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Abstract

A rational approach to understanding quantum mechanics is presented
in which one is able to account for the observation that two spinning
particles, irrespective of their space-time separation, can be correlated in
EPR-like experiments.
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1 Introduction

This note is more of a personal scientific will. Although I detest writing
a work which is not at least partially complete, here, knowing that the
plan I am going to sketch will not probably come true by myself, I bend
my moral standards to describe my best visions and hopes for construct-
ing a completely Einsteinian theory of quantum mechanics. I begin with
a metaphysical objection to the basis of quantum mechanics and offer a
solution, which together with some methodological principles, will shed a
–at least dim– light upon the old conceptual issues of quantum mechanics.
Quite humbly, after years of contemplation, I think this note is the only
possible way for us to make a true progress in the foundations of quantum
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mechanics in the current boring situation of theoretical physics, though
I am almost sure that due to the role of authority and other academic
idiocies, the majority will try hard not to be convinced, while remaining
busy with works of at least twice more superficial and far more speculative
nature like that of Smolin’s[1] and ‘t Hooft’s[2].
In [3] we showed that, assuming the fundamental laws of classical me-
chanics (i.e. Newton laws), Schrödinger equation can be derived assum-
ing the existence of de Broglie waves and p = ~k. This means that
(non-relativstic) quantum mechanics is all about E = ~ω. So in order
to understand quantum mechanics we must scrutinize E = ~ω and that
essentially boils down to understanding ω; the reader might ask ‘but we
do understand ω, don’t we?!’ –No. Let us examine our current under-
standing of ω closer: ω is the frequency of a wave, which we do observe
in diffraction experiments. But what is a wave? The best answer is that
it is an entity φ which satisfies the wave equation

∂2φ

∂t2
= v2∇2φ,

where v is the speed of propagation of the wave.
As we see there is no trace of any frequency here1: Frequency is not a
sufficiently general concept for waves; not all waves have frequency. A
wave has only one characteristic: its speed of propagation, and that is
all that it knows. To see the issue better we need to look at ω from a
mathematical perspective in the next section.

2 the Fourier basis

We assume that the concept of basis of a space is familiar to the reader. We
know that one possible basis for the space of real-valued square integrable
functions is

{cosnt, sinnt}∞n=1 (1)

In the continuum limit, n is transformed to ω. But we must not forget
that this is a special basis for our function space and a law of
nature must not depend on choice of basis. There are three possible
reactions to this problem:

1. A preferred basis If a law of nature says so (that nature is de-
pendent on choice of basis) then so be it: Nature has a preferred
basis. Even the advocates of Copenhagen interpretation would not
take such approach!

2. Conventional approach We work with a chosen basis having in
mind that we can always express our results entirely in terms of

1One can also take the Schrödinger equation

i~
∂ψ

∂t
= −

~2

2m
∇2ψ + V ψ

as defining a wave. Again, there is no sign of any frequency in that as well.
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other bases. In such case we should be able to express the energy of
a photon, for example, as a function of time, by

E(t) = F−1[~ω] = ~
∫
R
eiωtω dω

which is obviously a divergent integral2. Furthermore this approach
is only as good as what results from it, i.e. disaster! This approach
eventually results in the current version of quantum mechanics (in-
cluding all different interpretations).

3. A basis-independent re-interpretation of ω We must think of
an interpretation of ω that is not basis-independent. But what that
could be? To see it clearly we need the methodology of Pragmatistic-
flavoured Kantian Rationalism.

3 Pragmatism-motivated Kantian Ratio-
nalism

We assume that our reader is not a dogmatic one (including all versions
of a Positivist). After the advent of Relativity and QFTs, experimen-
tal physics has become almost futile for any novel conceptual progress
in theoretical physics. It is therefore a task for theorists to revise their
methodology and make it more formal and deductive. Baconian empiri-
cism is no longer able to provide us theorists with clues for novel advances.
What can we do in such situation other than being pragmatically rational-
istic?3 We must have learned the lessons of empiricism while maintaining
a rationalistic mindset4: Every good-enough problem of theoretical
physics can be solved by proper and deep contemplation.
To console ourselves that in the current stagnation of theoretical physics,
we are still able to make good progress, we bestow an imaginary theo-
rist in the 19th century who is stuck in the same stagnation as that of
ours the honor of discovering the existence of de Broglie waves! Thus a
non-trivial conclusion of our proposed approch is that A deep-enough
theorist in the 19th century could have predicted the existence
of matter waves. This is the guiding principle we are going to use in
the next section.

4 A rationalistic re-interpretation of ω

To reconcile the results of our previous discussions, we must find a basis-
independent re-interpretation of ω that could have been in principle thought
by a deep-enough 19th century theorist. Therefore let us imagine ourselves
as the 19th century theorist: He takes the existene of elemetary particles

2We think that this is the ultimate root of the problem of infinities of the QFTs.
3The alternative is that That’s it! We are done. We must wait for our demise, because

experimental physics needs at least 100 years to be able to help theorists properly!
4Kant has done this amalgamation of empiricism and rationalism in a way that is hard to

criticise.
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(atomism) seriously; he is very clever and by observing that an elementary
particle has

KE =
1

2
mv · v

and having in mind the old picture of elementary particles as nice tiny
spheres (rigid bodies), since he knows that rigid bodies have two com-
pletely independent motions, i.e. translational and rotational, he thinks
that an elementary particle must has another energy associated with it
given by

E =
1

2
Iω · ω

where ωµ is the frequency of rotation (i.e. spin) vector. The theorist is
also clever enough to avoid the questions arising regarding the infinite
divisibility of elementary particles by disposing of the problematic I by
absorbing it into the spin vector

sµ = Iωµ.

Our theorist would probably get E = sω wrong by a factor of 1/2, which
has to do with the transformations of time-angle, which we will discuss in
next section.
So with the help of our connivance he will be able to predict E = sω, that
All elementary particles spin and this act of them spinning, cre-
ates a wave with the same frequency as that of spin. In particular,
if a particle spins uniformly (ω̇ = 0), it creates a harmonic (monochro-
matic) wave. One thing he will not get is the quantisation of spin,
S = n~; so that remains open for our explanation5.
The alert reader now is justified in asking for a proof that a spinning
particle creates a wave described by (a generalisation of) the Schrödinger
equation. This is the main task that the author has not yet been able to
accomplish. If we assume that such a proof exists and can be given, then
we are justified in saying that there is no wave-particle duality anymore:
there are only particles and matter-waves are secondary entities causally
arising from the spin of particles.

5 Angle-Time space

Let us now take the statement that a spinning particle creates a wave
described by (a generalisation of) the Schrödinger equation for granted
and deduce its consequences. Such particle must be physically completely
described by two vectors xµ(t) and θµ(t), where θµ(t) is the angle of
its spin. As there is no a priori reason that the spin and translational
motion of a particle are correlated, these two vectors must be completely
independent, thus ontologically distinct. Therefore these two vectors live
in completely different spaces; the space of xµ(t) we know; it is the well-
studied space-time whose geometry in absence of all interactions is given
by the invariant line element of Minkowski

ds2 = c2dt2 − dx2. (2)

5Something the author is not able to do. Another approch of course, is to suppose that
this fact does not need an explanation and is a fundamental law of nature.
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But the space which we henceforth call angle-time is unknown to us.
By analogy we propose that the geometry of this space in absence of all
interactions is given by the following invariant line element

dΘ2 = Ω2dt2 − dθ2 (3)

where Ω is the maximum angular velocity in universe. A possible value
for this constant is

Ω = ωmax =
c

lP
≈ 1.8× 1043Hz

where lP is Planck length. One must bear in mind, however, that this
value for ωmax is not a logical necessity and might turn out not to corre-
spond to reality.
We can now explain the observation that two spinning particles, irre-
spective of their space-time separation, can be correlated in EPR-like
experiments, because just as (2) defines a relative notion of locality in
space-time, so does (3) in the angle-time space. In other words, two spin-
ning particles which have a sufficiently close angle can be correlated while
being separated by a space-like distance!
Similar to the well-known definitions in special relativity terminology, we
define

• dΘ2 > 0 Correlated

• dΘ2 < 0 Angle-like

• dΘ2 = 0 Null

5.1 Dynamical definition of Four-Spin

Analogous to the definition of Four-Momentum viz.

pµ = mc
dxµ

ds
,

we define the Four-Spin

sµ = s
dθµ

dΘ
, (4)

where s is the spin of the particle (the same scalar characteristic quantity
which is quantised and determines the statistics that an ensemble of par-
ticles obey).
Now we can explain why the 19th century-theorist got a wrong factor 1/2.

5.2 Angle-Time Transformations

If we now seek the transformations in the angle-time space which preserve
its corresponding inner product arising from (3), we are led to the eta
factor

η :=
1√

1− (ω/ωmax)2
; (5)

If we suppose there is a spin-energy equivalence given by

E = sωmax (6)
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and then define the total energy of a spinning particle by

ES =
sωmax√

1− (ω/ωmax)2
(7)

then its sole rotational energy would be given by

Es = sωmax

(
1√

1− (ω/ωmax)2
− 1

)
, (8)

which is

Es ≈
1

2
sω,

if we Taylor-expand and neglect orders of third and higher in ω.

6 Role of the Wavefunction

To find the role of the wavefunction, we define

ωµ := (ω, ck). (9)

We know from Bohmian quantum mechanics[3], that

ωµ = (ω,−ck) = ic
∂µψ

ψ
(10)

where ψ is the quantum-mechanical wavefunction. On the other hand

ωµ =
dθµ
dt

(11)

by definition.
Therefore we have

dθµ
dt

= ic
∂µψ

ψ
(12)

or

θµ = ic

∫
∂µψ

ψ
dt.

Thus we can see that the quantum-mechanical wavefunction is a bridge
between space-time and angle-time.
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