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Abstract

A unified perspective to quantum mechanics is presented by which
one can (I) Derive Schrödinger equation from Newton Second Law and
de Broglie relation, (II) Arrive at a non-linear equation which reduces to
Schrödinger equation in a certain approximation, and (III) See that the
guiding equation of the de Broglie-Bohm theory is not complete.
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1 Introduction

It is the received wisdom that Planck-Einstein-de Broglie law1 pν = ~kν
belongs to the era of ‘old quantum mechanics’ and that in the realm of
quantum mechanics2 the right (and more fundamental) perspective is to
solve the Schrödinger equation for any case at hand. Although from an
instrumentalist point of view this perspective has been quite successful, in
this paper we advocate another perspective which will prove to be more
fruitful with regard to the foundational questions of quantum mechanics.
Our perspective is that quantum mechanics is basically all about pν = ~kν .
To adopt such perspective we need to first scrutinise our understanding of
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1The metric signature (+,−,−,−) is used everywhere in this paper.
2In this paper by ‘quantum mechanics’ we mean ‘non-relativistic quantum mechanics’.
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its essential ingredient kν . By any rigorous mathematical definition3 it is
required that a wave be defined as a field4 on spacetime which satisfies a
certain equation, without any explicit reference to its four-wavevector. On
the other hand, according to our perspective pν = ~kν is a fundamental
law of nature and appearance of kν in such a law suggests that we must en-
force all waves to acquire a mathematically well-defined four-wavevector.
Consequently we must find a definition for the four-wavevector of a wave
ψ in terms of the ψ itself, a process we shall call harmonisation.

2 Harmonisation

Considering the simplest case of a complex harmonic wave5,

ψ(xµ) = e−ikµx
µ

if we apply the gradient operator to both sides we have,

∂µψ = −ikµψ

we realise that there are two possibilites for harmonisation:

1. Operatorial approach, k̂µ := i∂µ

2. Logarithmic approach6, kµ := i
∂µψ

ψ
= i∂µ(logψ)

The operatorial approach is familiar for it is the basis of orthodox quan-
tum mechanics. Being thoroughly investigated there is not much one can
add to the operatorial approach except a derivation of the Schrödinger
equation from applying the de Broglie relation to the Convective Newton
Second Law.
The logarithmic approach however will be proved to yield a non-linear gen-
eralisation which reduces to the Schrödinger equation only if ∇ · k = 0.
Finally we will see that the de Broglie-Bohm theory is a yet more spe-
cial case of the logarithmic approach when in addition to ∇ · k = 0, one
assumes that the amplitude of the wavefunction is constant. Therefore

Non-linear theory ⊃ Orthodox quantum mechanics,

and
Non-linear theory ⊃ de Broglie-Bohm theory.

3For example, an entity φ which satisfies the wave equation

∂2φ

∂t2
= v2∇2φ,

where v is the speed of propagation of the wave. Or, an entity φ which satisfies the Schrödinger
equation.

4We only consider scalar fields in this paper. Sufficient conditions of smoothness are also
assumed implicitly.

5Note that this is not the most general harmonic wave one can write. Moreover notice
that in these definitions only forward-in-time waves are considered. It is not clear whether
this preference of time direction affects the theory in a decisive manner.

6By log the principal values of the complex logarithm function is meant. Equivalently
ψ 6= 0.
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3 Schrödinger equation from Newton Sec-
ond Law

In view of de Broglie’s wave-particle duality, all classical variables like
momentum which were functions of time only, become fields in quantum
mechanics. It turns out that the classical law of motion (Newton second
law and related definitions) is easily extended to the quantum case if we
treat our classical dynamical variables as functions of trajectory and time,
viz. if V is a classical dynamical variable, then the correct treatment in
quantum mechanics should treat it as

V = V(x(t), t).

Consequently, using chain rule7

F =
dp(x(t), t)

dt
=
∂p

∂t
+ v · ∇p =

∂p

∂t
+

1

m
p · ∇p (1)

which means we are dealing with a convective form of the Newton second
law.
To proceed with the derivation, notice that in Euclidean space we have
the following identity

p · ∇p =
1

2
∇(p · p),

Which is readily proved if we use the index notation

∇(p · p) = ∂µ(pρpρ)

where µ, ρ = 1, 2, 3. By the product rule of differentiation we have

∂µ(pρpρ) = pρ(∂µpρ) + pρ∂µp
ρ

In the first term, lower one ρ and raise the other. Although pα = −pα, the
negative sign from raising is cancelled by the negative sign from lowering.
We thus have

∂µ(pρpρ) = 2pρ∂µp
ρ =⇒ ∇(p · p) = 2p · ∇p

Using this identity (1) can be written as

F =
∂p

∂t
+

1

2m
∇(p · p)

We can now quantise this equation using the quantum mechanical opera-
tor p = −i~∇. After acting both sides on ψ, we get the quantised Newton
second law,

Fψ(x, t) = − ~2

2m
∇∇2ψ − i~ ∂

∂t
∇ψ. (2)

For a conservative force field F(x) = −∇V (x), after substitution we have,

−∇V ψ = −i~∇ ∂

∂t
ψ − ~2

2m
∇(∇ · ∇)ψ

7We need not worry here about possible non-commutativities familiar from ordianry quan-
tum mechanics. such non-commutativities happen for canonically conjugate (Fourier dual)
variables only. No use of Fourier transform/duals is made in our discussion.
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which is

i~∇ ∂

∂t
ψ = ∇

(
V − ~2

2m
∇2

)
ψ (3)

i.e. (the gradient of) the Schrödinger equation.

4 Non-linear theory

We apply the de Broglie relation p = ~k to the logarithmic approach to
get

p = −i~∇(logψ) and E = i~ ∂
∂t

(logψ) (4)

Substituting (4) in the law of conservation of energy8

E =
p · p
2m

+ V,

yields

i~ ∂
∂t

logψ = − ~2

2m
(∇ logψ)2 + V (5)

To get the Schrödinger equation, notice that (5) is equivalent to

i~∂ψ
∂t

= − ~2

2m

|∇ψ|2

ψ
+ V ψ (6)

which differs from the Schrödinger equation only by the term

|∇ψ|2

ψ
,

which we now show only in the special case where k is a solenoidal field,
is equal to the corresponding term in Schrödinger equation. To avoid
loss of generality we consider the relativistic condition of the vanishing of
divergence of four-wavevector

∂µkµ = 0 =⇒ 1

c2
∂2

∂t2
logψ −∇ · k = 0, (7)

in the approximation
∂2

∂t2
logψ ≈ 0,

we have
∇ · k = 0 (8)

=⇒ ∇ · (∇ψ
ψ

) = 0

=⇒ ψ∇2ψ − |∇ψ|2

ψ2
= 0

for ψ 6= 0,
|∇ψ|2

ψ
= ∇2ψ, (9)

8Similar to the familiar derivation of the Schrödinger equation using conservation of energy.
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In other words, Schrödinger equation is an approximate special case of a
non-linear theory. We can now manifestly see how linearity arises from
non-linearity, and how an eigenvalue problem which is the representative
of quantum discreteness is only an approximation to non-linearity. In this
light the superposition principle is only an approximate feature of nature
and has a limited domain of applicability.
Being a non-linear dispersive equation (6) possesses soliton solutions, ren-
dering collapse of the wavefunction a redundant notion, for the old picture
of Schrödinger’s wave packets –which were interpreted as particles– is now
immune to dispersion.

5 de Broglie-Bohm theory

Thus far it is proved that Schrödinger equation is a special case of (6).
We now show that the guiding equation of the de Broglie-Bohm theory
holds only for wavefunctions with constant (uniform) amplitude.
To see this we use the polar representation of a complex-valued function
ψ : R3 × R→ C

ψ(x, t) = R(x, t)eiS(x,t)

where R : R3 × R→ R and S : R3 × R→ R.
Applying de Broglie relation

p = ~k =⇒ p = −i~∇ψ
ψ

= −i~ 1

ψ

(
∇ReiS(x,t) + iR∇SeiS(x,t)

)
yields

p = −i~∇R
R

+ ~∇S (10)

In natural unit ~ = 1,

p = −i∇R
R

+∇S

while in the context of de Broglie-Bohm theory[1]

p = ∇S,

so there is a missing term:

−i∇R
R

.

In the literature one usually uses the non-relativistic momentum p = mv
to find the velocity field of particles as

v =
∇S
m

,

the complete relation, however, is

v = −i∇R
mR

+
∇S
m

(11)
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As classical velocity cannot be a complex number the only way a particle
can have classical trajectory is when

∇R = 0, R 6= 0

which gives
ψ(x, t) = CeiS(x,t)

where C is the constant of integration. We therefore conclude that the
concept of a classical path makes sense only for wavefunctions with con-
stant amplitudes.
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[1] Dürr, Detlef - Teufel, Stefan (2009). ‘Bohmian Mechanics’. Springer.
Page 145.

6


