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     A recurrent algorithm proving the Strong Goldbach Conjecture  

           
     

        Gregory M. Sobko 

 

                                            Abstract 
                                                 

A Recurrent Algorithm described here generates consecutive sequences of Goldbach sets.      

   ,  where  

toward the proof of the Strong Goldbach Conjecture.  

Approach suggested here is based on the fundamental principle of mathematical induction  

and uses rather elementary set-theoretical technique. It does not involve any sophisticated  

powerful tools and results of contemporary Number Theory, Algebraic Geometry,  

or Theory of Dynamical Systems with applications to measure preserving  

groups of transformations on appropriate topological spaces [7].  

This work might cause beforehand certain suspicions among specialists in this area  

regarding the validity of the proof (perhaps inspired by the notorious ‘Uncle Petros’  

phenomenon [8]). The main idea of this work is to develop a recursive algorithm  

toward building the sequence of consecutive Goldbach sets  

representing  solutions to the system of Goldbach equations   

in the intervals .  Validity of the algorithm is based on the proved here  

recurrent formula 

                                   ,  

given the inductive assumption that for all , where ,   

and  is a set of all odd prime numbers. 

 

 

 

 

 

GkP | 3≤ k ≤ m{ } GkP = n, ′n | n∈P, ′n = 2 ⋅ k − n∈P{ }

GkP | 3≤ k ≤ m{ }
x + y = 2 ⋅ k | 3≤ k ≤ m{ }

Ik = [3,2 ⋅ k − 3]

GkP + 2 ⋅(m+1− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m

∪ = Gm+1P ≠ ∅

GkP ≠ ∅ k :3≤ k ≤ m Sm = Im∩P

P
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“The most interesting facts are those which can be used several   

times, those which have a chance of recurring ...”  

                                    (Henry Poincaré, The Value of Science) 

  

   1. Shift invariance of Goldbach Set. 
 

We approach here one of old classical problems in Number Theory known as the strong  

form of Goldbach Conjecture (SGC) [ 1, 5 ]. According to the conjecture stated by Goldbach  

in his letter to Euler in 1742, “every even number  is the sum of two odd primes” [1].  

Regardless numerous attempts to prove the statement, supported in our days by computer 

calculations up to ,  it remains unproven till now.   

Let  be a set of natural numbers, and  a set of odd primes (all prime numbers excluding ).  

The Goldbach’s Conjecture (GC), as one of the oldest and notoriously known unsolved problems 

in Number theory, raises a question why it seems so difficult to decide whether the equation 

                                                                                         (*) 

, has at least one solution for each even number . 

Indeed, occurrences of primes look very sporadic, so that it is hard to predict, that there exists a 

pair of primes  related by the equation (*), especially for ‘big’ values of .   

Notice that every solution   in primes to the equation , must satisfy 

condition:  .  

We call a prime number  a - prime (Goldbach prime) if  is also a prime 

number.  Then, denote  as set of all - primes, and call   Goldbach set.  

The number of elements in set , denoted , is called Goldbach function. 

 Obviously, for all  we have .   A set   is empty if   

for some  - primes do not exist. Goldbach function  counts the number  

of solutions to the equation      

     ,        (1) 

2m ≥ 6

4×1018

! P 2

p + ′p = 2m,

where pand ′p are prime numbers 2m ≥ 6

p, ′p( ) m

(n, ′n ) = ( p, ′p ) p + ′p = 2m

(n, ′n )∈[3,2m− 3]2

p Gm ′p = 2m− p

GmP Gm GmP

GmP G(2m)

m ≥ 3 GmP ⊂ Im = [3,2 ⋅m− 3] GmP

m ≥ 3 Gm G(2m)

n+ ′n = 2m n, ′n( )∈P2
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where  are prime numbers,  is any integer  .  

Obviously, any pair of primes greater then 2 solves (1) for  . 

Due to infinity of , this implies that the Goldbach function has . 

The Strong Goldbach Conjecture states that , so that every set  

is nonempty set for all . Calculations show that  increases with , 

though  is not a monotonically increasing function.   

We observe that each pair  which solves (1) must belong to a set ,  

where =  .  Since  is prime, if  , 

the pair  solves (1), so that the prime , and we need to consider  

the case . In general, if is a prime number such that ,  

then . 

Consider a shift mapping of an interval of integers  given by the formula   

                                              .       (2) 

Denote  an algebra of all subsets of the interval . 

Obviously, is one-to-one and has an inverse  , so that for all   

we have .  Denote . 

Obviously,  is idempotent:  (an identical map), that is . 

Indeed, . 

Let  denote a set of prime numbers in the interval of integers ,  

that is ,  and its complement in  so that 

 .  While  stands for the set of primes in  ,  

  is  the set of composite numbers in .   

We denote . 

The Strong Goldbach Conjecture asserts that for any  the set  is not empty: 

n  and  ′n m m ≥ 3

p, ′p( ) 2m = p + ′p

P limsupG(2m) = ∞

minG(2m) = 1 GmP

m ≥ 3 max
m≤M

G(2m) M

G(2m)

n, ′n( ) [3,2m− 3]2 = Im
2

Im = [3,2m− 3] {3,4,…,2m− 3} 3 ′n = 2 ⋅m− 3( )∈P
3,2 ⋅n− 3( ) 2 ⋅m− 3( )∈GmP
2 ⋅m− 3( )∉P p 2 ⋅m− p( )∈P

2 ⋅m− p( )∈GmP
θm : Im → Im

θm(n) = 2m− n

Fm Im = [3,2m− 3]

θm θm
−1 A∈Fm

θm(A)∈Fm ,θm
−1(A)∈Fm Im

− = [3,m−1], Im
0 = m{ }, Im+ = [m+1,2m− 3]

θm θm
2 = id θm

−1 = θm

θm
2 (n) = θm(θm(n)) = θm 2 ⋅m− (2 ⋅m− n)( ) = n

Sm Im = [3,2m− 3]

Sm = Im∩P Sm
c = Im! Sm Im

Im = Sm∪ Sm
c , Sm∩ Sm

c =∅ Sm Im

Sm
c Im

θm(Sm ) = 2 ⋅m− Sm = ′n | ′n = 2 ⋅m− n,n∈Sm{ }
m ≥ 3 GmP
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       . 

 

Lemma 1.  

Golbach sets on intervals are - shift invariant:  . 

Proof. 

Notice that the sets  are invariant sets of the map  

 since for all  we have  , 

due to . -invariance of  also follows directly from the equalities 

             . 

Q.E.D. 

 

In what follows we need several recursively derived formulas. 

 

Lemma 2. 

(1) , where      (3) 

(2)      (4) 

(3)        (5) 

 (4)                  (6) 

Proof.  

(1)  We observe that   

       so that .   

      

       , 

GmP = n, ′n | n∈P, ′n = (2m− n)∈P{ } = (2m− Sm )∩ Sm = θm(Sm )∩ Sm ≠ ∅

GmP Im θm θm(GmP) = GmP

Im , m{ }, 3,2 ⋅m− 3{ }  and θm(Sm )∩ Sm

θm : Im → Im n∈Im θm n,θm(n){ }( ) = θm(n),θn
2(n){ } = θm(n),n{ }

θm
2 = id θm GmP

θm GmP( ) = θm Sm∩θm(Sm )( ) = θm(Sm )∩θm
2 (Sm ) = θm(Sm )∩ Sm = GmP

Im = Im−1∪ 2m− 4,2m− 3{ } Im = [3,2m− 3]

Sm = Sm−1 ∪ P∩ 2m− 3{ }( ) = Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪

θm(Sm ) =
θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

GmP =
θm(Sm )∩ Sm = θm Sm−1( )∪ 3{ }   if  (2m - 3)∈P
θm(Sm )∩ Sm = θm Sm−1( )∩ Sm−1  if  (2m−1)∉P

⎧
⎨
⎪

⎩⎪

Im−1 = [3,2 ⋅(m−1)− 3]= [3,2 ⋅m−5]

Im = [3,2m− 3]= Im−1∪ 2m− 4,2m− 3{ }
(2) 2m− 4,2m− 3{ }∩P( ) = 2m− 3{ }∩P( ) implies

Sm = Im∩P = Im−1∩P( )∪ 2m− 4,2m− 3{ }∩P( ) = Sm−1∪ P∩ 2m− 3{ }( )
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      Thus,  . 

  , 

       . 

  (4)   

           , and  , that is 

           

Q.E.D. 

Notice that (5) implies that if , then and .  

In the case when , we have   since . 

Thus, we need to consider the case . We observe that ,  

due to (7) in Lemma 3 below. This implies . If , then  

and  . Assuming now that  is a twin prime, that is  , 

we have that   implies .  

See in what follows the more detailed discussion and definitions of sets of twin primes  and 

 related to the Goldbach Conjecture. 

The next Lemma concerns some properties of the shift transformation  

Lemma 3. 

Consider a shift transformation 

. 

Then, for any subset  and integer the following properties of  hold true:  

                                   (7)    

 

Sm = Im∩P = Sm−1 ∪ 2m− 3{ }  if  (2m− 3)∈P  and Sm = Sm−1  otherwise

(3)  θm(Sm ) = θm Sm−1( )∪θm 2m− 3{ }∩P( ) = θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

since θm(2m− 3) = 2 ⋅m− (2m− 3) = 3

GmP = θm(Sm )∩ Sm = θm(Sm−1)∪ 3{ }( )∩ Sm−1 = θm(Sm−1)∩ Sm−1( )∪ 3{ }  

 if  (2m - 3)∈P GmP = θm(Sm−1)∩ Sm−1   if  (2m− 3)∉P

GmP =
θm Sm−1( )∩ Sm−1   if  (2m - 3)∉P

θm Sm−1( )∩ Sm−1( )∪ 3{ }  if  (2m− 3)∈P

⎧
⎨
⎪

⎩⎪

(2m− 3)∉P Sm = Sm−1 GmP=θm(Sm−1)∩ Sm−1

(2 ⋅m− 3)∈P GmP ≠ ∅ (2m− 3)∈P , so that  3+ (2m− 3) = 2m

(2m− 3)∉P θm(Sm−1) = θm−1(Sm−1)+ 2

GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 p∈Gm−1P ≠ ∅

p∈Sm−1 p∈θm−1(Sm−1) p ( p + 2)∈Sm = Sm−1

Gm−1P ≠ ∅ GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 ≠∅
T1P

t-primes TtP

θm   (m ≥ 3)

θm :  Z→ Z such that θm(n) = 2 ⋅m− n,   where n∈N,  m∈! (m ≥ 3)

A⊆ Z t ∈! θm

     θm+t (A) = θm(A)+ 2 ⋅ t
     θm(A) = θm−t (A)+ 2 ⋅ t
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Proof. 

           

Q.E.D.      

 

   2. Twin primes, -primes and Goldbach sets. 

 

Let  stand for a set of all twin primes and consider   

for each .  Thus, if for some  , then  . 

Lemma 3 implies that if a prime  has a twin prime ,  

then .  This shows some connection between the Twin Prime Conjecture  

and the Strong Goldbach Conjecture (SGC), and, moreover, between the Prime Conjecture 

(de Polignac Conjecture (1849)) and SGC as we see below. This also shows how nonempty 

Goldbach sets can propagate further with increasing values of . 

 

Definition. 

Denote, in general, by a set of -primes for some , that is   

. Notice that ,     (7) 

where  stands for the set of all odd prime numbers.                                           

Consider examples below: 

,  ,  , and so on. 

Propagation of nonempty  for all   is based on very simple observations.  

  

Lemma 4. 

Let  and . There exist   and  (  )  

such that , and . This implies that there exists  (  )  

θm+t (A) = 2 ⋅(m+ t)− A = 2 ⋅m− A+ 2 ⋅ t = θm(A)+ 2 ⋅ t
θm(A) = 2 ⋅m− A = 2 ⋅(m− t)− A+ 2 ⋅ t = θm−t (A)+ 2 ⋅ t

t

T1P = p | p∈P and (p + 2)∈P{ } GkP∩T1P

k (3≤ k ≤ m) k (3≤ k ≤ m) GkP∩T1P ≠ ∅ Gk+1P ≠ ∅

p∈GkP ( p + 2)∈P

p + 2( )∈Gk+1P
t-

GkP k

TtP (t ∈!) t t ∈N

TtP = p | p∈P and (p + 2 ⋅ t)∈P{ } TiP = T0P = P
t=0

∞

∪

P

3,5,11,17,29,41{ }⊂ T1P 3,7,13,19,37,43{ }⊂ T2P 5,7,11,17,23,31,37,41{ }⊂ T3P
GkP k ≥ 3

p∈GkP ≠ ∅ p ≤ k q∈P (q > p) t ∈! 1≤ t < k −1

q = p + 2 ⋅ t ∈P p∈TtP t ∈! 1≤ t < k −1
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such that  and . 

Proof. 

Let , . Thanks to the Bertrand’s postulate [4], there exists a prime  between 

integers . This implies that there exists  such that this prime  

can be expressed in the form , where .  

Indeed, we can take . Then,  implies 

 that  and . 

Since  and  ,  we have   

and .                      

Q.E.D.  

 

Lemma 5. 

1. For  and  each is a for an appropriate value of . 

2. For any  there exist  , ,  , and ,  

such that ,  and both and belong to . 

3. Let   were  

for all . Denote . 

Then,   and  for all . 

 

4. Let for each  ( ) there exist  such that . 

Then  for all   ( ).    

      5.  Let   ( ) and there exists  such that . Then  

      6.    If for  there exist  and  such that ,  

                 then . 

p∈GkP∩TtP ≠ ∅ q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

p∈GkP p ≤ k q

k  and 2 ⋅ k (k > 3) t ∈! q

q = ( p + 2 ⋅ t)∈P 1≤ t < k −1

t = q − p
2

,  so that q = p + 2 ⋅ t ∈P p∈GkP

p +θk ( p) = 2 ⋅ k ( p + 2 ⋅ t)+θk ( p) = 2 ⋅ k + 2 ⋅ t = 2 ⋅(k + t)

q = p + 2 ⋅ t ∈P θk ( p)∈GkP p∈GkP∩TtP ≠ ∅

q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

k > 3 p < k p∈GkP t-prime t > 0

p∈GkP ′p = θk ( p)∈GkP q∈P q > p t ≥1

q = p + 2 ⋅ t ′p q Gk+tP ≠ ∅

GkP = pk ,1, pk ,2 ,…, pk ,n(k )−1, pk ,n(k ){ } pk ,i < pk ,i+1

i = 1,2,…,n(k)−1= G(2k)−1 tki =
pk ,i+1 − pk ,i

2

GkP∩TtkiP≠ ∅ Gk+tkiP ≠ ∅ i = 1,2,…,n(k)−1= G(2k)−1

j 3< j ≤ k t ≥1 Gj−tP∩TtP≠ ∅

GjP ≠ ∅ j 3< j ≤ k

GjP ≠ ∅ j ≥ 3 k > j GjP∩Tk− jP≠ ∅ GkP ≠ ∅

m > 3 k (3≤ k < m) t = m− k GkP∩TtP≠ ∅

GmP ≠ ∅
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Proof. 

1. Indeed, for  we have  and ,  

where , so that . 

2. In general, for any  there exist ,  , and , so that  

and  , which means that  

and .  

 

3. This statement follows directly from the above statement 2. 

 

4. Due to Lemma 4, since  for an appropriate , we have   

 

for each . 

      5.    implies that there exists and   

                 such that . 

 Then,  and both  

 are primes that belong to . 

     6.   Due to Lemma 4, and  imply . 

Q.E.D. 

This shows how nonempty Goldbach sets ,     

have been generated: 

, 

 

 

Let ,  ,  where . Let  be prime and  

p∈GkP ′p = θk ( p) = 2 ⋅ k − p∈GkP ′p = p + 2t

t = ′p − p
2

p∈TtP

p∈GkP q∈P q > p t = q − p
2

≥1

q = p + 2 ⋅ t p +θ j ( p)+ 2 ⋅ t = ′p + q = 2 ⋅ k + 2 ⋅ t = 2 ⋅(k + t)

′p ∈Gk+tP q∈Gk+tP

Gj−tP∩TtP≠ ∅ t ≥1 GjP≠ ∅

j ≤ k

GjP∩Tk− jP≠ ∅ p∈GjP t = k − j

q = p + 2 ⋅(k − j)( )∈P
p +θ j ( p)+ 2 ⋅(k − j) = θ j ( p)+ q = 2 ⋅ j + 2 ⋅(k − j) = 2 ⋅ k θ j ( p) and q

GkP ≠ ∅

GkP∩TtP≠ ∅ t = m− k Gk+tP = Gk+(m−k )P = GmP ≠ ∅

G3P,G4P,G5P,… G12P …

G3P = 3{ },G4P = 3,3+ 2{ },G5P = 3,5,5+ 2{ },G6P = 5,5+ 2{ }
G7P = 3,7,7 + 4{ }, G8P = 3,5,11,11+ 2{ },G9P = 5,7,11,11+ 2{ },
G10P = 3,7,13,13+ 4{ },G11P = 3,11,17,17 + 2{ },G12P = 5,7,11,13,17 + 2{ }…

p∈GkP ′p = θk ( p)∈GkP ′p = θk ( p) = 2 ⋅ k − p q q > p
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such that .  

This implies that . 

Since both are primes and , we have   

belong to . For instance, if for some  we have , 

then, due to Lemma 4,  . 

Consider   , that is we start from .  

Then,  and . Thus, we have , 

where .  

Then, due to Lemma 4, for each  there exists such that ,  

which implies . This means that the occurrence of a -prime in a non-empty  

set  implies that  is necessarily non-empty. This provides proliferation  

of  a non-empty sets   steps forward, so that  is not empty for any .  

Starting from   the ‘wave’ of  propagates forward  

recursively as  without gaps, supported by the existence of  ,  

as we demonstrate below. 

Observe that each pair of primes   such that ,  and , 

generates a nonempty set ,  where  and  is  a -prime in . 

Notice that there are at least  -primes in each  for .   

The goal of Lemma 5 is to demonstrate that we can build a nonempty Goldbach set  for 

each ,  given a sequence of nonempty Goldbach sets , due to the  assumption 

of mathematical induction.  

 

We need the following simple Lemmas. 

 

q = p + 2 ⋅ t, where t = q − p
2

GkP ≠ ∅

q +θk ( p) = p + 2 ⋅ t( )+θk ( p) = p +θk ( p)( )+ 2 ⋅ t = 2 ⋅(k + t)
q and θk ( p) q +θk ( p) = 2 ⋅(k + t) q and θk ( p)

Gk+tP ≠ ∅ k (3≤ k ≤ m) Gk−1P∩T2P ≠ ∅

Gk+1P ≠ ∅

p = 3 and q = 5 G3P = 3{ }

t = 5− 3
2

= 1 θ3(3) = 3 q +θk ( p) = 5+ 3= 2 ⋅(3+1) = 8

3 and 5 both belong to G3+1P = G4 = 3,5{ }
GkP ≠ ∅ t ∈! GkP∩TtP ≠ ∅

Gk+tP ≠ ∅ t

GkP Gk+tP

GkP t Gk+tP k

k = 3 and t = 1 Gk -primes

k→∞ t-primes

( p,q) p∈GkP q > p q∈Sm = Im∩P

Gk+tP t = q − p
2

p t GkP

G(2m)−1 t GmP m ≥ 3

GmP

m ≥ 3 GkP{ }3≤k≤m−1
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Lemma 6. 

Let , where .  

For every prime there is  such that .  

Proof.  

Indeed, we can take . Then, since .  

Another possibility is to consider ,  since . 

 Q.E.D. 

 

Lemma 7.  

For all  we have  

.      (8) 

Proof. 

For any , due to Lemma 6, there exists  such that , so that . 

And vice versa, if , then  for some , so that . 

Q.E.D. 

 

Lemma 8. 

Let   for all .  Assuming that , we have . 

Otherwise, due to Lemma 2, if , we have .  Then, for any  the 

equality 

        (9) 

holds true. 

 

Proof. 

Denote .  

Sm = Im∩P Im = [3,2 ⋅m− 3]

p∈Sm k ≤ m p∈GkP

k = p p∈GpP p + p = 2 ⋅ p ≤ 2 ⋅m

k = 3+ p
2

3+ p ≤ 2 ⋅m

m ≥ 3

Sm = GkP =
k=3

m

∪ G (m)P

p∈Sm k ≤ m p∈GkP p∈G (m)P

p∈G (m)P p∈GkP k ≤ m p∈Sm

GkP ≠ ∅ k :3≤ k ≤ m−1 2 ⋅m− 3∈P 2 ⋅m− 3∈GmP ≠ ∅

2 ⋅m− 3≠GmP Sm = Sm−1 m ≥ 3

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP =∅

Ak ,m = GkP + 2 ⋅(m− k)( )
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Then,   . 

Consider  . 

Indeed, due to Lemma 1, we have ( - shift invariance of ). 

This implies that . 

According to formula (8) in Lemma 7, .  Since ,  

if , we have 

, due to the assumption of mathematical 

induction. Then,   implies . 

Q.E.D. 

 

The proof of Lemmas 5 and 8 show a definite connecion between the number of solutions 

to the Goldbach equation in the intervals  and the number  

of  in sets . 

 

                                    3. Diophantine variety of Goldbach sets. 
 

A seqience of Goldbach sets   represents  solutions to the system  

of Goldbach equations  in the intervals   .  

This system is an algebraic variety given by linear equations  ,  

which solutions (if exist) are pairs of prime numbers . 

 Geometrically, each Goldbach set   is a sequence of points with coordinates 

GkP + 2 ⋅(m− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

θm(Ak ,m ) = 2 ⋅m− Ak ,m = 2 ⋅m−GkP − 2 ⋅(m− k) = 2 ⋅ k −GkP = θk (GkP) = GkP

θk (GkP) = GkP θm GkP

θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= θm(Ak ,m )

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm ) = GkP

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm )

Sm−1 = GkP
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
= G (m−1)P Sm = Sm−1

2 ⋅m− 3≠GmP θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= GkP

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm ) = Sm∩θm(Sm ) = GmP

Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm−1 = G

(m−1)P∩Sm−1 =G
(m−1)P ≠ ∅

Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm−1 ≠ ∅ θm Ak ,m

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= GmP ≠ ∅

p + ′p = 2 ⋅m Im = [3,2 ⋅m− 3]

t-primes GkP for k :3≤ k < m

GkP | 3≤ k ≤ m{ }
x + y = 2 ⋅ k | 3≤ k ≤ m{ } Ik = [3,2 ⋅ k − 3]

x + y = 2 ⋅ k 3≤ k ≤ m( )
p, ′p( )∈P2

GkP
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 on the segment of a straight line given by  , , 

symmetrically located on the line with respect to a point , due to invariance 

 , where . See below Fig. 1 and 2 representing  

Diophantine geometry of Goldbach sets, where dots are points with coordinates 

 on the corresponding lines.  

These dots are solutions to the Goldbach equations  .  

The theorem below answers the question how many solutions are in each Golbach set. 

 

Theorem 1. 

A set  of solutions to the Goldbach equation  in primes  

in each inerval  includes a prime  such that both  

are co-primes with , that is , . 

The number of solutions to the Goldbach equation  in primes  

 in each inerval  is equal to the number of  in the set  

such that . 

Proof. 

Consider a quadratic polynomial  for integer valued  and . 

Let a pair of primes  be a solution to the Goldbach equation  in the  

interval .   Obviously, for  , the pair of prime numbers  

are roots of the polynomial . 

Discriminant of  is , where  is a nonnegative integer. 

Observe that   follows .   

Since are not equal prime numbers, the equation  

for an integer  and  implies: ,  

p, ′p( )∈P2 x + y = 2 ⋅ k (x, y)∈[0,2 ⋅ k]

(k,k)

θk GkP( ) = GkP θk (x) = 2k − x = y

p, ′p( )∈P2

x + y = 2 ⋅ k 3≤ k ≤ m( )

GmP p + ′p = 2 ⋅m ( p, ′p )∈P2

Im = [3,2 ⋅m− 3] p < m p and  ′p = θm( p)

m gcd(m, p) = (m, p) = 1 gcd(m,θm( p)) = (m,θm( p)) = 1

p + ′p = 2 ⋅m ( p, ′p )∈P2

Im = [3,2 ⋅m− 3] t-primes GmP

t = ′p − p
2

Pm(x) = x
2 + 2 ⋅m ⋅ x + c m, c x ∈Z

( p, ′p ) p + ′p = 2 ⋅m

Im = [3,2 ⋅m− 3] c = p ⋅ ′p

p, ′p( )∈P2 Pm(x) = x
2 − 2 ⋅m ⋅ x + p ⋅ ′p = x − p( ) ⋅ x − ′p( )

Pm(x) D = 4 ⋅(m2 − p ⋅ ′p ) = 4 ⋅ t2 t

m2 − p ⋅ ′p( ) = t2 (m− t) ⋅(m+ t) = p ⋅ ′p

p and ′p (m− t) ⋅(m+ t) = p ⋅ ′p

t p ≤ ′p m− t = p and m+ t = ′p
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so that . This means that  is a ,  

where . Therefore, we have as many solutions to the equation 

 as there are ,  , in the set .  

Assume now that  , , where  and  is an unknown integer.  

Then the polynomial takes a form: . 

Its discrimimant is . 

The solutions to the equation  are , where . 

For instance, let . Then,  has 2 roots: 

, and they are not included in . Meanwhile, for   

and   we have  with roots , 

so that  and .  Notice that are not coprime numbers,  

while  are coprime.  Denote .  

Then, . 

The equation   

has the following different sets of solutions:  and .  

Since we are solving equation in primes within an interval ,  

the solutions are: , assuming that the numbers 

 are coprime in each pair, that is,  

and .     

Q.E.D. 

 

 

 

t = ′p − p
2

and  ′p = p + 2 ⋅ t p∈GmP t-prime inGmP

t = ′p − p
2

Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅ ′p t-primes t = ′p − p

2
GmP

2 ⋅m = p + q c = p ⋅q p∈P q = 2 ⋅m− p

Pm(x) Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅(2 ⋅m− p)

Dm = 4 ⋅ m
2 − p ⋅(2 ⋅m− p)( ) = 4 ⋅ m2 − 2 ⋅m ⋅ p + p2( ) = 4 ⋅ m− p( )2

Pm(x) = 0 x1,2 = m± (m− p) x1 = p, x2 = 2 ⋅m− p

m = 9, c = 45 P9(x) = x
2 −18x + 45

x1 = 3∈P, x2 = 2 ⋅9− 3= 15∉P G9P m = 9

c = 65 P9(x) = x
2 −18x + 65 x1 = 5∈P, x2 = 2 ⋅9−5= 13∈P

5∈G9P  13∈G9P 3,θ9(3) = 15 and 2 ⋅9 = 18

5, θ9(5) = 13 and 2 ⋅9 = 18 [x]p = mod(x, p)

[Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p

[Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p = [x]p ⋅ [x]p − [2 ⋅m]p( ) = 0

[x]p = 0 [x]p − [2 ⋅m− p]p( ) = 0
Pm(x) = 0 Im = [3,2 ⋅m− 3]

x1 = p∈Sm = Im∩P,  x2 = θm( p) = 2 ⋅m− p∈Sm

m, p( )  and m,θm( p( ) gcd(m, p) = (m, p) = 1

gcd(m,θm( p)) = (m,θm( p)) = 1
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Diophantine Geometry of Goldbach Sets        

      (Fig.1) 

                      
                     Figure 1. 

     (Fig.2) 

    
                   Figure 2. 

Every dot in the above figure denotes a point with coordinates  such that 

  on the line , where . 

GkP  (k = 3,4,…,50)

GkP (k = 3,4,…,40)

p, ′p( )
p + ′p = 2 ⋅ k x + y = 2 ⋅ k 3≤ k ≤ m
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                      3. Recurrent Algorithm generating the infinite sequence  

                          of nonempty Goldbach sets   for all natural . 

 

 

We apply now one of the most fundamental and simple proof techniques in mathematics 

known as mathematical induction [3]. Let  denote a statement about a natural  

number , and let be a fixed number.  A proof that is true for all  by  

induction requires two steps: 

Basis step: Verify that is true. 

Induction step: Assuming that is true for all  , 

verify that is true. 

Theorem 2. 

: For all integer , the set  of solutions to the equation ,   

 , in prime numbers is not empty.  

The can be equivalently stated as:   for all integers . 

Proof. 

(1) Basic step.  

As we know [2], is true for all   up to .  

Let  Then . 

(2) Induction step. 

Assume that  for all integer . 

Let .  In Lemma 2 we proved (3) that .    

GmP ≠ ∅ m ≥ 3

Prop(m)

m m0 Prop(m) m ≥ m0

Prop(m0 )

Prop(k) k such that m0 ≤ k ≤ m

Prop(m+1)

Prop(m) m ≥ 3 GmP n+ ′n = 2m

n, ′n( )∈P2

Prop(m) GmP = θm(Sm )∩ Sm ≠ ∅ m ≥ 3

Prop(m) m M = 4 ⋅1018

m0 = 3. 2 ⋅3= 6 = 3+ 3

GkP = θk (Sk )∩ Sk ≠ ∅ k :m0 ≤ k ≤ m

k = m+1 Sm =
Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪
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Then, we have: 



In thе case  , the formula (5) implies . 

We can also confirm the last equality directly, because   

implies that  , so that . 

Consider now a general situation which includes the case .  If ,  

 then we have , and due to Lemma 8, ,  

and, due to Lemma 8, we have . This means that there exists   

such that . Therefore, . 

According to the induction assumption,  for all ,  

that is . This implies that .  Moreover, due to Lemma 8, we have  

a recurrent formula (9) for Goldbach sets, which states that 

                      (10) 

Q.E.D. 

 

  4. An Algorithm generating Goldbach sets. 

 

Given integer , this algorithm will find all pairs of prime numbers  

such that . The algorithm works recursively and generates ,  

starting from  , by using the sequence up to . 

1. Since  belongs to the interval of integers , we verify first  

whether . 

If  , then  and we set . Otherwise, . 

2. Then we assign ,  and calculate the subsets of primes  

Im+1 = [3,2 ⋅(m+1)− 3]= [3,2 ⋅m−1] and  Sm+1 =
Sm∪ 2m−1{ } if  (2m -1)∈P
Sm  if  (2m -1)∉P

⎧
⎨
⎪

⎩⎪

(2m -1)∈P Gm+1P = θm+1 Sm( )∩ Sm( )∪ 3{ } ≠ ∅

3+ (2m−1) = 2(m+1)

3∈Gm+1  and  (2 ⋅m−1)∈Gm+1  if  (2 ⋅m−1)∈P Gm+1P ≠ ∅

(2 ⋅m−1)∉P (2 ⋅m−1) ≠ P

Sm+1 = Sm Gm+1P ⊆ Sm+1 = Sm = GkP = G
(m)P

k=3

m

∪

Gm+1P∩G
(m)P ≠ ∅ k ≤ m

Gm+1P∩GkP ≠ ∅ Gm+1P ≠ ∅

GkP ≠ ∅ k (3≤ k < m)

G (m)P ≠ ∅ Gm+1P ≠ ∅

GkP + 2 ⋅(m+1− k)( )∩ Sm⎡⎣ ⎤⎦
k=3

m

∪ = Gm+1P ≠ ∅ k = 3,4,5,…,m

m ≥ 3 ( p, ′p )

p + ′p = 2 ⋅m GmP

G3P = 3{ } G3P,G4P,G5P…,GkP k = m−1

GmP Im = [3,2 ⋅m− 3]

(2 ⋅m− 3)∈P

(2 ⋅m− 3)∈P 3,2 ⋅m− 3{ }⊆ GmP G3 = 3{ } G3P =∅

t = m− k tGk = Gk + 2 ⋅ t
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 (all in ) to form the set ,  

by repeating these calculations in the cycle for . 

3. Finally, we obtain  as a union of sets 

                              .  

 

See in APPENDIX the text of R-script and data lists of the calculated  for . 

 

An example below illustrates the above statement with some computer calculations.  

In this example we consider sets .   

Notice that many of those sets can be calculated based on the rule that if a prime   

has a twin prime , that is  and , then . 

For example, terms in  are calculated by this rule by using terms in . 

Meanwhile, terms in  are calculated by using terms in  for  based on the general 

rule: if , then  implies   

(Lemma 3):  . 

The calculations below illustrate thе conclusion of the Theorem  

(see the data referred in Example 2). We would like to verify that , by using that 

. Consider . If we choose  it would not 

work with , because . We try then .  

We have  and . Then,   

should belong (due to Lemma 3) to . Therefore,  .  

Thus, we have  , which means that . Notice that in this instance  

, which allows us to 

establish that  , by using the fact that . 

 

pr_tGk = tGk ∩P t-primes tGk Gk+1 = Gk ∪ pr_tGk

k = 3,4,…,m−1

Gm = GmP

GkP + 2 ⋅(m− k)( )∩ Sm−1⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP ≠ ∅

GkP k :3≤ k ≤ m

GmP = θm(Sm )∩ Sm  for m  from 105  to 110

p∈GkP

( p + 2)∈P t = 1 p∈T1P p + 2( )∈Gk+1P
G106P G105P

G110P G108P t = 2

p < k   and  p∈GkP∩TtP p∈P and p + 2 ⋅ t ∈P ( p + 2 ⋅ t)∈Gk+tP

23+197 = (19+ 2 ⋅2)+197 = 220 = 2 ⋅110,  since 19+197 = 216 = 2 ⋅108

G110P ≠ ∅

GkP ≠ ∅ for all k ≤110 G110P (m = 110, 2 ⋅m = 220) t = 1

G109P G109P∩T1S109 =∅ G108P and t = 2

G108P∩T2S108 ≠ ∅ p = 19∈G108P∩T2S108 p + 2 ⋅ t = 19+ 2 ⋅2 = 23

G110P 2 ⋅110− 23= 197∈G110P

23+197 = 2 ⋅110 G110P ≠ ∅

k = 109, k +1− t = 109+1− 2 = 108 and  (k +1− t)+ t = 108+ 2 = 110

G(k+1−t )+t = G110P ≠ ∅ G108P∩T2S108 ≠ ∅
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Example 1. 

   

Thus, we can predict that without explicit calculation of this set, just by using the 

previously calculated sets  By using the algorithm described in Lemma 5, we 

find that , but , since, for instance, , 

and . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Sets GmP = θm(Sm )∩ Sm  for  m from 105 to 110

 G105P =
11  13  17  19  29  31  37  43  47  53  59  61  71  73  
79  83  97 101103107 109 113 127 131 137 139149 
151 157 163 167 173 179 181 191 193 197 199

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  G106P = 13  19  31  61  73 103 109 139 151 181 193 199{ }   

  G107P = 3  17  23  41  47  83 101 107 113 131 167 173 191 197 211{ }   

 G108P =
 5  17  19  23  37  43  53  59  67  79  89 103 107 109
 113 127 137 149 157 163 173 179 193 197 199 211 

⎧
⎨
⎩

⎫
⎬
⎭

 

 G109P = 7  19  37  61  67  79 109 139 151 157 181 199 211{ }
 G110P =

23  29  41  47  53  71  83  89 107 113
131 137 149 167 173 179 191 197
⎧
⎨
⎩

⎫
⎬
⎭

 

G110P ≠ ∅

G109P,G108P,G107P,…

G109P∩T1P =∅ G108P∩T2P ≠ ∅ 19∈G108P∩T2P

19+ 2 ⋅2 = 23∈G110P
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 Conclusion 

 

I tried to follow the ‘natural logic’ of the problem, by being more exploratory rather than  

artificially creative and used a computer as my permanent companion and advisor.  

As to simplicity of the used methods, I recall to the point the well-known Poincaré  

Recurrence Theorem [7], which proof takes only a few lines of the text and uses mainly  

elementary set-theoretical operations. Meanwhile the significance of the Poincaré  

Recurrence Theorem can be hardly overestimated.  

Notice that the proof in Lemma 5 that there exists  such that , 

which immediately implies that for all is not constructive,  

since it does not provide a formula but outlines an algorithm for finding the number .  

This is a typical “existence” theorem. Notice, by the way, that the proof of the famous  

Poincaré recurrence theorem is not constructive as well, since it does not provide a number  

 of iterations, after which the recurrence occurs. The Poincaré theorem states only  

that such number  exists.  

Meanwhile the proof in Lemma 8 is quite constructive since it is based on the recurrent formula 

(10) given above (see the calculated examples of Goldbach set sequences in the Appendix), 

which allows potentially unlimited computer calculations of consecutive nonempty Goldbach 

sets  for any . 

 

I would like to express here my acknowledgement to the peer-reviewer Dr. Dmitry Kleinbock  

for his critical and thoughtful reading of this paper and especially of my paper with the probabilistic 

proof of Strong Goldbach Conjecture [9]. The spirit of friendly interaction in our numerous 

discussions was very crucial for me. 

 

 

 

 

 

 

t ≥1 Gk+1−tP∩TtP ≠ ∅

Gk+1P≠ ∅ k (3≤ k ≤ m)

t

n

n

GkP | 3≤ k ≤ m{ } m ≥ 3
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                                            APPENDIX 

 

                 The text of R-script for computer realization of Recursive Algorithm 

                       generating sequences of Goldbach sets for  

 
                              

GkP k = 3,4,5,…,m

# Function GenG(m) generates sets G(m) of Goldbach primes such that p + p' =
2m (3 <= m <= 2m-3)
# for each natural m (3 <= m <= 2m-3). This function is based on Lemma3
algorithm: 
# G(m) includes each p + 2t if p is a t-prime in the Goldbach set G(k) (3 <= k
<= m-1) for t = m-k.  
# Thus, G(m) is a inion of subsets tG(k) of t-primes in G(K) such that 
# tG(k) = {p + 2t| p is in G(k), p + 2t is prime for each t = m - k}. 
# Notice that G(m) is recurrently generated from the Godbach sets G(k), where
3 <= k <= m-1,
# starting from G(3) = {3} (3+3=6). This confirms by the principle of
mathematical induction
# non-emptiness of Goldbach sets G(m) for all natural m = 3,4,5,... (the
Goldbach Conjucture).

# Needed packages: 'numbers' and 'sets'. Needed function: GmR.
# Created by GMS
# Date: 06.30.21.
#
GenG <- function(m) {
 if (isPrime(2*m-3)){
   Gm <- 3
 }
  else {
    Gm <- NULL
  }
  for (k in (3: m-1)) {
    Gk <- Gm(k)
    t <- m - k
    tGk <- Gk + 2*t
    pr_tGk <- tGk[isPrime(tGk)]
    Gm <- union(Gm, pr_tGk)
  }
  return(sort(Gm))
}
  
#source('~/Documents/R/Number Theory/GenG.R')   
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                                      Data lists of calculated  for  

  

3 3 

4 3 5 

5 3 5 7 

6 5 7 

7 3  7 11 

8 3  5 11 13 

9 5  7  11 13 

10 3  7 13 17 

11 3  5 11 17 19 

12 5 7 11 13 17 19 

13 3 7 13 19 23 

14 5 11 17 23 

15 7 11 13 17 19 23 

16 3 13 19 29 

17 3 5 11 17 23 29 31 

18 5 7 13 19 23 29 31 

19 7 19 31 

20 3 11 17 23 29 37 

21 5 11 13 19 23 29 31 37 

22 3 7 13 31 37 41 

23 3 5 17 23 29 41 43 

24 5 7 11 17 19 29 31 37 41 43 

25 3 7 13 19 31 37 43 47 

26 5 11 23 29 41 47 

27 7 11 13 17 23 31 37 41 43 47 

28 3 13 19 37 43 53 

29 5 11 17 29 41 47 53 

30 7 13 17 19 23 29 31 37 41 43 47 53 

GkP k = 3,4,5,…,m

m Goldbach sets GmP (m = 3,4,5,…,43)
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31 3 19 31 43 59 

32 3 5 11 17 23 41 47 53 59 61 

33 5 7 13 19 23 29 37 43 47 53 59 61 

34 7 31 37 61 

35 3 11 17 23 29 41 47 53 59 67 

36 5 11 13 19 29 31 41 43 53 59 61 67 

37 3 7 13 31 37 43 61 67 71 

38 3 5 17 23 29 47 53 59 71 73  

39 5 7 11 17 19 31 37 41 47 59 61 71 73 

40 7 13 19 37 43 61 67 73 

41 3 11 23 29 41 53 59 71 79 

42 5 11 13 17 23 31 37 41 43 47 53 61 67 71 73 79 

43 3 7 13 19 43 67 73 79 83 

 

  

100 3 7 19 37 43 61 73 97 103 127 139 157 163 181 193 197 

101 3 5 11 23 29 53 71 87 101 113 149 173 179 191 197 199 

102 5 7 11 13 23 31 37 41 47 53 67 73 97 101 103 107 131 137 151 157 163 167 173 191 

193 197 199 

103 7 13 43 67 79 97 103 109 127 139 163 193 199 

104 11 17 29 41 59 71 101 107 137 149 167 179 191 197 

105 11  13  17  19  29  31  37  43  47  53  59  61  71  73  79  83  97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 

106 13 19 31 61 73 103 109 139 151 181 193 199 

107 3 17 23 41 47 83 101 107 113 131 167 173 191 197 211 

108 5 17 19 23 37 43 53 59 67 79 103 107 109 113 127 137 149 157 163 173 179 193  

197 199 211 

109 7 19 37 61 67 79 109 139 151 157 181 199 211 

110 23 29 41 53 71 83 89 107 113 131 137 149 167 173 179 191 197 

111 11  23  29  31  41  43  59  71  73  83 109 113 139 149 151 163 179 181 191  

m Goldbach sets GmP (m = 100,101,…,128)
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193 199 211 

112 13  31  43  61  67  73  97 127 151 157 163 181 193 211 

113 3  29  47  53  59  89 113 137 167 173 179 197 223 

114    5  17  29  31  37  47  61  71  79  89  97 101 127 131 139 149 157 167 181 191 197 

199 211 223 

115 3   7  19  31  37  67  73  79 103 127 151 157 163 193 199 211 223 227 

116 3  5  41  53  59  83 101 131 149 173 179 191 227 229 

117 5   7  11  23  37  41  43  53  61  67  71  83  97 103 107 127 131 137 151 163 167 173 

181 191193 197 211 223 227 229 

118 3   7  13  37  43  73  79  97 109 127 139 157 163 193 199 223 229 233 

119 5  11  41  47  59  71  89 101 107 131 137 149 167 179 191 197 227 233 

120 7  11  13  17  29  41  43  47  59  61  67  73  83  89 101 103 109 113 127 131 137 139 

151 157 167 173 179 181 193 197 199 211 223 227 229 233 

121 3  13  19  31  43  61  79 103 139 163 181 199 211 223 229 239 

122 3   5  11  17  47  53  71 107 113 131 137 173 191 197 227 233 239 241 

123 5   7  13  17  19  23  47  53  67  73  79  83  89  97 107 109 137 139 149 157 163 167 

173 179193 199 223 227 229 233 239 241 

124 7  19  37  67  97 109 139 151 181 211 229 241 

125 11  17  23  53  59  71  83 101 113 137 149 167 179 191 197 227 233 239 

126 11  13  19  23  29  41  53  59  61  71  73  79  89 101 103 113 139 149 151 163 173 179 

181 191193 199 211 223 229 233 239 241 

127 3  13  31  43  61  73  97 103 127 151 157 181 193 211 223 241 251 

128 5  17  23  29  59  83  89 107 149 167 173 197 227 233 239 251 
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