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We propose that there exist magnetic symmetry in the geometrical optics. What are the consequences of the
magnetic symmetry existence to the formulation of refractive index and its related curvature?

I. INTRODUCTION

Dirac proposed, due to symmetrical reasoning in the
Maxwell’s theory of electromagnetism, there exist mag-
netic monopole which has magnetic charge1,2. Inspired
with Dirac idea of monopole, the magnetic symmetry
was formulated as the SU(2) gauge theory, non-Abelian
theory of the (4 + n)-dimensions of unified space3. The
(4+n)-dimensions of unified space is actually the (3+1)-
dimensions of external space, i.e. the (3 + 1)-dimensions
of curved spacetime, plus the n-dimensions of (curved)
internal space4.

To the best of our knowledge, the geometrical optics
(e.g. eikonal equation) is formulated without including
magnetic symmetry5–11. The eikonal equation can be de-
rived from the Maxwell equations9. Because of Maxwell’s
theory is U(1) gauge theory, Abelian theory, and the
eikonal equation can be derived from the Maxwell’s the-
ory, we argue that the geometrical optics is also U(1)
gauge theory, Abelian theory and there exist magnetic
symmetry in the geometrical optics.

The situation of the SU(2) gauge theory, non-Abelian
theory of the (4 + n)-dimensions of unified space3 looks
like the SU(N) Yang-Mills theory where the choice of
the simple Lie group G = U(1) reduces the Yang-Mills
theory to Maxwell’s theory12.

Because of the U(1) gauge theory can be generalized
to SU(2) gauge theory13, it has the consequence that
we can obtain the magnetic symmetry in the U(1) gauge
theory from the magnetic symmetry of the SU(2) gauge
theory.

We will apply the gauge potential of the U(1) mag-
netic symmetry to the geometrical optics, especially in
the formulation of eikonal equation, the refractive index
and the curvature relation.

II. POTENTIAL AND FIELD STRENGTH TENSOR

In the geometrical optics approximation (short wave-
length, λ → 011), the four-vector potential, Aα, and the
field strength tensor, Fαβ , can be represented respec-
tively as6,7

Aα = aα e
iψ (1)

Fαβ = ∇αAβ −∇βAα (2)

where ψα is the phase, the eikonal, a large quantity which
is ”almost linear” in the coordinates and time10, aα is a
slowly varying amplitude, a slowly varying function of
the coordinates and time10 and ∇α denotes a spacetime
covariant derivative5. Here, we assume that the geomet-
rical optics ”lives” in the (4 + n)-dimensions of unified
space, the indices α, β run from 1 to 4 + n.

The equation in ray propagation in a medium with
refractive index, n, is9,10

|~∇ψ1| = n (3)

Because ψ1 is also called the eikonal10 or the optical
length, a real scalar function of position9, then the equa-
tion (3) is called the eikonal equation9,10, where10

ψ1 =
c

ω
ψ + ct (4)

Here, ψ is same as ψ in eq.(1).
Because the eikonal or the optical length, ψ1, ”lives” in

the (4+n)-dimensions of unified space, we need to trans-

form ψ1 to ψµ and the gradient operator, ~∇, in eq.(3) to
the four-gradient, ∂ (the covariant four-gradient, ∂µ, or
the contravariant four-gradient, ∂µ)14. So, eqs.(3), (4)
become

nµν = |∂νψµ| (5)

ψµ =
c

ω
ψ + ct (6)

In the Maxwell’s theory, the four-vector potential, Aρ,
and and the field strength tensor, F ρτ , can be represented
respectively as15

Aρ =

(
V

c
,Ax, Ay, Az

)
(7)

F ρτ = ∂ρA
τ − ∂τAρ (8)

where ∂ρ = ∂/∂xρ is the differentiation with respect to
the covariant vector, xρ. We see that the formulations
of the field strength tensor in the geometrical optics (2)
and in the Maxwell’s theory (8) look similar.

III. SU(2) GAUGE POTENTIAL AND FIELD
STRENGTH IN UNIFIED SPACE

Magnetic symmetry of the SU(2) gauge theory in the
(4 + n)-dimensions of unified space is formulated in re-
lations with the symmetry of the unified metric3. The



Killing vector fields must satisfy3

£m gAB = 0 (9)

where m is vector field, £m is the Lie derivative along
the direction of m, gAB(A,B = 1, 2, .., 4 +n) is metric in
the (4 + n)-dimensional unified space3.

The eq.(9) has consequence that

Dµm̂ = ∂µm̂+ g ~Bµ × m̂ = 0 (10)

where m̂ is the multiplet and ~Bµ is the gauge potential of
the n-dimensional isometry group3

~Bµ = Aµm̂−
1

g
m̂× ∂µm̂ (11)

Aµ is the (Abelian) component of SU(2) gauge potential,
~Bµ.

The corresponding field strength, ~Gµν , to the gauge
potential (11) is3

~Gµν = ∂µ ~Bν − ∂ν ~Bµ + g ~Bµ × ~Bν (12)

We see that the formulation of the field strength tensor
in the SU(2) gauge theory (12) is different from eqs.(8)
and (2), because of there exist the second term of (12).

IV. U(1) GAUGE POTENTIAL AND FIELD STRENGTH
IN UNIFIED SPACE

In an analogue that the choice of G = U(1) reduces
SU(2) Yang-Mills theory to the U(1) Maxwell’s theory,
from eqs.(11), (12) we obtain that the U(1) gauge po-
tential and the related U(1) field strength tensor can be
represented respectively as

~BU(1)
µ = AU(1)

µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1) (13)

~G U(1)
µν = ∂µ ~B

U(1)
ν − ∂ν ~B U(1)

µ (14)

where A
U(1)
µ is the (Abelian) component of the U(1)

gauge potential, ~B
U(1)
µ and m̂U(1) is the multiplet of the

n-dimensional U(1) group.

Because, ~G
U(1)
µν in (14), F ρτ in (8) and Fαβ in (2) are in

principle same i.e. the fields, so we can replace F ρτ or Fαβ

with ~G
U(1)
µν

16. In other words, we can replace Aρ or Aα
with ~B

U(1)
µ . If we replace Aα with ~B

U(1)
µ (by considering

the harmonic form of notation) then we obtain

aµ e
iψ = ~B U(1)

µ (15)

V. THE REFRACTIVE INDEX-CURVATURE OF
UNIFIED SPACE

In general relativity, light rays follow null geodesics17,
i.e. the line-element of the ”world” of space-time, ds,
vanishes18. The null geodesics are the tracks of rays of
light18. Mathematically, the tracks of rays of light are
expressed in the Fermat’s principle.

To simplify the problem, the Fermat’s principle is for-
mulated in case of a static gravitational field11, isotropic
and spherically symmetric metric19. The Fermat’s prin-
ciple is

δ

∫ r2

r1

n dr = 0 (16)

We can derive, from the Fermat’s principle (16), the re-
lation between refractive index and curvature as below10

1

R
= ~N ·

~∇n
n

(17)

where ~N is the unit vector along the principal normal, R
is the radius of curvature and n is the refractive index.
We see from eq.(17), the rays are therefore bent in the
direction of increasing refractive index20.

Fig. 1 The illustration of eq.(17).

In the geometry of (3+1)-dimensions of curved space-
time, eq.(17) can be written as21,22

Rµνρσ = gNσ ∂ρ lnnµν (18)

where Rµνρσ is the Riemann-Christoffel curvature tensor.
The form of eq.(18) does not change if we treat it

in the (4 + n)-dimensions of unified space. So, we can
say that eq.(18) is the relation between refractive index
and Riemann-Christoffel curvature tensor in the (4 +n)-
dimensions of unified space.

VI. THE GAUGE POTENTIAL-CURVATURE IN
UNIFIED SPACE

We see from eq.(15)

eiψ = ~BU(1)
µ a−1

µ (19)

Using Euler’s formula, eq.(19) can be written as

cosψ + i sinψ = ~BU(1)
µ a−1

µ (20)
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To simplify the problem, we only take the real part of
(20), then eq.(20) becomes

cosψ = ~BU(1)
µ a−1

µ (21)

ψ = arccos ~BU(1)
µ a−1

µ (22)

Substituting eqs.(13), (22) into eq.(4), we obtain

ψµ =
c

ω
arccos

(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
a−1
µ

+ ct (23)

Substituting eq.(23) into eq.(24), we obtain∣∣∣∣∂ν { cω arccos

(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
a−1
µ

+ ct}| = nµν (24)

Substituting eq.(24) into (18), we obtain

gNσ ∂ρ ln
∣∣∣∂ν { c

ω
arccos(

AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
a−1
µ + ct

}∣∣∣∣
= Rµνρσ (25)

VII. DISCUSSION AND CONCLUSION

We see from eqs.(24), (25) that there exist the
magnetic symmetry (magnetic monopole) represented
by m̂U(1) in the geometrical optics, especially in the
eikonal equation, the refractive index and the Riemann-
Christoffel curvature tensor relation formulated in the
(4 + n)-dimensions of unified space.

A
U(1)
µ and m̂U(1) contribute to the refractive index

and in turn to the refractive index and the Riemann-
Christoffel curvature tensor relation. In other words, the
refractive index and the Riemann-Christoffel curvature
tensor consist of the (Abelian) component of the U(1)
gauge potential and the multiplet of the n-dimensional
U(1) group.

What does it mean physically that the refractive in-
dex and the curvature are decomposed into the (Abelian)
component of the U(1) gauge potential and the multiplet
of the n-dimensional U(1) group?

Related with the gravitational lensing problem (when
the light passes near a massive mass object, the curva-
ture of space-time due to such a massive mass object
will deflect the light path), what is the consequence of
the decomposition of the refractive index to the angle of
deflection of the light path?

VIII. ACKNOWLEDGEMENT

Thank to Professor Yongmin Cho for introducing me
the magnetic symmetry in the gauge theory. Thank to
Richard Tao Roni Hutagalung for fruitful discussions.
Thank to Reviewers for reviewing this manuscript. Spe-
cial thank to beloved ones, Juwita Armilia and Aliya
”Acil” Syauqina Hadi, for much love and great hope.

1P.A.M. Dirac, Quantised Singularities in the Electromagnetic
Field, Proc. Roy. Soc. A 133 60 1931.

2P.A.M. Dirac, The Theory of Magnetic Poles, Physical Review
Volume 74, Number 7 October 1, 1948.

3Y.M. Cho, Restricted gauge theory, Physical Review D, Volume
21, Number 4, 15 February 1980.

4The internal space is an abstract space where the magnetic sym-
metry ”lives”. We can not ”see” this internal space due to the
symmetry we are assumed (Y.M. Cho, Pong Soo Jang, Unified
Geometry of Internal Space with Spacetime, June 1975).

5A.B. Balakin, A.E. Zayats, Non-minimal Wu-Yang monopole,
arXiv:gr-qc/0612019v2 23 Dec 2006.

6Alexander B. Balakin, Alexei E. Zayats, Non-minimal Einstein-
Maxwell theory: the Fresnel equation and the Petrov classifi-
cation of a trace-free susceptibility tensor, arXiv:1710.08013v2
[gr-qc] 12 Feb 2018.

7A.B. Balakin, A.E. Zayats, Ray Optics in the Field of a Nonmin-
imal Dirac Monopole, Gravitation and Cosmology, 2008, Vol.14,
No.1, pp.86-94.

8Kazuo Ota Cottrell, Jong Ping Hsu, Gauge independence of the
eikonal equation in Yang-Mills gravity, Eur. Phys. J. Plus (2015)
130: 147.

9Max Born, Emil Wolf, Principles of Optics, Pergamon Press,
1993.

10L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Me-
dia, Pergamon Press, 1984.

11L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields,
Fourth Revised English Edition, Butterworth-Heinemann, 1987.

12David Tong, Gauge Theory, http://www.damtp.cam.ac.uk/

user/tong/gaugetheory.html, 2018.
13In mathematics, the special unitary group of degree n, denoted
SU(n), is the Lie group of n × n unitary matrices with deter-
minant 1. The more general unitary matrices may have complex
determinants with absolute value 1, rather than real 1 in the spe-
cial case. The special unitary group is a subgroup of the unitary
group U(n), consisting of all n× n unitary matrices (Wikipedia,
Special unitary group).

14Wikipedia, Four-gradient. Access date: 22 Apr 2021.
15David J. Griffiths, Introduction to Electrodynamics, Cambridge

University Press, 2017.
16Y.M. Cho, Private communication.
17Rajaram Nityananda, Joseph Samuel, Fermat’s principle in gen-

eral relativity, Physical Review D, Volume 43, Number 10, 15
May 1992.

18E.T. Whittaker, Note on the law that light-rays are the null
geodesies of a gravitational field, 1927.

19Soma Mitra, Somenath Chakrabarty, Fermat’s Principle in
Curved Spacetime, No Emission from Schwarzschild Black Holes
as Total Internal Reflection and Black Hole Unruh Effect,
arXiv:1512.03885v1 [gr-qc] 12 Dec 2015.

20Light changes its direction of propagation when it encounters an
inhomogeneity in the medium. The curvature of the path is used
to quantify this change of direction. This curvature is defined as
the ratio of the change in the direction of propagation to the
length measured along the curved path (K. Iizuka, Engineering
Optics, p.108).

21Miftachul Hadi, Linear and non-linear refractive indices in Rie-
mannian and topological spaces, https://osf.io/69pwy, 2020.

22Miftachul Hadi, Utama Alan Deta, Andri Sofyan Husein, Lin-
ear and non-linear refractive indices in curved space, Journal of
Physics: Conference Series 1796 (2021) 012125.

3

arXiv:gr-qc/0612019v2
arXiv:1710.08013v2
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
https://osf.io/69pwy

	Magnetic symmetry of geometrical optics
	Abstract
	Introduction
	Potential and Field Strength Tensor
	SU(2) Gauge Potential and Field Strength in Unified Space
	U(1) Gauge Potential and Field Strength in Unified Space
	The Refractive Index-Curvature of Unified Space
	The Gauge Potential-Curvature in Unified Space
	Discussion and Conclusion
	Acknowledgement


