10 CANTOR DIAGONAL ARGUMENT

Draft chapter of the book Infinity Put to the Test by Antonio León (next publication)

Abstract.-This chapter applies Cantor’s diagonal argument to a table of rational numbers proving the existence of rational antidiagonals.

Keywords: Cantor’s diagonal argument, cardinal of the set of real numbers, cardinal of the set of rational numbers.

Introduction

P1 This chapter proves a result on the decimal expansion of the rational numbers in the rational open interval (0, 1), which is subsequently used to discuss on a reordering of the rows of a table T that is assumed to contain all rational numbers within (0, 1). A reordering such that the diagonal of the reordered table T could be a rational number from which different rational antidiagonals (elements of (0, 1) that cannot be in T) could be defined. If that were the case, and for the same reason as in Cantor’s diagonal argument, the rational open interval (0, 1) would be non-denumerable, and we would have a contradiction in set theory, because Cantor also proved the set of rational numbers is denumerable.

The Theorem of the nth decimal

P2 Let Q_{01} be the set of all rational numbers in the rational open interval (0, 1) expressed in decimal notation and completed, in the cases of finitely many decimal digits, with a denumerable infinite number of 0’s in the right side of their corresponding decimal expansions.

P3 Let d be any decimal digit, n any natural number, and q_0 any element of Q_{01} whose nth decimal digit is just d, for instance $q_0 = 0,11^{(n−1)}1d000....$. From q_0 it is possible to define different sequences of different elements of Q_{01}, all of them with the same nth decimal digit d. For example the sequence (q_n):

\[
q_1 = 0,11^{(n−1)}1d1000\ldots \\
q_2 = 0,11^{(n−1)}1d11000\ldots \\
q_3 = 0,11^{(n−1)}1d111000\ldots
\]
...

\(q_i = 0,11^{(n-1)}1d111 .^{(i)} \) 1000...

The bijection (one to one correspondence) \(f \) between the \(\omega \)-ordered set \(N \) (the well ordered set of natural numbers in their natural order of precedence, whose ordinal number is \(\omega \), the least infinite ordinal [3, §15, Theorem A, p.160]) and \(\langle q_n \rangle \) defined by

\[\forall i \in \mathbb{N} : f(i) = q_i \]

(1)

proves the following:

Theorem of the n-th decimal. For any given decimal digit and any given position in the decimal expansion of the elements of \(\mathbb{Q}_{01} \), there exists a denumerable subset of \(\mathbb{Q}_{01} \), each of whose elements has the same given decimal digit in the same given position of its decimal expansion.

A rational diagonal argument

P4 Let \(\mathbb{Q}_{d_n} \) be the subset of \(\mathbb{Q}_{01} \) each of whose elements has the same decimal digit \(d_n \) in the same \(n \)th position of its decimal expansion. According to the Theorem of the \(n \)th Decimal, \(\mathbb{Q}_{d_n} \) is denumerable. So, its superset \(\mathbb{Q}_{01} \) will be infinite, either denumerable or non-denumerable. So, let \(g \) be any injective function between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \). This function allows to define a table \(T \) whose successive rows \(r_1, r_2, r_3 \ldots \) are just the successive images* \(g(1), g(2), g(3) \ldots \) of the elements of \(\mathbb{N} \) in \(\mathbb{Q}_{01} \).

P5 Since the successive rows \(\langle r_n \rangle \) of \(T \) are indexed by the successive natural numbers \(\langle n \rangle \) in their natural order of precedence, \(T \) has a first row \(r_1 \) but not a last one, and each row \(r_i \) of \(T \) has an immediate preceding row \(r_{i-1} \) (except \(r_1 \)) and an immediate succeeding row \(r_{i+1} \). In consequence if \(i \) precedes \(j \) in \(\mathbb{N} \) then \(r_i \) precedes \(r_j \) in \(T \). So then, \(T \) and \(\mathbb{N} \) are similar sets [3, p. 112] and they have the same ordinal [3, p- 152], in this case \(\omega \). In addition, to assume the existence of the set of all finite natural numbers as a complete infinite totality, as Cantor did in 1883 [3, pp. 103-104], means to assume the rows of \(T \) also exist as a complete infinite totality. According to this Cantor’s assumption (hypothesis of actual infinity subsumed into the Axiom of Infinity in modern set theories), every row \(r_n \) of \(T \) will be preceded by a finite number, \(n - 1 \), of rows and succeeded by an infinite number, \(\aleph_0 \) [3, §6, pp. 103-104], of such rows. We will now examine a conflicting consequence of this case of \(\omega \)-asymmetry.
P6 The diagonal $D = 0.d_{11}d_{22}d_{33} \ldots$ of T is a real number within $(0,1)$ whose nth decimal digit d_{nn} is the nth decimal digit of the nth row r_n of T. As in Cantor’s diagonal argument [2], it is possible to define another real number A, said antidiagonal, by replacing each of the infinitely many decimal digits of D with a different decimal digit. By construction A cannot be in T because it differs from each row r_i of T at least in its ith decimal digit. Since A is a real number within $(0,1)$, it will be either rational or irrational. If it were rational, and for the same reason as in Cantor’s diagonal argument, g would not be a one to one correspondence.

P7 A row r_i of T will be said n-modular if its nth decimal digit is $n \pmod{10}$. This means that a row is, for instance, 2348-modular if its 2348th decimal digit is 8; or that it is 45390-modular if its 45390th decimal digit is 0. If a row r_n is n-modular (being n in n-modular the same number as n in r_n) it will be said d-modular. For instance, the rows:

\[
\begin{align*}
 r_1 &= 0.1007647647649943400034577774413 \ldots \\
 r_2 &= 0.22000456677789430000000000000000 \ldots \\
 r_3 &= 0.00300000000000000000000000000000000 \ldots \\
 r_7 &= 0.1001007000111111111110000000000000000 \ldots \\
 r_{19} &= 0.12345678901234567890000000000000000 \ldots
\end{align*}
\]

are all of them d-modular. It is clear that certain rational numbers as $0.\hat{4}3$ or 0.3353333333 cannot be d-modular, whatever be their corresponding rows in T. As will be seen in the Chapter 29, these rational numbers pose very serious problems to the hypothesis of the actual infinity.

P8 Consider now the following permutation \mathbf{D} of the rows $\langle r_n \rangle$ of T. For each successive row r_i of T:

\[\begin{align*}
 &\triangleright \text{ If } r_i \text{ is d-modular then let it unchanged.} \\
 &\triangleright \text{ If } r_i \text{ is not d-modular then exchange it with any following } i \text{-modular row } r_{j,j>i}, \text{ provided that at least one of the succeeding rows } r_{j,j>i} \text{ be } i \text{-modular. Otherwise let it unchanged.}
\end{align*}\]

The exchange of a non-d-modular row r_i with a following i-modular row will be referred to as d-exchange (see Figure 10.1). Thanks to the condition $j > i$ (in $r_{j,j>i}$), once a row r_i has been d-exchanged, it becomes d-modular and will remain d-modular and unaffected by the subsequent d-exchanges. On the other hand, the successive d-exchanges do not change the type
Cantor Diagonal Argument

of order of T but the rational numbers indexed by the same successive
indexes. Or in other words, d-exchanges interchange the content of some
couples of rows of T, but not its order type.

P9 The permutation D could even be considered as a supertask [5]. Indeed,
let $\langle t_n \rangle$ be an ω-ordered sequence of instants within a finite interval of time
(t_a, t_b), being t_b the limit of the sequence. Assume that D is applied to each
row r_i just at the precise instant t_i. The bijection $f(t_i) = r_i$ proves that at
t$_b$ the d-exchanges of permutation D will have been applied to all rows of
T.

P10 It can be proved that all rows of T become d-modular as a consequence
of the permutation D. In effect, assume that a row r_n did not become
d-modular as a consequence of the permutation D. This means that r_n is
not d-modular and could not be d-exchanged with a n-modular row $r_{i,i>n}$.
Now then, all n-modular rows have the same digit $n(mod 10)$ in the same
nth position of its decimal expansion, and according to the Theorem of
the nth Decimal there are infinitely many rational numbers with the same
digit in the same position of its decimal expansion, whatever be the digit
and the position. Accordingly, since n is finite, the row r_n is preceded by
a finite number, k $(0 \leq k < n)$, of n-modular rows, and succeeded by
an infinite number, \aleph_0, of n-modular rows. Any of these infinitely many
n-modular rows succeeding r_n had to be d-exchanged with r_n. It is then
impossible for r_n not to become d-modular as a consequence of D. There-
fore, each and every row r_n of T becomes d-modular as a consequence of
D.

P11 Let us remark the basic formal structure of the above argument P10
(a simple modus tollens). Consider the following two propositions p_1 and
p_2 about the permutation D:

p_1: Not all rows of T becomes d-modular because of D.

p_2: At least one non-d-modular row r_n of T could not be d-exchanged.
It is quite clear that \(p_1 \) implies \(p_2 \): if not all rows of \(T \) becomes d-modular because of \(D \), then at least one non-d-modular row \(r_n \) of \(T \) could not be d-exchanged. Now then, being all natural numbers finite, \(n \) is finite; and taking into account the Theorem of the \(n \)th Decimal, there is a finite number, \(k \) \((0 \leq k < n)\), of \(n \)-modular rows preceding \(r_n \) and an infinite number, \(\aleph_0 \), of \(n \)-modular rows succeeding \(r_n \), one of which had to be d-exchanged with \(r_n \). In consequence proposition \(p_2 \) is false and so will be \(p_1 \). In symbols:

\[
(p_1 \Rightarrow p_2) \land (\neg p_2) \Rightarrow \neg p_1
\]

The result proved in P10 is a formal consequence of both the Theorem of the \(n \)th Decimal and the fact that every row \(r_n \) of \(T \) is always preceded by a finite number, \(k \) \((0 \leq k < n)\), of \(n \)-modular rows and succeeded by an infinite number, \(\aleph_0 \), of such \(n \)-modular rows (\(\omega \)-asymmetry). Recall that this \(\omega \)-asymmetry is an inevitable consequence of assuming, as Cantor did in 1883, the existence of the \(\omega \)-ordered set \(\mathbb{N} \) as a complete infinite totality, a hypothesis subsumed into the Axiom of Infinity.

Let \(T_D \) be the table resulting from the permutation \(D \). Since all of its rows are d-modular, its diagonal \(D \) will be the periodic rational number \(0.1234567890 \). It is now immediate to define infinitely many rational antidiagonals from \(D \). Indeed, let us consider periods of ten decimal digits none of which coincide in position with the ten decimal digits of the period \(1234567890 \) of the diagonal \(D \). The number of those periods is \(9^{10} \). From any two of them, for instance, \(q_1 = 0123456789 \) and \(q_2 = 0321456789 \), it is possible to define different \(\omega \)-ordered sequences of rational antidiagonals \(\langle A_n \rangle \), for instance:

\[
\forall n \in \mathbb{N} : \ A_n = 0.q_1q_1^{(n)}q_1^{p_2}
\]

whose elements cannot be in \(T_D \) for the same reason as in Cantor’s diagonal argument. Since all of them are rational numbers, we must conclude that the injective function \(g \) between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \) defining \(T \), is not surjective, i.e. it is not a bijection.

Since the injective function \(g \) defining \(T \) is any injective function between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \) and it cannot be surjective, we must conclude it is impossible to define a bijection between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \). Consequently, \(\mathbb{Q}_{01} \) is non-denumerable. Although the above inference suffices to conclude that \(\mathbb{Q}_{01} \) is non-denumerable, it could be (inappropriately) argued, as against Cantor’s diagonal argument, that a new table \(T' \) could be defined so that \(r_1' = A \) and \(r_{i+1}' = r_i \), \(r_i \in T \), \(\forall i \in \mathbb{N} \). The new table \(T' \) would be denumerable, but through the same diagonal argument, the same conclusion
on the impossibility of a bijection between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \) would be reached. And the same recursive argument could be applied to any table defined in terms of any other previous table and its corresponding antidiagonal, while the new table continue to be denumerable. A bijection between \(\mathbb{N} \) and \(\mathbb{Q}_{01} \) is impossible. So, \(\mathbb{Q}_{01} \) is non-denumerable, and we have a contradiction in set theory because Cantor proved \(\mathbb{Q} \) is denumerable \cite{1}.

P15 Permutation \(\mathbf{D} \) allows to develop other arguments whose conclusions also point to the inconsistency of the hypothesis of the actual infinity. For instance, it is clear that certain elements of \(\mathbb{Q}_{01} \) as, \(0.\overline{21}, \ 0.\overline{35421}, \ 0.\overline{211111111} \) and many others cannot become d-modular if they were in \(T \). This problem will be analyzed in Chapter 29.

A final remark

P16 As with all discussions on the hypothesis of the actual infinity, the above one is a conceptual discussion unconcerned, as Cantor’s diagonal argument, with the physical possibilities of carrying out all involved operations. The formal inconsistency of a hypothesis does not depend on those possibilities, but on the fact of deducing from it a contradiction. And recall that from an inconsistent hypothesis anything can be deduced, from apparently reasonable assertions to any absurdity. It seems convenient to end by recalling that an argument cannot be refuted by other different argument simply because it reaches an opposite conclusion. In W. Hodges words \cite{4, p. 4}:

> How does anybody get into a state of mind where they persuade themselves that you can criticize an argument by suggesting a different argument which doesn’t reach the same conclusion?

This inadmissible strategy is frequently used in the discussions related to the actual infinity hypothesis. But to refute an argument means to indicate where and why that argument fails. If two correct arguments based on the same set of hypotheses lead to contradictory conclusions, they are simply proving the existence of a contradiction. And, therefore, the inconsistency of at least one of the assumed hypotheses. In our case, the only hypothesis is the hypothesis of the actual infinity, according to which the infinite sets and sequences exist as complete totalities. The alternative is the hypothesis of the potential infinity, according to which only finite sets and sequences can be considered as complete totalities, unlimited and as large as wished, but always finite if they have to be considered as complete totalities. From this finite perspective it is not possible to deduce the above contradictions
because every row is preceded and succeeded by a finite number of rows.
Bibliografía

