for an δ -separated subset of Ω .

Lemma 2.2. In the notation just defined

$$N_{\delta}(\Omega) \sim \frac{|\Omega|}{\delta^{n-1}}.$$

Again, a proof can essentially be found in [2].

3. A PROOF OF THE GENERALIZATION OF THE LEMMA OF CORBÓDA

Let us define

$$E_{2^k} := \{ x \in \mathbf{R}^n | 2^k \le \sum_{i=1}^N 1_{T_i} \le 2^{k+1} \}.$$

Let us suppose that $2^k = \delta^{-\beta}, 0 < \beta \leq n-1$, and let's suppose that tube $T_{\omega'}$ intersecting $T_{\omega} \cap E_{2^k}$ has it's direction outside of a cap of size $\sim \delta^{n-1-\beta}$ on the unit sphere. Then the angle between T_{ω} and $T_{\omega'}$ is greater than $\sim \delta^{1-\beta/(n-1)}$. Thus by lemma 2.1 the intersection

$$(3.1) \quad |\bigcap_{i=1}^{2^k} T_i| \le |T_{\omega} \cap T_{\omega'} \cap E_{2^k}| \le |T_{\omega} \cap T_{\omega'}| \lesssim \delta^{n-1+\beta/(n-1)} = \delta^{n-1} 2^{-k/(n-1)}.$$

Thus, we can suppose that the directions in the intersection $E_{2^k} \cap T_\omega \cap T_{\omega'}$ belong to a cap of size $\sim \delta^{n-1+\beta}$. If we δ - separate the cap via lemma 2.2 we get that the cap can contain at most $\sim 2^k$ tube-directions. Thus, for any tube T_ω in the intersection there exists a tube $T_{\omega'}$, such that the angle between T_ω and $T_{\omega'}$ is $\sim \delta^{1-\beta/(n-1)}$ and the inequality (3.1) is valid. Thus we proved the lemma 1.5.

4. On the number of intersections of given order

Define the following set

(4.1)
$$E_{\mu} := \{ x \in \mathbf{R}^n | \sum_{i=1}^N 1_{T_i} = \mu \}.$$

So that

(4.2)
$$\mu|E_{\mu}| = \int_{[-1,1]^n \cap E_{2^k}} \sum_{i=1}^N 1_{T_i} = \sum_{i=1}^N \int_{[-1,1]^n \cap E_{2^k}} 1_{T_i}$$
$$< 2^n \delta^{n-1} N|B(1,0)| = \delta^{n-1} C_n N.$$

We define an intersection I_{jk} of order $\mu > 1$ as

$$I_{kj} := \bigcap_{i=1}^{\mu} T_{ij}.$$

So that

$$E_{\mu} = \bigcup I_{j\mu}$$

and

$$|E_{\mu}| = \sum_{j=1}^{M_{\mu}} |I_{j\mu}|.$$

Now, let us scale δ to 2δ . Define the scaled versions $I_{j\mu}$ and E_{μ} as $I'_{j\mu}$ and E'_{μ} , respectively. It holds that $I'_{j\mu} \cap [-1,1]^n$ contains a δ -ball. So that

$$\delta^n |B(0,1)| \le |I'_{i\mu}|$$

We define M_u' as the number of intersection of order μ of 2δ -tubes. Clearly

(4.4)
$$\#(P_{\mu}^{\delta}) = M_u \le M_{u'} = \#(P_{\mu}^{\delta'}).$$

It follows from above (4.3), (4.4) and from (4.2) that

$$\mu \delta^n |B(0,1)| |P_{\mu}^{\delta}| \le \mu \sum_{i=1}^{M_{\mu}'} |I'_{j\mu}| \le \mu |E'_{\mu}| \le \delta^{n-1} 2^n N.$$

Thus,

$$\mu \delta^n |P_{\mu}^{\delta}| \le \delta^{n-1} C_n N,$$

which is equivalent to

$$(4.5) \delta |P_{\mu}^{\delta}| \le C_n \frac{N}{\mu}.$$

We assumed in our theorem 1.1 that

$$N = \delta^{1-n},$$

so that

$$(4.6) N^{-1/(1-n)} = \delta$$

Thus, it follows from (4.5) and (4.6) that

$$N^{-1/(n-1)}|P_{\mu}| \le C_n \frac{N}{\mu}.$$

which is equivalent to

$$|P_{\mu}| \le C_n \frac{N^{n/(n-1)}}{\mu}.$$

The above implies our main theorem 1.1.

If we have N lines that intersect on $[-R, R]^n$ then we can scale \mathbb{R}^n s.t the lines intersect in $[-1, 1]^n$. Then we choose $\delta^{1-n} = N$. Now, the number of central line intersections is less than the number of tube intersections. So from 1.1 it follows 1.3.

In order to prove 1.2 we will take μ dyadically. So that we have

(4.7)
$$E_{2^k} := \{ x \in \mathbf{R}^n | 2^k \le \sum_{i=1}^N 1_{T_i} \le 2^{k+1} \}.$$

The set of intersections are now defined as

$$P_{2^k}^{\delta} := \bigcup_{j=1}^{M_{2^k}^{\delta}} \bigcap_{i=1}^{\mu} T_{ij},$$

$$\#(p_{2^k}^{\delta}) = M_{2^k}$$
, and

$$|E_{2^k}| = \sum_{j} |I_{j2^k}|.$$

So we have

$$2^{k}\delta^{n}|B(0,1)||P_{2^{k}}^{\delta}| \le 2^{k}\sum_{i}|I'_{j2^{k}}| \le 2^{k}|E'_{2^{k}}| \le \delta^{n-1}|C_{n}N,$$

where I'_{j2^k} and E'_{2^k} are scaled versions of I_{j2^k} and E_{2^k} , respectively. Thus, like before it follows that

$$|P_{2^k}^{\delta}| \le C_n \frac{N^{n/(n-1)}}{2^k}.$$

But if we sum above over k we have

$$|P^{\delta}| = \sum_{k \neq 0} |P_{2^k}^{\delta}| \le \sum_{k \neq 0} C_n \frac{N^{n/(n-1)}}{2^k} \le C_n N^{n/(n-1)} \sum_{k=1}^{\infty} \frac{1}{2^k} = C_n N^{n/(n-1)}.$$

This proves 1.3. And again if we have N lines that intersect on $[-R, R]^n$ then we can scale \mathbf{R}^n s.t the lines intersect in $[-1, 1]^n$. Then we choose $\delta^{1-n} = N$ and put the lines as central lines of the tubes. So 1.4 follows from 1.3.

References

- $[1]\ A.\ C\`{o}rdoba,\ The\ Kakeya\ Maximal\ Function\ and\ the\ Spherical\ Summation\ Multipliers,\ Americal\ Summation\ Multipliers,\ Maximal\ Multipl$ ican Journal of Mathematics 99 (1977), 1-22.
- [2] E.Kroc, The Kakeya problem, available at
- $http://ekroc.weebly.com/uploads/2/1/6/3/21633182/mscessay-final.pdf \\ [3] R. Quilodrán, The Joints Problem in <math>\mathbb{R}^n$, SIAM Journal on Discrete Mathematics 23(4)(2010),2211-2213.