The relationship between the $\varphi(n)$ function and solutions of Diophantine equations

By Shazly Abdullah

ABSTRACT. In this work we used an algebraic method that uses elementary algebra. To create series. We used the series and Euler function $\varphi(n)$ to find solutions to some types of Diophantine equations such as $p = dn - n + 1$. We found a relationship between the solutions of the Diophantine equations and solutions of some types of congruences that use the $\varphi(n)$ function. This relationship is the results that relate the solutions of congruence to the solution of the equations.

Key word: series, Diophantine equation, congruences, Euler function

1. **INTRODUCTION**

According binomial theorem and difference of tow nth power theorem if n a positive integer and x, y real numbers then

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}\]

And

\[x^n - y^n = (x - y) \sum_{j=1}^{n} x^{n-j} y^{j-1}\]

2. **basic series**

Theorem 1 let k and g real numbers where n is odd then

\[\frac{1 + (k - g)^n}{1 + k - g} - \frac{g^n - 1}{g - 1} = -k \left(\frac{g^{n-1} - 1}{g - 1}\right) + k \sum_{j=1}^{n-2} (-1)^{j-1} (k - g)^j \left(\frac{g^{n-1} - 1}{g - 1} - (g^{n-2} + g^{n-3} \ldots + g^{n-j-1})\right)\]

Theorem 2 let $\varphi(n)$ Euler function where $\varphi(m) = d(n - 1)$ where n in an odd where $a^d \not\equiv 1_{(mod \ m)}$, $(a, m) = 1$, $\forall a \in \mathbb{N}$ then

\[\frac{m^n + 1}{m + 1} \equiv \frac{a^d - 1}{a^d - 1}_{(md \ m)}\]

Theorem 3 if p prime number and $p = dn - n + 1$ where n is odd $(p, a) = 1$ then

1
Theorem 4 let \(p \) prime number and \(a \) a positive integer \(a^{p^{m-1}} \neq 1 \mod p^m \) then

\[
\frac{p^{mp} + 1}{p^m + 1} \equiv \frac{a^{p^m} - 1}{a^{p^{m-1}} - 1} \mod p^m
\]

In this section we will create the basic series

Basic series. Let \(n \) is an odd \(k, g, u \), real numbers then

\[
L_n^n(k, g, u) = V_n^n(k, g, u) + S_n(k, g)
\]

Where

\[
L_n^n(k, g, u) = \frac{u^n + (k - g)^n}{u + k - g} - m\left(\frac{g^n - 1}{g - 1}\right)
\]

And

\[
V_n^n(k, g, u) = \sum_{j=0}^{n-1} (u^{n-j-1} - m)(k - g)^j
\]

And

\[
S_n(k, h) = -km\left(\frac{g^{n-1} - 1}{g - 1}\right)
\]

\[
+ km \sum_{j=1}^{n-2} (-1)^{j-1}(k - g)^j\left(\frac{g^{n-1} - 1}{g - 1} - (g^{n-2} + g^{n-3} \ldots \ldots + g^{n-j-1})\right)
\]

Proof. let \(k, g, u \) real number then according to difference of tow nth power theorem we have that

\[
(k - g)^n - (-g)^n = k \sum_{j=1}^{n} (k - g)^{j-1}(-g)^{n-j}
\]

Then

\[
-(g)^n = -(k - g)^n + k \sum_{j=1}^{n} (k - g)^{j-1}(-g)^{n-j}
\]

let \(q \in R, n \in N \) where \(m \) constant then by multiplying \(m \) and adding \(u^q(k - g)^n \) from both sides

\[
u^q(k - g)^n - m(-g)^n = u^q(k - g)^n - m(k - g)^n + km \sum_{j=1}^{n} (k - g)^{j-1}(-g)^{n-j}
\]

Then

\[
(1) \quad u^q(k - g)^n - m(-g)^n = (u^q - m)(k - g)^n + mk \sum_{j=1}^{n} (k - g)^{j-1}(-g)^{n-j}
\]

According difference nth power theorem if \(n \) is odd we have
\[
\frac{u^n + (k-g)^n}{u + k - g} = u^{n-1} - u^{n-2}(k-g) + u^{n-3}(k-g)^2 - u^{n-4}(k-g)^3 \ldots (k-g)^{n-1}
\]

And
\[
m\left(\frac{g^n - 1}{g - 1}\right) = g^{n-1} + g^{n-2} + g^{n-1} \ldots 1
\]

By subtracting \(m\left(\frac{g^n - 1}{g - 1}\right)\) from \(\frac{u^n + (k-g)^n}{u + k - g}\) then
\[
\frac{u^n + (k-g)^n}{u + (k-g)} - m\left(\frac{g^n - 1}{g - 1}\right)
\]
\[
= u^{n-1} - m - u^{n-2}(k-g) - mg + u^{n-3}(k-g)^2 - mg^2 - u^{n-4}(k-g)^3
\]
\[
- mg^3 \ldots (k-g)^{n-1} - mg^{n-1}
\]

By extracting the common factor between the terms we find that
(2) \[\frac{u^n + (k-g)^n}{u + (k-g)} - m\left(\frac{g^n - 1}{g - 1}\right)\]
\[
= u^{n-1} - m - (u^{n-2}(k-g) + mg) + (u^{n-3}(k-g)^2 - mg^2)
\]
\[
- (u^{n-4}(k-g)^3 + mg^3) \ldots ((k-g)^{n-1} - mg^{n-1})
\]

So we note in equation (2) term (1) equal \(u^{n-1} - m\) and term(2) equal \(u^{n-2}(k-g) + mg\) and term (3) equal \(u^{n-3}(k-g)^2 - mg^2\) so From equation (1) we have
\[u^q(k-g)^n - m(-g)^n = (u^q - m)(k-g)^n + mk\sum_{j=1}^{n} (k-g)^{j-1}(-g)^{n-j}\]

Let \(W_n^q(k,g,u) = u^q(k-g)^n - m(-g)^n\)

And \(Z_n^q(k,g,u) = (u^q - m)(k-g)^n\)

And \(C_n(k,g) = mk\sum_{j=1}^{n} (k-g)^{j-1}(-g)^{n-j}\)

So (3) \[W_n^q(k,g,u) = Z_n^q(k,g,u) + C_n(k,g)\]

From equation (3) and term (1) in equation (2) \[u^{n-1} - m = W_0^{n-1-0}(k,g,u)\]

From equation (3) and term (2) in equation (2) \[u^{n-2}(k-g) + mg = W_1^{n-2}(k,g,u)\]

Term (3) and equation (2) \[u^{n-3}(k-g)^2 - mg^2 = W_2^{n-3}(kgu)\]
4

Last term in equation (2)

\[(k - g)^{n-1} - mg^{n-1} = W^{n-1-n+1}_{n-1}(k, g, u)\]

Then we have that

\[
\frac{u^n + (k - g)^n}{u + k - g} - m \left(\frac{g^n - 1}{g - 1}\right) = \sum_{j=0}^{n-1} (-1)^j W^{n-1-j}_{j}(k, g, u)
\]

We note from equation (3)

\[W_n^q(k, g, u) = Z_n^q(k, g, u) + C_n(k, g)\]

Where

\[Z_n^q(k, g, u) = (u^q - m)(k - g)^n\]

And

\[C_n(k, g) = mk \sum_{j=1}^{n} (k - g)^{j-1}(-g)^{n-j}\]

From equation (3) and (4) we have

\[
\frac{u^n + (k - g)^n}{u + k - g} - m \left(\frac{g^n - 1}{g - 1}\right) = \sum_{j=0}^{n-1} (u^{n-1-j} - m)(k - g)^j + km \sum_{j=1}^{n-1} \sum_{r=1}^{j} (-1)^j(k - g)^{r-1}(-g)^{j-r}
\]

Let

\[L_n(k, g, u) = \frac{u^n + (k - g)^n}{u + k - g} - m \left(\frac{g^n - 1}{g - 1}\right)\]

And

\[V_n(k, g, u) = \sum_{j=0}^{n-1} (-1)^j(u^{n-j-1} - m)(k - g)^j\]

And

\[S_n(k, g) = km \sum_{j=1}^{n-1} \sum_{r=1}^{j} (-1)^j(k - g)^{r-1}(-g)^{j-r}\]

Then we have
\[L_n(k, g, u) = V_n^n(k, g, u) + S_n(k, g) \]

Note \(g^{j-r}(-h) = (-1)^{j-r} g^{j-r}(h) \) and \((-1)^j(-1)^{j-r} = (-1)^{2j-r} = (-1)^r \) if \(j \) and \(r \) is odd or even, note we find in \(S_n(k, h) \)

\[
S_n(k, g) = km \sum_{j=1}^{n-1} \sum_{r=1}^{j} (-1)^r (k - g)^{r-1} (-g)^{j-r}
\]

Then we have

\[
s_n(k, g) = km \left(\sum_{r=3}^{1} (-1)^r(k - g)^{r-1} g^{1-r} + \sum_{r=1}^{2} (-1)^r(k - g)^{r-1} g^{2-r} + \sum_{r=1}^{n-1} (-1)^r(k - g)^{r-1} g^{n-r} \right)
\]

By analyzing all the complex terms of the \(S_n(k, g) \) we find that

\[
S_n(k, h) = km \left((-1) + (-g + (k - g)) + (-g^2 + g(k - g) - (k - g)^2) \right.
\]
\[
- (-g^3 + g^2(k - g) - g(k - g)^2 + (k - g)^3) \ldots \ldots \ldots (-g^{n-1} + g^{n-2}(k - g)
\]
\[
- g^{n-3}(k - g)^2 + g^{n-4}(k - g)^3 \ldots \ldots \ldots (k - g)^{n-2} \right)
\]

In \(S_n(k, h) \) all compound terms have been dismantled note if we add for every first term in the complex term we find that \(-(-1 + g \ldots \ldots g^{n-2})\) then we adding the terms to include that \((k - g)\) finding that \((1 + g \ldots \ldots g^{j-3})\) then the terms that include \((k - g)^2\) we find that \((-1 + g \ldots \ldots g^{j-3})\) if the method is equal all the terms can be added \(1 \leq j \leq n - 1\) until we reach the last terms \((k - g)^{n-1}\) then

\[
s_n(k, h) = km(-1 + g + g^2 \ldots \ldots g^{n-2}) + (k - g)((1 + g + g^2 + g^3 \ldots \ldots g^{n-3}))
\]
\[
- (k - g)^2(1 + g + g^2 + g^3 \ldots \ldots g^{n-4}) \ldots \ldots (k - g)^{n-1})
\]

Using the binomial theorem it is possible to abbreviate all the terms that include, \((k - g)\) and \((k - g)^2\) and \((k - g)^3\) until we reach the last term \((k - g)^{n-1}\), we notice that

\[
-(1 + g + g^2 \ldots \ldots g^{n-2}) = \frac{g^{n-1} - 1}{g - 1}
\]
\[
(k - g)(1 + g \ldots \ldots g^{n-3}) = (k - g) \left(\frac{g^{n-1} - 1}{g - 1} - g^{n-2} \right)
\]
\[
(k - g)^2(1 + g \ldots \ldots g^{n-4}) = (k - g)^2 \left(\frac{g^{n-1} - 1}{g - 1} - g^{n-2} - g^{n-3} \right)
\]

Then we have that

\[
S_n(k, h) = km \left(\frac{g^{n-1} - 1}{g - 1} \right) + km \sum_{j=1}^{n-2} (-1)^{j-1}(k - g)^j \left(\frac{g^{n-1} - 1}{g^{n-1} - 1} - (g^{n-2} + g^{n-3} \ldots \ldots g^{n-j-1}) \right)
\]

Then

\[
L_n(k, g, u) = \frac{u^n + (k - g)^n}{u + k - g} - m \left(\frac{g^{n-1} - 1}{g - 1} \right)
\]
In this section we will use the basic series $L_n(u,k,g) = V^n_n(u,k,g) + S_n(k,g)$ in prove the
theorem 1 and use the theorem 1 to prove theorem 2 let in $V^n_n(u,k,g)$, $u = 1$ and $m = 1$ then we find

$$V^n_n(k,h,1) = \sum_{j=1}^{n-1} (-1)^j ((1)^{n-j} - 1)(k-g)^j = 0$$

Then

$$L_n(u,k,1) = V^n_n(u,k,1) + S_n(k,g)$$

According to the equations, (2.7, 2.8, 2.9) we find that

$$\frac{1 + (k-g)^n}{1 + k - g} = \frac{g^n - 1}{g - 1}$$

$$= -k \left(\frac{g^{n-1} - 1}{g - 1}\right) + k \sum_{j=1}^{n-2} (-1)^{j-1}(k-g)^j \left(\frac{g^{n-1} - 1}{g - 1} - (g^{n-2} + g^{n-3} \ldots g^{n-j-1})\right)$$

Proof.

According to Euler’s theorem $\phi(n)$ Euler function then $a^\phi(n) \equiv 1 \pmod{n}$ see [K.M 244]

Proof.

Theorem 2 from theorem 1 if n is odd and k g real number we have

$$\frac{1 + (k-g)^n}{1 + k - g} = \frac{g^n - 1}{g - 1}$$

$$= -k \left(\frac{g^{n-1} - 1}{g - 1}\right) + k \sum_{j=1}^{n-2} (-1)^{j-1}(k-g)^j \left(\frac{g^{n-1} - 1}{g - 1} - (g^{n-2} + g^{n-3} \ldots g^{n-j-1})\right)$$

Let in theorem 1 $k = a^d + m$ and $g = a^d$ then $k - g = m$ so we have
Then

\[\frac{1 + m^n}{1 + m} - \frac{a^{dn} - 1}{a^d - 1} = -(a^d + m) \left(\frac{a^{d(n-1)} - 1}{a^{d-1}}\right) + (a^d + m) \sum_{j=1}^{n-2} (-1)^{j-1} m^j \left(\frac{a^{dn-d} - 1}{a^{d-1}} - (a^{dn-2d} + a^{dn-3d} \ldots a^{dn-jd-1d})\right)\]

Let \(V\) equal

\[V = (a^d + m) \sum_{j=1}^{n-2} (-1)^{j-1} m^j \left(\frac{a^{dn-d} - 1}{a^{d-1}} - (a^{dn-2d} + a^{dn-3d} \ldots a^{dn-jd-1d})\right)\]

From equation (10) and (11) we have that

\[\frac{1 + m^n}{1 + m} - \frac{a^{dn} - 1}{a^d - 1} = -(a^d + m) \left(\frac{a^{d(n-1)} - 1}{a^{d-1}}\right) + mV\]

Let \(\varphi(m) = d(n - 1)\) where \(\varphi(m)\) Euler function then we note in rigor side equation

\[\frac{1 + m^n}{1 + m} - \frac{a^{dn} - 1}{a^d - 1} = -(a^d + m) \left(\frac{a^{\varphi(m)} - 1}{a^d - 1}\right) + mV\]

According Euler theorem

\[a^{\varphi(m)} \equiv 1 (mod m)\]

From equation (13) and Euler theorem if \(a^d \not\equiv 1 (mod m)\) we have

\[\frac{m^n + 1}{m + 1} \equiv \frac{a^{dn} - 1}{a^d - 1} (mod m)\]

Proof. Theorem 3 from equation (13) we have that

\[\frac{1 + m^n}{1 + m} - \frac{a^{dn} - 1}{a^d - 1} = -(a^d + m) \left(\frac{a^{\varphi(m)} - 1}{a^d - 1}\right) + mV\]

Let \(m = p\) where \(p\) prime number according Euler function \(\varphi(p) = p - 1 = d(n - 1)\) and \(n\) is odd then we have

\[\frac{1 + p^n}{1 + p} - \frac{a^{dn} - 1}{a^d - 1} = -(a^d + p) \left(\frac{a^{p-1} - 1}{a - 1}\right) + pV\]

Then If \(p - 1 = d(n - 1)\) we \(n\) is odd we have
\[
\frac{p^n + 1}{p + 1} \equiv \frac{a^{dn} - 1}{a^d - 1} \quad (\text{mod } p)
\]

Proof. Theorem 4 according theorem 2 if \(\varphi(m) = d(n - 1) \) where \(n \) is odd we have

\[
\frac{m^n + 1}{m + 1} \equiv \frac{a^{dn} - 1}{a^d - 1} \quad (\text{mod } m)
\]

let in theorem 1 \(m = p^m \) and \(n = p \) then according Eulere function \(\varphi(p^m) = p^{m-1}(p - 1) \) so \(d = p^{m-1} \) and \(dn = p^m \) we have that

\[
\frac{p^{mp} + 1}{p^m + 1} \equiv \frac{a^{p^m} - 1}{a^{p^{m-1}} - 1} \left(\text{mod } p^m(a^{p^{m-1}} + p^m) \right)
\]

Student: Shazly Abdullah Fdl
Faculty of mathematics sciences & statistics
Aleenlain University Sudan
Email address: Shazlyabdullah3@gmail.com