Structure of Polynomial Equations and Resolution of Polynomial Equations with Rational Coefficients

Juan Jorge Isaac Lopez

pandealocha1@gmail.com

Abstract

Relationships between the coefficients of polynomial equations and the parameters that define their roots are stablished. A process is made to resolve polynomial equations with rational coefficients.

Contents

1 Introduction

2 Theory

3 Application
4 Examples

1 Introduction

The Ruffini-Abel theorem says that polynomial equations of degree 5 or higher cannot be solved by algebraic operations and radical solving. But it is possible to solve polynomial equations of any degree with a finite procedure using identities of the coefficients of the equation as a function of parameters that define the roots of the equation. These identities and the resolution procedure are proposed here.

2 Theory

For: $F_{0} x^{n}-F_{1} x^{n-1}+F_{2} x^{n-2}-F_{3} x^{n-3}+F_{4} x^{n-4}-\ldots \pm F_{n-1} x^{n-(n-1)} \pm F_{n}=0$ (Equation 1)

With roots in:

$$
x_{1}=\frac{b_{1}}{c_{1}}, x_{2}=\frac{b_{2}}{c_{2}}, x_{3}=\frac{b_{3}}{c_{3}}, \ldots, x_{n}=\frac{b_{n}}{c_{n}}
$$

$c_{1}, c_{2}, c_{3}, \ldots, c_{n} \in \mathbb{C}$
$b_{1}, b_{2}, b_{3}, \ldots, b_{n} \in \mathbb{C}$
It holds that:
$F_{0}=c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n}$

$$
\begin{aligned}
& \quad F_{1}=b_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n}+c_{1} b_{2} c_{3} c_{4} c_{5} \ldots c_{n}+c_{1} c_{2} b_{3} c_{4} c_{5} \ldots c_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-2} b_{n-1} c_{n}+ \\
& c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-1} b_{n} \\
& \quad F_{2}=b_{1} b_{2} c_{3} c_{4} c_{5} \ldots c_{n}+b_{1} c_{2} b_{3} c_{4} c_{5} \ldots c_{n}+b_{1} c_{2} c_{3} b_{4} c_{5} \ldots c_{n}+\ldots+b_{1} c_{2} c_{3} c_{4} \ldots c_{n-1} b_{n}+ \\
& c_{1} b_{2} b_{3} c_{4} c_{5} \ldots c_{n}+c_{1} b_{2} c_{3} b_{4} c_{5} \ldots c_{n}+\ldots+c_{1} b_{2} c_{3} c_{4} \ldots c_{n-1} b_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} \ldots c_{n-2} b_{n-1} b_{n} \\
& \quad F_{3}=b_{1} b_{2} b_{3} c_{4} c_{5} c_{6} \ldots c_{n}+b_{1} b_{2} c_{3} b_{4} c_{5} c_{6} \ldots c_{n}+b_{1} b_{2} c_{3} c_{4} b_{5} c_{6} \ldots c_{n}+\ldots+ \\
& b_{1} b_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+b_{1} c_{2} b_{3} b_{4} c_{5} c_{6} \ldots c_{n}+\ldots+b_{1} c_{2} b_{3} c_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+b_{1} c_{2} c_{3} b_{4} b_{5} c_{6} \ldots c_{n}+ \\
& \ldots+b_{1} c_{2} c_{3} b_{4} c_{5} c_{6} \ldots c_{n-1} b_{n}+\ldots+b_{1} c_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-2} b_{n-1} b_{n}+c_{1} b_{2} b_{3} b_{4} c_{5} c_{6} \ldots c_{n}+ \\
& \ldots+c_{1} b_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-2} b_{n-1} b_{n}+\ldots+c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} \ldots c_{n-3} b_{n-2} b_{n-1} b_{n} \\
& \quad \ldots F_{n-1}=c_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n}+b_{1} c_{2} b_{3} b_{4} b_{5} \ldots b_{n}+b_{1} b_{2} c_{3} b_{5} \ldots b_{n}+\ldots+b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n-2} c_{n-1} b_{n}+ \\
& b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n-1} c_{n} \\
& \quad F_{n}=b_{1} b_{2} b_{3} b_{4} b_{5} \ldots b_{n}
\end{aligned}
$$

It also holds that:

$$
\left(c_{1}+b_{1}\right)\left(c_{2}+b_{2}\right)\left(c_{3}+b_{3}\right) \ldots\left(c_{n}+b_{n}\right)=\sum_{0}^{n} F_{i}
$$

(Equation 2)

If

$$
\frac{F_{0} x^{n}-F x^{n-1}+F_{2} x^{n-2}-\ldots \pm F_{n-1} x^{n-(n-1)} \pm F_{n}}{G_{0} x^{k}-G x^{k-1}+G_{2} x^{k-2}-\ldots \pm G_{k-1} x^{k-(k-1)} \pm G_{k}}=\prod_{1}^{m=n-k}\left(c_{m} x-b_{m}\right)
$$

Then

$$
\prod_{1}^{m=n-k}\left(c_{m}+b_{m}\right)=\frac{\sum_{0}^{n} F_{i}}{\sum_{0}^{k} G_{i}}
$$

3 Application

Resolution of grade n polynomial equations whose coefficients are rational numbers. The roots of equation 1 are calculated through the $\left(c_{1}, b_{1}\right),\left(c_{2}, b_{2}\right), \ldots$, $\left(c_{n}, b_{n}\right)$ pair of values that check with equation 2 or the $F_{0}, F_{1}, F_{2}, F_{3}, \ldots, F_{n-1}$, F_{n} identities, in a finite process that starts with candidates obtained through the decomposition in n multiples (positive or negative) of the F_{0} and F_{n} values.

To resolve equation 1: F_{0}, F_{n} and $\sum_{0}^{n} F_{i}$ are decomposed into prime factors. With the prime factors of F_{0} it is calculated all sets of n elements whose product would be equal to F_{0} (which we will call sets c). With the prime factors of F_{n} it is calculated all sets of n elements whose product would be equal to F_{n} (which we will call sets b). With the prime factors of $\sum_{0}^{n} F_{i}$ it is calculated all sets of n elements whose product would be equal to $\sum_{0}^{n} F_{i}$ (which we will call sets $\mathrm{c}+\mathrm{b}$).

Then a set c and a set b are chosen. Each element of each permutation (n of n) of the set c is assigned a different nomination from among $c_{1}, c_{2}, c_{3}, \ldots$, c_{n}, always in the same sequence, achieving n ! configurations of $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$
values. Each element of the set b is assigned a different nomination from among $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$, then a $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ configuration and the $b_{1}, b_{2}, b_{3}, \ldots$, b_{n} values are chosen, and the values of $c_{1}+b_{1}, c_{2}+b_{2}, c_{3}+b_{3}, \ldots, c_{n}+b_{n}$ are obtained. It must be corroborated if these values coincide with the values of any of the sets $\mathrm{c}+\mathrm{b}$; if there is no coincidence, the operation repeats with a different $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ configuration, until a coincidence is found or there are no more configurations available. Then if there is still no coincidence the operation repeats with a different pair of c and b sets, until there is a coincidence. Then each value of x is calculated using the $\left(c_{1}, b_{1}\right),\left(c_{2}, b_{2}\right), \ldots,\left(c_{n}, b_{n}\right)$ pair of values for which there was coincidence. If there is no coincidence with all possible pairs of sets c and sets b , then the Equation has complex roots $Z+Y i$ with $Y \neq 0$.

Another way to calculate equation 1: $\mathrm{A} c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ configuration and the $b_{1}, b_{2}, b_{3}, \ldots, b_{n}$ values are chosen, and the values of $F_{1}, F_{2}, F_{3}, \ldots, F_{n-1}$ are calculated. It must be corroborated if the values of $F_{1}, F_{2}, F_{3}, \ldots, F_{n-1}$ match those in equation 1. If there is no coincidence, the operation repeats with a different $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ configuration, until a coincidence is found or there are no more configurations available. Then if there is still no coincidence the operation repeats with a different pair of c and b sets, until there is a coincidence. Then each value of x is calculated using the $\left(c_{1}, b_{1}\right),\left(c_{2}, b_{2}\right), \ldots,\left(c_{n}, b_{n}\right)$ pair of values for which there was coincidence. If there is no coincidence with all possible pairs of sets c and sets b, then the Equation has complex roots $Z+Y i$ with $Y \neq 0$.

4 Examples

Example 1:

$x^{3}-6,5 x^{2}+13,5 x-9=0$
$2 x^{3}-13 x^{2}+27 x-18=0$
$F_{0}=2 ; F_{0}=1 * 1 * 2 ; F_{0}=-1 * 1 *-2 ; \ldots ; F_{3}=18(2,3,3) ; F_{3}=2 * 3 * 3 ; F_{3}=$ $1 * 6 * 3 ; F_{3}=1 * 2 * 9 ; F_{3}=-2 *-3 * 3 ; \ldots ; \sum_{0}^{3} F_{i}=60(2,2,3,5) ; \sum_{0}^{3} F_{i}=$ $4 * 3 * 5 ; \sum_{0}^{3} F_{i}=1 * 4 * 15 ; \sum_{0}^{3} F_{i}=1 * 12 * 5 ; \sum_{0}^{3} F_{i}=1 * 6 * 10 ; \sum_{0}^{3} F_{i}=$ $2 * 6 * 5 ; \sum_{0}^{3} F_{i}=1 * 2 * 30 ; \sum_{0}^{3} F_{i}=2 * 3 * 10 ; \sum_{0}^{3} F_{i}=1 * 3 * 20 ; \ldots$

The values $c_{1}=1, c_{2}=1, c_{3}=2, b_{1}=2, b_{2}=3, b_{3}=3$ that correspond to $F_{0}=1 * 1 * 2$ and $F_{3}=2 * 3 * 3$, are corroborated for $\sum_{0}^{3} F_{i}=4 * 3 * 5$. Then:
$x_{1}=b_{1} / c_{1}=2 / 1=2 ; x_{2}=b_{2} / c_{2}=3 / 1=3 ; x_{3}=b_{3} / c_{3}=3 / 2=1,5$

Example 2:

$x^{5}-19 x^{4}+133 x^{3}-421 x^{2}+586 x-280=0$
Being $n=5$
$F_{0}=c_{1} c_{2} c_{3} c_{4} c_{5}$
$F_{1}=b_{1} c_{2} c_{3} c_{4} c_{5}+c_{1} b_{2} c_{3} c_{4} c_{5}+c_{1} c_{2} b_{3} c_{4} c_{5}+c_{1} c_{2} c_{3} b_{4} c_{5}+c_{1} c_{2} c_{3} c_{4} b_{5}$
$F_{2}=b_{1} b_{2} c_{3} c_{4} c_{5}+b_{1} c_{2} b_{3} c_{4} c_{5}+b_{1} c_{2} c_{3} b_{4} c_{5}+b_{1} c_{2} c_{3} c_{4} b_{5}+c_{1} b_{2} b_{3} c_{4} c_{5}+c_{1} b_{2} c_{3} b_{4} c_{5}+$ $c_{1} b_{2} c_{3} c_{4} b_{5}+c_{1} c_{2} b_{3} b_{4} c_{5}+c_{1} c_{2} b_{3} c_{4} b_{5}+c_{1} c_{2} c_{3} b_{4} b_{5}$

$$
\begin{aligned}
& F_{3}=b_{1} b_{2} b_{3} c_{4} c_{5}+b_{1} b_{2} c_{3} b_{4} c_{5}+b_{1} b_{2} c_{3} c_{4} b_{5}+b_{1} c_{2} b_{3} b_{4} c_{5}+b_{1} c_{2} b_{3} c_{4} b_{5}+b_{1} c_{2} c_{3} b_{4} b_{5}+ \\
& c_{1} b_{2} b_{3} b_{4} c_{5}+c_{1} b_{2} b_{3} c_{4} b_{5}+c_{1} b_{2} c_{3} b_{4} b_{5}+c_{1} c_{2} b_{3} b_{4} b_{5} \\
& \quad F_{4}=b_{1} b_{2} b_{3} b_{4} c_{5}+b_{1} b_{2} b_{3} c_{4} b_{5}+b_{1} b_{2} c_{3} b_{4} b_{5}+b_{1} c_{2} b_{3} b_{4} b_{5}+c_{1} b_{2} b_{3} b_{4} b_{5} \\
& \quad F_{5}=b_{1} b_{2} b_{3} b_{4} b_{5} \\
& \quad F_{0}=1 ; F_{0}=1 * 1 * 1 * 1 * 1 ; \ldots ; F_{5}=280(2,2,2,5,7) ; F_{5}=1 * 2 * 4 * 5 * 7 ; F_{5}= \\
& -1 * 2 * 4 * 5 *-7 ; \ldots ; \sum_{0}^{5} F_{i}=1440(2,2,2,2,2,3,3,5) ; \sum_{0}^{5} F_{i}=1 * 2 * 4 * 12 * \\
& 15 ; \sum_{0}^{5} F_{i}=2 * 8 * 6 * 3 * 5 ; \ldots
\end{aligned}
$$

The values $c_{1}=1, c_{2}=1, c_{3}=1, c_{4}=1, c_{5}=1, b_{1}=1, b_{2}=2, b_{3}=4, b_{4}=$ $5, b_{5}=7$ that correspond to $F_{0}=1 * 1 * 1 * 1 * 1$ and $F_{5}=1 * 2 * 4 * 5 * 7$, corroborates the $F_{1}, F_{2}, F_{3}, F_{4}$ values according to the proposed formulas. Then:
$x_{1}=b_{1} / c_{1}=1 / 1=1 ; x_{2}=b_{2} / c_{2}=2 / 1=2 ; x_{3}=b_{3} / c_{3}=4 / 1=4 ;$ $x_{4}=b_{4} / c_{4}=5 / 1=5 ; x_{5}=b_{5} / c_{5}=7 / 1=7$

Also, the values $c_{1}=1, c_{2}=1, c_{3}=1, c_{4}=1, c_{5}=1, b_{1}=1, b_{2}=2, b_{3}=$ $4, b_{4}=5, b_{5}=7$ that correspond to $F_{0}=1 * 1 * 1 * 1 * 1$ and $F_{5}=1 * 2 * 4 * 5 * 7$ are corroborated for $\sum_{0}^{5} F_{i}=2 * 8 * 6 * 3 * 5$

