
Structure of Polynomial Equations and Resolution of Polynomial

Equations with Rational Coe�cients

Juan Jorge Isaac Lopez
pandealocha1@gmail.com

Abstract

Relationships between the coe�cients of polynomial equations and the pa-
rameters that de�ne their roots are stablished. A process is made to resolve
polynomial equations with rational coe�cients.
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1 Introduction

The Ru�ni-Abel theorem says that polynomial equations of degree 5 or
higher cannot be solved by algebraic operations and radical solving. But it is
possible to solve polynomial equations of any degree with a �nite procedure us-
ing identities of the coe�cients of the equation as a function of parameters that
de�ne the roots of the equation. These identities and the resolution procedure
are proposed here.

2 Theory

For: F0x
n−F1x

n�1+F2x
n�2−F3x

n�3+F4x
n�4− . . .±Fn�1x

n�(n�1)±Fn = 0
(Equation 1)

With roots in:

x1 =
b1
c1

, x2 =
b2
c2

, x3 =
b3
c3

, . . . , xn =
bn
cn

c1, c2, c3, . . . , cn ∈C
b1, b2, b3, . . . , bn ∈C

It holds that:
F0 = c1c2c3c4c5 . . . cn
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F1 = b1c2c3c4c5 . . . cn+c1b2c3c4c5 . . . cn+c1c2b3c4c5 . . . cn+. . .+c1c2c3c4c5 . . . cn−2bn−1cn+
c1c2c3c4c5 . . . .cn−1bn

F2 = b1b2c3c4c5 . . . cn+b1c2b3c4c5 . . . cn+b1c2c3b4c5 . . . cn+. . .+b1c2c3c4 . . . cn−1bn+
c1b2b3c4c5 . . . cn+c1b2c3b4c5 . . . cn+. . .+c1b2c3c4 . . . cn−1bn+. . .+c1c2c3c4c5 . . . cn−2bn−1bn

F3 = b1b2b3c4c5c6 . . . cn + b1b2c3b4c5c6 . . . cn + b1b2c3c4b5c6 . . . cn + . . . +
b1b2c3c4c5c6 . . . cn−1bn+b1c2b3b4c5c6 . . . cn+. . .+b1c2b3c4c5c6 . . . cn−1bn+b1c2c3b4b5c6 . . . cn+
. . .+b1c2c3b4c5c6 . . . cn−1bn+. . .+b1c2c3c4c5c6 . . . cn−2bn−1bn+c1b2b3b4c5c6 . . . cn+
. . .+ c1b2c3c4c5c6 . . . cn−2bn−1bn + . . .+ c1c2c3c4c5c6 . . . cn−3bn−2bn−1bn

. . .Fn−1 = c1b2b3b4b5 . . . bn+b1c2b3b4b5 . . . bn+b1b2c3b4b5 . . . bn+. . .+b1b2b3b4b5 . . . bn−2cn−1bn+
b1b2b3b4b5 . . . bn−1cn

Fn = b1b2b3b4b5 . . . bn

It also holds that:

(c1 + b1)(c2 + b2)(c3 + b3) . . . (cn + bn) =

n∑
0

Fi

(Equation 2)

If

F0x
n − Fxn�1 + F2x

n�2 − . . .± Fn�1x
n�(n�1) ± Fn

G0xk −Gxk�1 +G2xk−2 − . . .±Gk�1xk�(k�1) ±Gk
=

∏m=n−k

1
(cmx− bm)

Then ∏m=n−k

1
(cm + bm) =

∑n
0 Fi∑k
0 Gi

3 Application

Resolution of grade n polynomial equations whose coe�cients are rational
numbers. The roots of equation 1 are calculated through the (c1, b1), (c2, b2),. . .,
(cn, bn) pair of values that check with equation 2 or the F0, F1, F2, F3,. . ., Fn−1,
Fn identities, in a �nite process that starts with candidates obtained through
the decomposition in n multiples (positive or negative) of the F0 and Fn values.

To resolve equation 1: F0, Fn and
∑n

0 Fi are decomposed into prime factors.
With the prime factors of F0 it is calculated all sets of n elements whose product
would be equal to F0 (which we will call sets c). With the prime factors of Fn it
is calculated all sets of n elements whose product would be equal to Fn (which
we will call sets b). With the prime factors of

∑n
0 Fi it is calculated all sets of n

elements whose product would be equal to
∑n

0 Fi (which we will call sets c+b).

Then a set c and a set b are chosen. Each element of each permutation (n
of n) of the set c is assigned a di�erent nomination from among c1, c2, c3,. . .,
cn, always in the same sequence, achieving n! con�gurations of c1, c2, c3,. . ., cn
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values. Each element of the set b is assigned a di�erent nomination from among
b1, b2, b3,. . ., bn, then a c1, c2, c3,. . ., cn con�guration and the b1, b2, b3,. . .,
bn values are chosen, and the values of c1 + b1, c2 + b2, c3 + b3,. . ., cn + bn are
obtained. It must be corroborated if these values coincide with the values of any
of the sets c+b; if there is no coincidence, the operation repeats with a di�erent
c1, c2, c3,. . ., cn con�guration, until a coincidence is found or there are no
more con�gurations available. Then if there is still no coincidence the operation
repeats with a di�erent pair of c and b sets, until there is a coincidence. Then
each value of x is calculated using the (c1, b1), (c2, b2),. . ., (cn, bn) pair of values
for which there was coincidence. If there is no coincidence with all possible pairs
of sets c and sets b, then the Equation has complex roots Z + Y i with Y 6= 0.

Another way to calculate equation 1: A c1, c2, c3,. . ., cn con�guration and
the b1, b2, b3,. . ., bn values are chosen, and the values of F1, F2, F3,. . ., Fn−1 are
calculated. It must be corroborated if the values of F1, F2, F3,. . ., Fn−1 match
those in equation 1. If there is no coincidence, the operation repeats with a dif-
ferent c1, c2, c3,. . ., cn con�guration, until a coincidence is found or there are no
more con�gurations available. Then if there is still no coincidence the operation
repeats with a di�erent pair of c and b sets, until there is a coincidence. Then
each value of x is calculated using the (c1, b1), (c2, b2),. . ., (cn, bn) pair of values
for which there was coincidence. If there is no coincidence with all possible pairs
of sets c and sets b, then the Equation has complex roots Z + Y i with Y 6= 0.

4 Examples

Example 1:

x3 − 6, 5x2 + 13, 5x− 9 = 0
2x3 − 13x2 + 27x− 18 = 0

F0 = 2;F0 = 1∗1∗2;F0 = −1∗1∗−2; . . . ;F3 = 18(2, 3, 3);F3 = 2∗3∗3;F3 =

1 ∗ 6 ∗ 3;F3 = 1 ∗ 2 ∗ 9;F3 = −2 ∗ −3 ∗ 3; . . . ;
∑3

0 Fi = 60(2, 2, 3, 5);
∑3

0 Fi =

4 ∗ 3 ∗ 5;
∑3

0 Fi = 1 ∗ 4 ∗ 15;
∑3

0 Fi = 1 ∗ 12 ∗ 5;
∑3

0 Fi = 1 ∗ 6 ∗ 10;
∑3

0 Fi =

2 ∗ 6 ∗ 5;
∑3

0 Fi = 1 ∗ 2 ∗ 30;
∑3

0 Fi = 2 ∗ 3 ∗ 10;
∑3

0 Fi = 1 ∗ 3 ∗ 20; . . .

The values c1 = 1, c2 = 1, c3 = 2, b1 = 2, b2 = 3, b3 = 3 that correspond to
F0 = 1 ∗ 1 ∗ 2 and F3 = 2 ∗ 3 ∗ 3, are corroborated for

∑3
0 Fi = 4 ∗ 3 ∗ 5. Then:

x1 = b1/c1 = 2/1 = 2; x2 = b2/c2 = 3/1 = 3; x3 = b3/c3 = 3/2 = 1, 5

Example 2:

x5 − 19x4 + 133x3 − 421x2 + 586x− 280 = 0

Being n = 5
F0 = c1c2c3c4c5
F1 = b1c2c3c4c5 + c1b2c3c4c5 + c1c2b3c4c5 + c1c2c3b4c5 + c1c2c3c4b5
F2 = b1b2c3c4c5+b1c2b3c4c5+b1c2c3b4c5+b1c2c3c4b5+c1b2b3c4c5+c1b2c3b4c5+

c1b2c3c4b5 + c1c2b3b4c5 + c1c2b3c4b5 + c1c2c3b4b5
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F3 = b1b2b3c4c5+b1b2c3b4c5+b1b2c3c4b5+b1c2b3b4c5+b1c2b3c4b5+b1c2c3b4b5+
c1b2b3b4c5 + c1b2b3c4b5 + c1b2c3b4b5 + c1c2b3b4b5

F4 = b1b2b3b4c5 + b1b2b3c4b5 + b1b2c3b4b5 + b1c2b3b4b5 + c1b2b3b4b5
F5 = b1b2b3b4b5

F0 = 1;F0 = 1∗1∗1∗1∗1; . . . ;F5 = 280(2, 2, 2, 5, 7);F5 = 1∗2∗4∗5∗7;F5 =

−1 ∗ 2 ∗ 4 ∗ 5 ∗ −7; . . . ;
∑5

0 Fi = 1440(2, 2, 2, 2, 2, 3, 3, 5);
∑5

0 Fi = 1 ∗ 2 ∗ 4 ∗ 12 ∗
15;

∑5
0 Fi = 2 ∗ 8 ∗ 6 ∗ 3 ∗ 5; . . .

The values c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, b1 = 1, b2 = 2, b3 = 4, b4 =
5, b5 = 7 that correspond to F0 = 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 and F5 = 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7,
corroborates the F1, F2, F3, F4 values according to the proposed formulas. Then:

x1 = b1/c1 = 1/1 = 1; x2 = b2/c2 = 2/1 = 2; x3 = b3/c3 = 4/1 = 4;
x4 = b4/c4 = 5/1 = 5; x5 = b5/c5 = 7/1 = 7

Also, the values c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, b1 = 1, b2 = 2, b3 =
4, b4 = 5, b5 = 7 that correspond to F0 = 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 and F5 = 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7
are corroborated for

∑5
0 Fi = 2 ∗ 8 ∗ 6 ∗ 3 ∗ 5

4


