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I. INTRODUCTION

Dirac proposed, due to symmetrical reasoning in the
Maxwell’s theory of electromagnetism, there exist mag-
netic symmetry appears as magnetic monopole which
has magnetic charge1,2. Inspired by Dirac idea of mag-
netic monopole, the magnetic symmetry was formulated
as the SU(2) local gauge theory, non-Abelian theory in
the (4 + d)-dimensions of unified space3. The (4 + d)-
dimensions of unified space is the (3 + 1)-dimensions of
external space-time, i.e. the (3+1)-dimensions of curved
space-time, plus the d-dimensions of internal (isometry
group, G) space4.

The formulation of the SU(2) local gauge theory,
non-Abelian theory in the (4 + d)-dimensions of unified
space3, roughly speaking, looks like the SU(N) Yang-
Mills theory5 where the choice of the simple Lie group
G = U(1) reduces the Yang-Mills theory to the Maxwell’s
theory6. The role of magnetic symmetry of the SU(2)
local gauge theory, non-Abelian theory in the (4 + d)-
dimensions of unified space is to restrict the gauge po-
tential3.

To the best of our knowledge, the geometrical optics
(the eikonal equation) is formulated without including the
magnetic symmetry7–13. The eikonal equation can be
derived from the Maxwell equations8. Because of the
Maxwell’s theory is U(1) local14 gauge theory, Abelian
theory, and the eikonal equation can be derived from the
Maxwell equations, we argue that the geometrical optics
is also U(1) local gauge theory, Abelian theory and there
exist the magnetic symmetry in the geometrical optics.

II. SU(2) GAUGE POTENTIAL AND FIELD STRENGTH
IN UNIFIED SPACE

The magnetic symmetry of the non-Abelian SU(2) lo-
cal gauge theory in the (4+d)-dimensions of unified space
is formulated in relation with the metric symmetry in the
(4 + d)-dimensions of unified space3. The Killing vector
fields must satisfy3 the metric symmetry equation below

£m gµν = 0 (1)

where m is vector field, £m is the Lie derivative along
the direction of m, gµν(µ, ν = 1, 2, .., 4 + d) is metric in

the (4 + d)-dimensions of unified space3.
The eq.(1) has consequence that there exist the mag-

netic symmetry3 which can be written as below

Dµm̂
SU(2) = ∂µm̂

SU(2) + g ~BSU(2)
µ × m̂SU(2) = 0 (2)

where m̂SU(2) is the multiplet in the d-dimensions of in-

ternal space and ~B
SU(2)
µ is the SU(2) gauge potential in

the d-dimensions of internal space3

~BSU(2)
µ = ASU(2)

µ m̂SU(2) − 1

g
m̂SU(2) × ∂µm̂SU(2) (3)

where A
SU(2)
µ is the unrestricted electric potential (a

scalar), i.e. the part which is not restricted (not deter-
mined) by the magnetic symmetry and m̂SU(2) is the re-
stricted magnetic potential (a vector), i.e. the part which
is completely determined by the magnetic symmetry3.

The corresponding field strength, ~G
SU(2)
µν , of the SU(2)

gauge potential (3) is3

~GSU(2)
µν

= ∂µ ~B
SU(2)
ν − ∂ν ~BSU(2)

µ + g ~BSU(2)
µ × ~BSU(2)

ν (4)

We see that the third term on the right hand side of eq.(4)
is the non-Abelian (non-commutative) term, non-linear
term, the main difference compare to the field strength
of the Maxwell’s theory which is Abelian.

III. POTENTIAL AND FIELD STRENGTH OF
GEOMETRICAL OPTICS

In the (3 + 1)-dimensions of space-time, for the geo-
metrical optics approximation (short wavelength, λ →
010), the four-vector potential, ~Bµ, and the related field

strength tensor, ~Gµν , can be represented respectively
as12,13,15

~Bµ = aµ e
iψ (5)

~Gµν = ∇µ ~Bν −∇ν ~Bµ (6)

where ψ(x, y, z, t) is phase (eikonal) and amplitude, aµ,
is a slowly varying function of coordinates and time9.
∇µ denotes a space-time covariant derivative11. We see
from eq.(5), the amplitude, aµ, has the same dimension
as the displacement from equilibrium16, the oscillating

variable17, the four-vector potential ~Bµ.



IV. EIKONAL EQUATION

In case of a steady monochromatic wave, the
frequency18 is constant and the time dependence of the
eikonal, ψ, is given by a term −ωt where ω is a notation
for (angular) frequency9. Let us introduce ψ1, a func-
tion, which is also called eikonal9. The relation between
ψ1 and ψ can be expressed as9

ψ1 =
c

ω
ψ + ct (7)

where the eikonal, ψ1, is a function of coordinates only9.
In the 3-dimensions of space it is denoted by ψ1(x, y, z).

The equation of ray propagation in a transparent
medium with the refractive index as a scalar, n, is8,9

|~∇ψ1| = |~n| = n (8)

where ~∇ is a notation for gradient. Because ψ1 is a func-
tion of coordinates only, then the refractive index is also
a function of coordinates only. In the 3-dimensions of
space, the refractive index is denoted by n(x, y, z).

The equation (8) is called the eikonal equation8,9, i.e. a
type of the first order linear partial differential equation.
The analysis of partial differential equation for steady
state is very important for e.g. formulation of the Atiyah-
Singer index theorem, an effort for finding the existence
and uniqueness of solutions to linear partial differential
equations of elliptic type on closed manifold19. Probably,
we could apply the magnetic symmetry of geometrical
optics to the Atiyah-Singer index theorem. Progress work
was reported20.

V. GEOMETRICAL OPTICS IN UNIFIED SPACE

Because the eikonal, ψ1, is a function of coordinates
only (it is time-independent), so ψ1(x, y, z) becomes the
(3 + d)-dimensions eikonal which lives in the (4 + d)-

dimensions of unified space. The gradient operator, ~∇,
in eq.(8) transforms to the covariant four-gradient, ∂ν .
So, eq. (8) becomes

|∂νψ1| = |~nν | = n (9)

where ν runs from 1 to 4+d by considering that the time
components of ψ1 and n are zero.

We see from eq.(9), the refractive index is a scalar,
a real number. But, the refractive index is not simply
a scalar21. In linear optics, the refractive index is de-
scribed by a second rank tensor which describes that the
electric field component along one axis may be affected
by the electric field component along another axis21. In
other words, the second rank tensor of refractive index
describes anisotropic linear optics and the zeroth rank
tensor (scalar) of refractive index describes isotropic lin-
ear optics22.

Our works23,24 show that the second rank tensor of
refractive index is a consequence of the fourth rank to-
tally covariant tensor of (linear or Abelian) Riemann-
Christoffel curvature. Naturally, it means that the
fourth rank totally covariant tensor of Abelian Riemann-
Christoffel curvature describes the anisotropic linear op-
tics. We will work with the scalar of refractive index
related with the second rank tensor of Abelian Ricci cur-
vature which describes isotropic linear optics.

VI. U(1) GAUGE POTENTIAL AND FIELD STRENGTH
IN UNIFIED SPACE

Analog with SU(N) Yang-Mills theory, the choice of
G = U(1) reduces the SU(2) local gauge theory, non-
Abelian theory in the (4 +d)-dimensions of unified space
to the U(1) Maxwell’s theory. We obtain from eqs.(3),
(4) that the restricted U(1) gauge potential and its related
field strength of the Maxwell’s theory can be represented
respectively as

~BU(1)
µ = AU(1)

µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1) (10)

~G U(1)
µν = ∂µ ~B

U(1)
ν − ∂ν ~B U(1)

µ (11)

where A
U(1)
µ is the d-dimensions unrestricted electric po-

tential of the U(1) gauge potential and m̂U(1) is the d-
dimensions multiplet or restricted magnetic potential of
the U(1) gauge potential. The second term on the right
hand side of eq.(10) expresses the magnetic monopole.

Because the field strength of Maxwell’s theory, ~G
U(1)
µν

in eq.(11), and the field strength of geometrical optics,
~Gµν in eq.(6), in principle are same i.e. both are fields25,

we can replace ~Gµν with ~G
U(1)
µν . In other words, we can

replace the four-vector potential, ~Bµ in eq.(5), with the

U(1) gauge potential, ~B
U(1)
µ in eq.(10). If we replace ~Bµ

with ~B
U(1)
µ then eq.(5) becomes

~B U(1)
µ = aµ e

iψ (12)

Eq.(12) expresses the form of the restricted U(1) gauge
potential of the geometrical optics in the (4 + d)-
dimensions of unified space.

Eq.(12) can be written as

eiψ = ~BU(1)
µ a−1

µ (13)

Using Euler’s formula, eq.(13) can be written as

cosψ + i sinψ = ~BU(1)
µ a−1

µ (14)

Eq.(14) shows us that ~B
U(1)
µ a−1

µ is a complex function.
To simplify the problem, we take the real part of (14)
only, we obtain

cosψ = ~BU(1)
µ a−1

µ (15)
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where ψ in eq.(15), i.e. phase (eikonal or ”gauge”) is an
angle. This angle has value

ψ = arccos
(
~BU(1)
µ a−1

µ

)
(16)

Substituting eqs.(16), (10) into eq.(7), we obtain

c

ω
arccos

[(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
a−1
µ

]
+ ct = ψ1 (17)

If we substitute eq.(17) into eq.(9), then the eikonal
equation (9) becomes∣∣∣∣∂ν { cω arccos

[(
AU(1)
µ m̂U(1) − 1

g
m̂U(1) × ∂µm̂U(1)

)
a−1
µ

]
+ ct}| = n (18)

where n is a dimensionless quantity, a scalar, a real num-
ber, i.e. a function of (3 + d)-coordinates which lives in

the (4 + d)-dimensions of unified space, A
U(1)
µ is the un-

restricted electric potential, i.e. the part which is not
restricted by the magnetic symmetry (2) and m̂U(1) is
the restricted magnetic potential, i.e. the part which is
completely determined by the magnetic symmetry (2).
Eq.(18) shows us that the refractive index is decomposed.
There exist the magnetic monopole as a consequence of
the magnetic symmetry of the geometrical optics where
the magnetic symmetry is a consequence of the metric
symmetry of the (4 + d)-dimensions of unified space.

VII. THE REFRACTIVE INDEX-CURVATURE IN
UNIFIED SPACE

The equation of ray propagation in a steady state can
also be derived from Fermat’s principle9. We obtain the
refractive index-curvature relation as below9

1

R
= N̂ ·

~∇n
n

(19)

where N̂ is the unit vector along the principal normal,
R is the radius of curvature. Eq.(19) is the equation of
curvature of the 1-dimension of space, κ(R) = 1/R, i.e.
a function of R variable. We see that eq.(19) is a type
of non-linear partial differential equation because there

exist the form of n−1 ~∇n. Physically, eq.(19) says that
the rays are therefore bent in the direction of increasing
refractive index 9,26.

The dimension of curvature of eq.(19) can be extended
to an arbitrary number of dimensions27. In the (4 + d)-
dimensions of unified space, for a scalar of the refractive
index, n, eq.(19) can be written as23,24,28

Rµν
g

= Nν ∂µ lnn (20)

where Rµν is the second rank tensor of Ricci curva-
ture29,30, a function and g = |(det gµγ)|, is a scalar,
a real number.

Because the second rank tensor of Ricci curvature,
Rµν , can be obtained by contraction from the totally
covariant fourth rank tensor of Riemann-Christoffel cur-
vature, Rµνρσ,29 which is non-linear, so the second rank
tensor of Ricci curvature is also non-linear. The fourth
rank tensor of Riemann-Christoffel curvature, Rγνρσ, is
a commutator of covariant derivative operator, ∇σ∇ρ −
∇ρ∇σ29 and Rµνρσ can be obtained from Rγνρσ, through
relation Rµνρσ = gµγ R

γ
νρσ. So, is there a relation be-

tween nonlinearity and noncommutativity? Nonlinearity
is linked with noncommutativity. Noncommutativity does
produce nonlinearity31. Non-commutative is other name
of non-Abelian. The commutativity analysis will be use-
ful when we consider the relation between the curvature
and the field strength (the gauge potential).

Because n in eq.(20) is a scalar, we can substitute this
scalar with n in eq.(18). We obtain

Rµν
g

= Nν ∂µ ln

∣∣∣∣∣∂ν
[
c

ω
arccos

(
~B
U(1)
µ

aµ

)
+ ct

]∣∣∣∣∣ (21)

where the restricted U(1) gauge potential, ~B
U(1)
µ , is given

in eq.(10). We see from eq.(21), the curvature, which is
shown by the second rank tensor of Ricci curvature, is
related naturally with the gauge potential. It is in a har-
mony that the curvature and the field strength are iden-
tical32.

Because the related field strength of the restricted U(1)
gauge potential in the geometrical optics is Abelian and
the curvature is related naturally with the gauge poten-
tial, as shown in eq.(21), so the second rank tensor of
Ricci curvature is Abelian. It has a consequence that the
non-linear terms, i.e. the third and the fourth terms, on
the right hand side of the Ricci curvature tensor equation
below29 vanish

Rµν =
∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

+ Γσµν Γρρσ − Γσµρ Γρνσ (22)

So we have the second rank tensor of Abelian Ricci cur-
vature as below

Rµν =
∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

(23)

where Γρµν is the Christoffel symbol of the second kind29.
Substituting eq.(23) into eq.(21), the refractive index-

curvature relation (21) becomes

1

g

(
∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

)
= Nν ∂µ ln

∣∣∣∣∣∂ν
[
c

ω
arccos

(
~B
U(1)
µ

aµ

)
+ ct

]∣∣∣∣∣ (24)

where the restricted U(1) gauge potential, ~B
U(1)
µ , is given

in eq.(10). We see from eq.(24), although the nonlinear-
ity properties of the second rank tensor of Ricci curva-
ture vanish, eq.(24) is still a non-linear equation. The
nonlinearity of eq.(24) is because of there exist natural
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logarithm function there. The Abelian curvature, i.e. the
second rank tensor of Ricci curvature divided by g, is de-
composed as a consequence that the refractive index is
decomposed. It consists of the unrestricted electric poten-

tial (a scalar), A
U(1)
µ , i.e. the part which is not restricted

by the magnetic symmetry (2) and the restricted mag-
netic potential (a vector), m̂U(1), i.e. the part which is
completely determined by the magnetic symmetry (2).

VIII. DISCUSSION AND CONCLUSION

Symmetry is a fundamental principle in physics. The
existence of magnetic monopole is a consequence of the
magnetic symmetry (2). This magnetic symmetry is a
consequence of the metric symmetry (1) of the (4 + d)-
dimensions of unified space where the magnetic monopole
lives in the d-dimensions of internal space, an abstract
space.

In the geometrical optics, the existence of magnetic
monopole is shown by the eikonal equation (18) and
the refractive index-curvature relation (24) where both
eqs.(18), (24) are formulated in the (4 +d)-dimensions of
unified space.

The refractive index as shown by the eikonal equation
(18) is a dimensionless quantity, i.e. real variable. But,
as a consequence that there exist the magnetic monopole,
the refractive index is not single real variable. The refrac-
tive index is decomposed. It consists of the part which
is not restricted by the magnetic symmetry (2) i.e. the

part of electric potential, a scalar potential, A
U(1)
µ , and

the part which is completely determined by the magnetic
symmetry (2), i.e. the part of magnetic potential, a vec-
tor potential, m̂U(1).

As a consequence that the geometrical optics is an
Abelian system, so the refractive index-curvature relation
(24) is formulated in relation with the Abelian curvature.
What we mean with Abelian curvature is the second rank
tensor of Ricci curvature which loss the non-linear terms
as shown in eq.(23) divided with g. The Abelian cur-
vature is a function of space, because the related refrac-
tive index is a function of space. The Abelian curvature
follows the natural logarithm function of the refractive
index. What is the consequence of the decomposition
of the refractive index to the Abelian curvature? Is the
Abelian curvature also decomposed?

The Abelian curvature (24) is related naturally with
the gauge potential. It is in a harmony that the curva-
ture (the second rank tensor of Ricci curvature) and the
field strength are identical. If charge is the most funda-
mental quantity in the gauge field theory and the metric
tensor is the most fundamental quantity in the curvature
geometry, is there relation between the charge and the
metric tensor?

We see from eqs.(13), (14) that eiψ = cosψ + i sinψ is
a complex function. What is the consequence33 if we are
using this complex function to formulate of the eikonal
equation and the refractive index-curvature relation?

By considering that the gauge field theory is related
with the gauge transformation to the potential and the
Abelian curvature (24) is related naturally with the gauge
potential, so what is the consequence if we do ”the gauge
transformation” to the curvature, such as the metric ten-
sor?

The eikonal equation and the refractive index-
curvature relation describe the ray propagation in a
steady state (time-independent). Both equations of ray
propagation in a steady state can be derived from the
Fermat’s principle. Can Fermat’s principle apply for non-
steady state (time-dependent)?
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