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Abstract 

 

In the present paper we use the flat Friedmann-Lemaître-Robertson-Walker metric describing a spatially homogeneous and 

isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the 

astrophysical literature. 

We use the co-moving coordinate re (the subscript e indicates emission) for the place of a galaxy which is emitting photons 

and ra (the subscript a indicates absorption) for the place of an observer within a different galaxy on which the photons - 

which were traveling thru the universe - are absorbed. Therefore the real physical distance - the way of light - is calculated by 

D = a(t0) ra - a(te) re. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time of emission (te) 

of the photons. Nobody can doubt this real travel way of light: The photons are emitted on the co-moving coordinate place re 

and are than traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and 

therefore the scale parameter is changing in the meantime from a(te) to a(t0). 

Using this right way of light we calculate some relevant classical cosmological equations (effects) and compare these 

theoretical results with some measurements of astrophysics (quasars, SNIa and black hole in M87) to get the parameters of 

the theory. 

We get the today’s Hubble parameter H0 ≈ 65.638 km/(s Mpc) as a result. This value is smaller than the Hubble parameter 

H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data which is discussed in the literature. Furthermore, we find for the 

radius of the Friedmann sphere R0a ≈ 2,712.48 Mpc. The today’s mass density of the Friedmann sphere results in ρ0 ≈ 4.843 x 

10-27 g/cm3. For the mass of the Friedmann sphere we get MFS ≈ 1.206 x 1056 g. The mass of black hole within the galaxy 

M87 has the value MBH, M87 ≈ 2.358 x 1045g. 

  

 

Key words: relativistic astrophysics, theoretical and observational cosmology, redshift, Hubble parameter, quasar, 

galaxy, M87, SNIa, black hole 

 

PACS NO: 

 

 

1
 steffen_haase@vodafone.de 

mailto:steffen_haase@vodafone.de


 2 

Contents: 

1. Introduction ......................................................................................................................................................... 4 

1.1 Simplifying assumptions .............................................................................................................................. 5 

2 Derivation of cosmological relevant relations ...................................................................................................... 6 

2.1 Previews ....................................................................................................................................................... 6 

2.2 The redshift distance .................................................................................................................................... 9 

2.3 The magnitude-redshift relation ................................................................................................................. 16 

2.4 The angular size-redshift relation ............................................................................................................... 16 

2.5 The number-redshift relation ...................................................................................................................... 17 

3. Derivation of further physical redshift distances............................................................................................... 18 

4. Determination of the parameter values ............................................................................................................. 23 

4.1 Magnitude-redshift relation ........................................................................................................................ 23 

4.2 Number-redshift relation ............................................................................................................................ 27 

4.3 Angular size-redshift relation ..................................................................................................................... 28 

4.4 Fixing of R0a with the help of SNIa ............................................................................................................ 30 

4.5 Calculation of the further redshift distances for the SNIa and M87 ........................................................... 33 

4.6 Evaluation of the data from the black hole in M87 .................................................................................... 35 

4.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 ............................................ 37 

5 Additions ............................................................................................................................................................ 38 

5.1 About the mass of Friedmann sphere ......................................................................................................... 38 

5.2 About the derivation of the redshift distance in the literature .................................................................... 40 

5.3 Consideration of the radiation density in the early days of cosmological expansion ................................. 43 

6. Final considerations .......................................................................................................................................... 44 

6.1 Hubble parameter ....................................................................................................................................... 44 

6.2 Mean values................................................................................................................................................ 47 

7. Concluding remarks .......................................................................................................................................... 49 

8. Appendix ........................................................................................................................................................... 50 

 

List of Figures: 

Figure 1. Real physical light path. 

Figure 2. Redshift distance for different values of the parameter β0. 

Figure 3. Redshift distance Rea normalized to the distance R0a. 

Figure 4. Redshift distance R0e normalized to the distance R0a for various values of the parameter β0. 

Figure 5. Redshift distance Ree normalized to the distance R0a for different values of the parameter β0. 

Figure 6. Today's (t0) redshift distance D0 normalized to the distance R0a for various values of the parameter β0. 

Figure 7. The at that time (te) redshift distance De normalized to the distance R0a for various values of the 

parameter β0. 

Figure 8. Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

Figure 9. Magnitude-redshift diagram of the mean values <zi> and <mi> with inserted standard deviations σm, i 

and σz, i. 

Figure 10. Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 



 3 

Figure 11. Standard deviations σm, i as a function of <zi>. 

Figure 12. Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

Figure 13. Angular size-redshift diagram according to K. Nilsson et al. [2]. 

Figure 14. Magnitude-redshift diagram for 27 SNIa according to W. L. Freedman et al. [3]. 

Figure 15. Redshift distance D (light path) and the further redshift distances Di (i = 0, e) and Rjk (j = 0, e; k = e, 

a) as a function of the redshift up to z = 11. 

Figure 16. Visualization of the distances Di, D and Rjk with regard to M87 and observer. 

Figure 17. All distances Di and D for M87, J0313 and UDFj-39546284. 

Figure 18. Friedmann sphere with examples of physical locations of an observer and a galaxy. 

Figure 19. Observer generally placed on the center of the co-moving coordinate system (ra = 0). 

Figure 20. Observed galaxies (i = 1, 2) each in their own coordinate origin (re,i = 0). 

Figure 21. Non-approximated redshift distance D compared to the linear Hubble redshift distance. 

 

List of Tables: 

Table 1. Redshift distance D and the further redshift distances Di and Rjk of all 27 SNIa. 

Table 2. Summary of data from galaxy M87 with the black hole in it. 

Table 3. Redshift distances Di, D and Rjk from the black hole in M87. 

Table 4. All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts. 

Table 5. Expansion-related shifts in the distance of the quasar and the galaxy. 

Table 6. Various distances R0a, i of the 27 SNIai calculated using the distance modules μi. 

Table 7. Mean values from the quasar data set used according to [1]. 

Table 8. Numbers Ni summed up in the redshift intervals zi of the quasars according to [1]. 

Table 9. Summary of the data which we used from the 27 SNIa according to [3]. 

 

 

 

 

 

  



 4 

  

“Redshifts are the lifeblood of cosmology.” 

E. M. Burbidge and G. Burbidge [11] 

 

 

1. Introduction 

 

The current cosmological standard model assumes the correctness of Einstein's field equations (EFE) containing 

the cosmological term Λ 
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and solves these equations with the help of the Friedmann-Lemaître-Robertson-Walker metric (FLRWM) 
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which is suitable for the description of a homogeneous and isotropic universe evolving over time. 

 

The solutions found by solving the EFE are the Friedmann equations (FE) 
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(3) 

 

Gμν is the Einstein tensor, G the gravitational constant, Tμν the energy-momentum tensor and Λ the cosmological 

constant that Einstein added to his original field equations, but later discarded. With ε = 0, +1 or -1 the constant 

of curvature was introduced and r, ϑ and φ are spherical polar coordinates. The time-dependent scale parameter 

was designated with a(t) and its time derivatives with points above. P is the pressure of matter and ρ is its 

density. 

 

Both FE together lead to the law of conservation of energy 
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which for pressure less matter then turns into a law of conservation of mass because of P = 0: 
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(5) 

 

This mass M contains all matter that is gravitationally effective in the universe. 

In practice, due to the existence of the conservation law, only the first of the two Friedmann equations (3) is 

usually used. 

 

 

1.1 Simplifying assumptions 

 

The application of the theoretical standard cosmology to the measured data of the observational cosmology 

shows that the universe is flat. For this reason, the curvature constant ε is negligible. We agree with this finding, 

whereby the FLRWM and the FE simplify to 
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respectively. 

 

The standard cosmology uses the following density parameters Ω0, i (i = M, R, Λ) for the different types of 

matter that may exist in the universe 
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(6) 

 

and determines their values using measurement data from observing cosmology. With ρ0, M today's density (first 

index 0) of the non-relativistic matter was introduced and ρ0,R describes the today's density of the relativistic 

matter, e.g. radiation (index R). A today's density ρ0,Λ is assigned to the cosmological constant Λ and the today's 

so-called critical density is defined with ρ0, c, which - neglecting the cosmological constant - corresponds to an 

equilibrium between kinetic energy (da/dt ≠ 0) and potential energy of gravitation. H0 is today's Hubble 

parameter. The dimensionless parameter h scales the Hubble parameter. 

 

The evaluation of the measurement data using standard cosmology shows that today's quotient of ρ0,r/ρ0,m being 
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is very small, which is why today's radiation density ρ0,R can be neglected compared to today's non-relativistic 

matter density ρ0,M. We make use of this knowledge when deriving the redshift distance. 

 

In the following, we also neglect the mathematical possible cosmological constant Λ. The comparison of the 

redshift distance derived here with measurement results shows in retrospect that this additional parameter is not 

required. As a result, the EFE are returned to their historically original form and the FE takes on the simpler 

form 
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2 Derivation of cosmological relevant relations 

 

2.1 Previews 

 

From the requirement of homogeneity it follows that all extra-galactic objects remain at their coordinate location 

r in the course of the temporal development of the universe, i.e. the coordinate distance between randomly 

selected galaxies does not change over time, the galaxies rest in this coordinate system. For this reason, dr/dt = 0 

applies to them. 

This does not apply to the freely moving photons in the universe: They detach themselves from a galaxy at a 

certain point in time at a certain coordinate location, and are then later absorbed at a completely different 

coordinate location. In addition, the time-dependent scale parameter a(t) changes between the two points in time 

which stretches all real physical distances if a cosmic expansion exists. 

 

Here we introduce the designation re (the subscript e indicates emission of light) for the coordinate location of 

the light-emitting galaxy and name the coordinate location of the galaxy in which the observer resides ra (the 

subscript a indicates absorption of light). In the Euclidean space ( = 0) considered here, both variables mark the 

coordinate distance from a coordinate origin r = 0. The constant coordinate distance between the two galaxies is 

therefore calculated to be ra - re if we assume that the galaxy of the observer is more depart from the coordinate 

origin as the light-emitting galaxy. The light should therefore move from the inside to the outside within a 

spherical assumed mass distribution (outgoing photons), which serves as a simple model for the universe (using 

the FLRWM, it is quite easy to arrange that all directions are of a radial kind). 

Due to the measurable expansion of the universe we know that in the course of cosmic evolution all physical 

distances over the time-dependent scale parameter a(t) being stretched according to the FE (3b). 

Then the conservation law for the product of the density of matter ρ(t) and the cube of the scale parameter a(t) 
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also applies. This means that A is a constant which essentially corresponds to the mass of the visible part of the 

universe (here called the Friedmann sphere). Because of A = constant Eq. (7) can also be written as 
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where e and 0 denote the densities of the universe and ae and a0 are the scale parameters at two different times 

te (time point of emission) and t0 (today’s time point of absorption), respectively. Using Eq. (7) the FE (3b) 

yields 
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With B another constant was introduced which just summarizes other constants. Using the law of mass 

conservation (7) means also that the mass of the universe which is inside a Friedmann sphere with the current 

"radius" a(t) is responsible for the expansion. This applies to all points of time. "Radius" (in quoted marks) was 

written here because a(t) does not have the meaning of a real physical radius. Only the product of the co-moving 

radial coordinate r and the scale parameter a(t) has this significance, as we shall see immediately.  

 

For a galaxy resting in the coordinate system of the FLRWM, the real physical distance from the coordinate 

origin becomes calculated to 
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if  = 0 is considered. The co-moving coordinate r does not depend on time for galaxies. 

 

The physical distance of the light-emitting galaxy from the coordinate origin at time te is therefore 
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while for the analog distance of the galaxy containing the observer at the same time 
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applies. The physical distance of both galaxies at the time te is therefore 
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For the distance between both cosmic objects at a later time - means today‘s time here - t0 > te then applies 
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However, both distances mentioned above are worthless for the computation of cosmological relevant relations, 

since the emitted photons make their way to the observer which has to be calculated in accordance with 

 

 .0 eea raraD   (15) 

 

To see this, imagine a photon that detaches itself at the time te < t0 from the emitting galaxy at the coordinate re, 

where the scale parameter at this time has the value ae. After the photon has moved freely through the universe, it 

will arrive at the coordinate point ra, the place of the observer within another galaxy, at time t0, with the scale 

parameter at that time being a0. Thus, the photon does not travel the path described by Eq. (13) nor by Eq. (14). 

The real distance traveled by the photon is always greater than any one of these distances. This must be taken 

into account when deriving the physical redshift distance. 

 

The real physical light path is illustrated by the green line in Fig. 1: 

 

 

 

Figure 1. Real physical light path. 

 

These remarks may be sufficient as a preliminary to the now following derivation of the redshift distance. 
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2.2 The redshift distance 

 

We now want to investigate which equation results for the redshift distance (corresponding to the photon path), 

which depends on the redshift z, if the integral 
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is used. This integral results for  = 0 when the line element ds is set equal to zero in the FLRWM (2a) and radial 

(ϑ = φ = 0) outgoing photons are considered. Eq. (16) describes the motion of photons in the universe traveling 

from the coordinate re to the coordinate ra. 

 

During the travel time of the photons, the scale parameter changes from ae to a0. If the time differential is 

replaced using the FE (9), follows from Eq. (16) 
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After the execution of the integral we get 
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Here we multiply both sides with a0 and at the same time we extract the root of a0 from the parenthesis: 
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On the left side of Eq. (19) is not yet the real path traveled by the photon, but the today’s physical distance of the 

two galaxies involved. 

 

We now introduce the redshift. To this end, we recall the simple relation between the scale parameters at two 

different times te and t0 and the redshift z 

 

 

  za

a
orz

a

a e

e 


1

1
1

0

0
 

 

(20a, b)

 
 

and also 
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If Eq. (20b) is inserted into Eq. (19), the result is 
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Next, all unknown variables have to be eliminated from Eq. (21). First, we use the conservation law (8) in 

connection with Eq. (9) to eliminate a0 on the right side of Eq. (21). The result is 
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where 0 describes today's mass density of the universe. 

 

For further derivation of the redshift distance, we now take into consideration the Eq. (20c) 
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to use then the light path D introduced by Eq. (15) 
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to get 

 

 

 
.

1

1
1

3

8

2
)()1(

0

00 











zG

c
Drazra aa


 

 

 

(24)

 
 

The further calculation results from suitable step-wise putting outside the brackets and summarization 
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and 
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respectively. 
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Now we put a0ra outside the brackets on the right side of Eq. (27), which results in 
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We introduce R0a = a0ra as an abbreviation for the present physical location of the observer and solve Eq. (28) for 

D 
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As a further abbreviation we use 

 

 

 
00

0

0

3

8

21

V

c

G
R

c

a




 
 

 

(30)

 
 

resulting in 

 

 

 
.

1

1
1

1

)1(
),;(

0

0

00 





















 z

zz

R
RzD a

a


  

 

(31)

 
 



 12 

The redshift distance D is therefore a function of z and the two parameters R0a and β0, which both can be 

determined by fitting the equation to the astrophysical measurements. 

 

The name β0 was chosen for the second parameter because it is a today’s quotient of two velocities, where the 

denominator is the speed of light named c. 

 

The literature does not know the parameter 0. It results from the non-zeroing of ra for the observer or of re ≠ 0 

for the observed galaxy. 

 

For β0 = 1, the simpler equation results 
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The expansion of Eq. (31) for small redshifts z leads to 
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If this equation is solved for z and then multiplied by c, the result is 
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That is how we find today's Hubble parameter 

 

 

 
.

1
2

1
0

0

0

a

a

R

c
H

















 
 

 

(34)

 
 

The Hubble parameter also depends on the speed quotient β0 introduced above and is in this form valid only for 

small redshifts because of the series expansion. This means that this H0a is only valid locally. 

 

For parameter β0 = 1, we get 
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The reciprocal of this is the Hubble time for β0 = 1: 
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We now give another expression for 1/β0 
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which results from the Eq. (7) and Eq. (8) 
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With RS = 2MG / c
2
, the Schwarzschild radius of mass M of the Friedmann sphere was introduced for pure 

formal reason. It does not play the same role here as it does within the Schwarzschild metric. 

 

For β0 = 1/2 we get R0a = RS. In this case we could believe that every observer is on the surface of a black hole 

(corresponds to the Friedmann sphere) and that he always looks into a black hole while observing. For a galaxy 

located in the center of the Friedmann sphere, an observer would measure an infinitely large redshift. Overall, 

that could be logical. 

 

For β0 = 1, R0a = RS / 4 would result and the speed V0 would be exactly identical to the speed of light c. 

 

The mass M contains all gravitational effective components of the visible universe: M = ∑ Mi. These can also be 

different energy components Ei, to which, according to Einstein's energy-mass relationship Mi = Ei/c
2
, masses Mi 

can be assigned. In addition, with M as the total mass, mass components that are invisible to us (perhaps only so 

far) are taken in to consideration. 

 

With the help of Eq. (35) the Eq. (31) can be rewritten as 
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If the comparison with the measurement data shows β0 = 1, we would get 
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In this case, we immediately see that the total mass M of the Friedmann sphere goes directly into the equation in 

the form of the formally introduced Schwarzschild radius RS. Therefore, it can be used as a scale of cosmological 

distances. 

 

Fig. 2 shows the redshift distance (31) normalized to the distance R0a for various values of the parameter β0. 
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Figure 2. Redshift distance for different values of the parameter β0. 

 

The curvature of the curves is a direct consequence of the Friedmann equation. 

 

For β0 = 1, the distance D = R0a is achieved for z = ∞. 

 

As a reminder: R0a is today's distance of the observer from the origin of the coordinate system, who is placed on 

the surface of "his" Friedmann sphere. 

The comparison of Eq. (31b) with a Hubble diagram thus determines the current radius R0a = a0ra of the 

Friedmann sphere (today's physical location of the observer) and its Schwarzschild radius RS. 

 

Overall, each observer is located on the surface of all imaginable Friedmann spheres around him (for each 

viewing direction a Friedmann sphere with the radius R0a belongs). The extragalactic objects (placed on r = re) 

observed by him then all lie according to their redshift z on a radial line somewhere between the observer 

(placed on r = ra) and the center of the Friedmann sphere (r = 0). 

 

The physical radius R0a of the Friedmann sphere changes with time and forms a limit of visibility. Outside of 

every imaginable Friedmann sphere there is also mass, which, however, does not contribute to the gravitational 

events within the Friedmann sphere. 

 

It should be mentioned that the conceivable Friedmann spheres naturally at least partially overlap. 

 

An increasing limit distance R0a decreases with time the velocity V0 introduced above, because RS is a constant. 

Because Eq. (31) describes the physical behavior of photons in the universe, the velocity V0 in Eq. (30) could be 

interpreted as an effective speed of light c0* 
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This velocity changes according to R0a and 0, respectively, over the time and could have for us as today's 

observers just the value of the vacuum velocity c that we can measure today, if would be β0 = 1. 

 

If this possible interpretation is correct, the effective speed of light c0* was infinitely large at the beginning of the 

expansion of the universe, because at that time the Friedmann sphere was infinitely small and respectively its 

matter density was infinitely large. 

 

If we consider today's Hubble parameter (34) obtained above for small redshifts as a definition, we can write the 

redshift distance via 
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also like this 
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The quotient c/H0a is called the Hubble radius RH in the literature. For this distance, the escape speed by 

definition reaches the speed of light if it is assumed that a linear Hubble law is valid for all distances, which is - 

of course - not the case. The Eq. (31d) is therefore only valid for small redshifts how Eq. (34a). 

 

 

2.3 The magnitude-redshift relation 

 

The magnitude-redshift relation is given by the definition of the apparent magnitude m 
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Here an apparent limit magnitude m0a was introduced for R0a, which also changes with time. Substituting Eq. 

(31) into Eq. (37) then provides the sought magnitude-redshift relation 
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The two free parameters m0a and 0 can be determined by direct comparison with a magnitude-redshift diagram. 

 

For 0 = 1, the following simple equation results 
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For comparison, reference is made here to Eq. (62) from chapter 5.2, which is known from the literature. 

 

 

2.4 The angular size-redshift relation 
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This relation results in for large distances over 
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In this equation  means the measurable angular size and  the linear size of the observed extra-galactic object. 

 

Using 0 = 1 we get 
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In logarithmic form Eq. (40) becomes to 
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With 0 = 1 we get the simplified equation 
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For comparison, reference is made to Eq. (63) from chapter 5.2, which is known from the literature. 

 

 

2.5 The number-redshift relation 

 

In flat Euclidean space the equation for the light-path sphere becomes to 
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If we introduce the redshift distance via Eq. (31) 
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we get for the number-redshift relation 
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where N0a means the expected number of objects in the light-path sphere V0a and besides 
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applies. With  the number density was named. In logarithmic form results 
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If we here also set 0 = 1, we get 
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For comparison, reference is made to Eq. (64) from chapter 5.2, which is known from the literature. 

 

3. Derivation of further physical redshift distances 

 

The starting point for the derivation of the further redshift distances are the elementary equations 
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This results in the following distances 
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(48) 

 

Ree is the then distance between the galaxy emitting the light and the origin of the coordinates - at the time te the 

light was emitted. 

Rea is the distance of the observer's galaxy from the origin of the coordinates at that time. 

R0e is the today’s - at time t0, at which the light is absorbed by the observer - distance of the light-emitting galaxy 

from the origin of the coordinates. 

R0a is today's distance of the galaxy containing the observer from the origin of the coordinates. 

 

These distances become concretely with Eq. (31) 
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and of course too 
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These distances from the coordinate origin result in 

 

 
.

1

1

1
1

),;(
0

0
00

z

zR
RzD a

ae

















  

 

 

(52) 

 

De is the then (te) distance between the observed galaxy and the galaxy in which the observer is located. 

 

Furthermore we find 
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(52) 

 

D0 is the today’s distance between the two participating galaxies. 

 

The following figures illustrate the equations for the further redshift distances, where we have normalized all 

distances to R0a. 

 

 

 

Figure 3. Redshift distance Rea normalized to the distance R0a. 

 

This distance does not depend on the parameter β0. 
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Figure 4. Redshift distance R0e normalized to the distance R0a for various values of the parameter β0. 

 

 

 

Figure 5. Redshift distance Ree normalized to the distance R0a for different values of the parameter β0. 
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Figure 6. Today's (t0) redshift distance D0 normalized to the distance R0a for various values of the parameter β0. 

 

 

 

Figure 7. The at that time (te) redshift distance De normalized to the distance R0a for various values of the 

parameter β0. 
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In the specialist literature, none of these redshift distances are known and they cannot be derived there, 

respectively. 

 

We will give concrete values for these redshift distances for the galaxy M87 and 27 SNIa below. 

 

 

 

4. Determination of the parameter values 

 

The present paper presents a theoretical derivation of redshift distances, which is done without approximations 

for e.g. small redshifts z and is, therefore, mainly of theoretical nature. The essay is therefore a theoretical offer 

to the observing cosmologists. 

 

Nevertheless, in this chapter, we will apply the theory presented here in detail to some measurement results of 

observational cosmology, whereby we only demonstrate the principle of evaluating the measurement data. For 

this reason, no more detailed error analyzes are carried out. We leave that to the experts of observational 

cosmology. 

 

4.1 Magnitude-redshift relation 

 

The apparent magnitude m depends according to Eq. (38) in addition to the measurable redshift z also on the 

parameters β0 and m0a. 

 

To find both parameters, the quasar catalog by Véron-Cetty [1] is suitable in which measured redshifts and 

apparent magnitudes of 132,975 quasars are given. 

Fig. 8 shows all these quasars in a single magnitude-redshift diagram, where we have used log10(cz) as the axis 

of ordinate. 
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Figure 8. Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

A clear edge can be seen on the right side of the accumulation of measurement points, which indicates minimum 

apparent magnitudes for associated redshifts. The apparent magnitudes are usually up to far to the left of this 

edge in the diagram. 

If we form redshift intervals with mean values of the redshifts and the corresponding mean values for the 

apparent magnitude, this fact leads to a clear curvature of the mean value curve in the direction of the redshift 

axis. 

The quasars therefore cannot be described in the diagram by a linear curve. This suggests that our redshift 

distance [i.e. ultimately Eq. (38)] could be suitable for the measured values. 

 

It is precisely this strange magnitude-redshift diagram that has stimulated us to think about cosmological 

distance determinations for many years [9]. 

 

To evaluate the quasar data set, we first create 75 z-intervals with 1,773 quasars each. For these intervals we 

calculate the mean values <zi> and the associated mean values <mi> of the quasars. For all intervals we also 

calculate the standard deviations σm, i and also the standard deviations σz, i. The latter, however, do not play a role 

in the analysis of the data set. The appendix contains the associated table, which also contains all σm, i. 
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Fig. 9 shows the magnitude-redshift diagram after averaging with all of the standard deviations σm, i and σz, i 

calculated by us. 

 

 

 

Figure 9. Magnitude-redshift diagram of the mean values <zi> and <mi> with inserted standard deviations σm, i 

and σz, i. 

 

The curvature of the curve expected on the basis of Fig. 8 can be clearly seen. This curvature should be 

explained by means of theory. More precisely: The theory has to explain the curvature! 

 

We use the χ
2
-function 
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(53) 

 

for the evaluation. 

pk with k = 1, 2 stands for the two parameters we are looking for, β0 and m0a. 

 

If we use our magnitude-redshift relation (38), the result is concrete 
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(53a) 

 

Using the quasar data and using the usual mathematical procedure, we can find the parameters β0 = 0.7311668 

and m0a = 20.1346. 

 

Fig. 10 shows the result of the mean value formation and the adaptation of the theory to the curvature of the 

mean value curve. 

 

 

 

Figure 10. Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

To interpret the measured magnitude-redshift relation: 

From our point of view, the quasars came in to being historically slowly as relatively weakly luminous objects at 

a point in time that corresponds to about z ≈ 4.3. The quasars later behaved as the theory expects in flat space 

and moved with time - i.e. for decreasing redshifts z - on average along the theoretical curve (in the diagram 

from top right diagonally to bottom left). The quasars have gradually died out in the recent past and have become 

relatively bright in the process. 

 

The dependence of the calculated standard deviations σm, i on the redshift mean values <zi> is shown in Fig. 11. 

 

4,5 

4,7 

4,9 

5,1 

5,3 

5,5 

5,7 

5,9 

6,1 

6,3 

6,5 

17 18 19 20 21 22 

lo
g 1

0(
< 

cz
 >

 )
 

< m > 

log10( < cz > )-< m >-diagram with β0 = 0.7311668 and m0a = 
20.1346 



 27 

 

 

Figure 11. Standard deviations σm, i as a function of <zi>. 

 

If we consider the first and last point in the diagram as outliers and therefore simply do not take them into 

account when evaluating the magnitude-redshift diagram of the quasars, we find the parameters β0 = 0.5486497 

and m0a = 19.9555 for the values. 

Because of the differences to the values mentioned above, we might come up with the idea of taking the mean 

values of each of these. But we will not do that in the following. 

 

 

4.2 Number-redshift relation 

 

We use the following χ
2
-function to evaluate the number-redshift relation 
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pk with k = 1, 2 stands for the two parameters we are looking for, β0 and N0a. 

 

If we insert our number-redshift relation (46), the result is concrete 
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(54a) 

 

Using simple mathematics, we find N0a = 146,816 for the theoretically expected total number of quasars, if we 

use the value β0 = 0.7311668 found via the magnitude-redshift relation. 

The expected number is slightly larger than the actual number of quasars measured. This indicates a certain 

incompleteness of the measurements. 

 

Fig. 12 shows the graphic result. 

 

 

 

Figure 12. Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

Another possibility is to determine both parameters directly via the number-redshift relation, i.e. not to use the 

value of β0 from the magnitude-redshift diagram of the quasars. This leads to the parameter values N0a = 159,140 

and β0 = 0.8653211. Both values are slightly larger than those noted above. 

  

Overall, we could build a mean value using three different values of β0. However, we will not make use of this 

possibility in the following. 
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We use the measurement data from K. Nilsson et al. [2] to find an average linear size of the cosmic objects 

measured there. 

 

The starting point is the χ
2
-function 
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(55) 

 

Here, pk with k = 1, 2 stands for the two parameters we are looking for, β0 and δ / R0a. 

 

If we use our angular size-redshift relation (40), the result is concrete 
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(55a) 

 

The comparison of the theory with the measurement data using β0 = 0.7311668 results in a value of δ / R0a = 6.06 

x 10
-5

. 

 

Fig. 13 shows the graphic result. 
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Figure 13. Angular size-redshift diagram according to K. Nilsson et al. [2]. 

 

For the purpose of comparison, the theoretical curve from the literature [see Eq. (63)] was drawn in. This curve 

cannot explain the position of the measured values in the diagram. 

 

The determination of the linear size δ requires the knowledge of R0a. Because the absolute magnitudes are known 

for some SNIa (which differ slightly from one another), we can determine R0a using a magnitude-redshift 

diagram of these objects. We'll do that in the next chapter. 

 

 

4.4 Fixing of R0a with the help of SNIa 

 

By W. L. Freedman et al. [3], data from a total of 27 SNIa were made available, with the help of which we can 

determine both the distance R0a - a current distance - and, as a result, the today’s Hubble parameter H0. 

The data we are interested in are the distance modules (μTRGB and μCeph), the maximum apparent magnitudes 

(mCSP_B0 and mSC_B) and the radial velocities VNED, from which the redshifts zNED can be calculated. 
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The methods taken into account in [3] for determining the maximum apparent magnitude and thus the associated 

absolute magnitude are different, which is why somewhat different values are given for one and the same SNIa.  

For our purposes, we calculate the mean values from these data and assign them to the relevant SNIa. 

 

We calculate the absolute magnitudes Mi of the SNIai using (μTRGB - mCSP_B0) and (μCeph - mSC_B) and then always 

calculate an average value <Mi> if both value pairs are specified for one and the same SNIa. From all the 

absolute magnitudes obtained in this way, we finally form the mean value of the absolute magnitude <M> ≈ -

19.245, which enables us to determine the distance R0a with the aid of the parameter m0a, which results from the 

magnitude-redshift diagram of the SNIa. The simple equation for this is 
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The graphic result is shown in Fig. 14. 

 

 

 

Figure 14. Magnitude-redshift diagram for 27 SNIa according to W. L. Freedman et al. [3]. 

 

The theoretical curve lies exactly on the linear trend line (dashed in red), the equation of which is given in the 

figure. 

Using m0a ≈ 22.922 and the mean value of the absolute brightness <M> = -19.245, the distance R0a ≈ 2,712.48 

Mpc we are ultimately looking for is the essential result of this data analysis. 
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With the help of the value of R0a and using the equation (an approximation for small redshifts!) 

 

 

 

a

a

R

c
H

0

0

0

1
2

1
















 
 

 

(34)

 
 

the today's Hubble parameter H0 ≈ 65.638 km/(s Mpc) results. This value is slightly below the Planck value 

(2018) with H0, Planck ≈ 67.66 km/(s Mpc) [4].  

 

In Table 8 in the appendix, all the values we used for the magnitude-redshift diagram of the 27 SNIa are 

compiled. 

 

Starting from the equation 
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Eq. (57) results for today's mass density: 
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(57) 

 

With the theoretical parameters, β0 and R0a determined by us, we find ρ0 ≈ 4.843 x 10
-27

 g/cm
3
 for today's matter 

density in the universe. 
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(58) 

 

the constant mass of the Friedmann sphere results in MFS ≈ 1.206 x 10
56

 g. 

 

Because we generally do not consider the accuracy here, we simply specify the decimal places with up to 3 

places, whereby the mathematical analysis of the data usually delivers more decimal digits. 

 

Using Eq. (35) we find for the Schwarzschild radius RS ≈ 5,800.43 Mpc and the speed which is contained in Eq. 

(30) results in V0 ≈ 219,198.29 km/s. 
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With the known value R0a ≈ 2,712.48 Mpc we can calculate the mean linear size of the Nilsson objects [2] to be 

δ ≈ 0.164 Mpc, because we have found δ / R0a = 6.06 x 10
-5

 for them. 

Using R0a and β0, of course, all linear dimensions of these objects can be calculated using their angular size and 

redshift. 

 

 

4.5 Calculation of the further redshift distances for the SNIa and M87 

 

Because we were able to determine R0a, we can graphically display the further redshift distances in a form that is 

not normalized to R0a. The result is shown in Fig. 15, using the values we found for β0 and R0a. 

 

 

 

Figure 15. Redshift distance D (light path) and the further redshift distances Di (i = 0, e) and Rjk (j = 0, e; k = e, 

a) as a function of the redshift up to z = 11. 

 

To interpret Fig. 15: 

a) For D -> R0a the redshift z goes towards infinity. This means that no observer can observe objects for which is 

D ≥ R0a ≈ 2,712.48 Mpc. 

b) The light path distance D = R0a - Ree is always greater than the distance differences D0 (today) and De (then). 

In particular, the light path D is not equal to the today’s distance D0 between the two astrophysical objects. 
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c) The distances Rjk are physical distances from a coordinate origin and develop directly with the change in the 

scale parameter a(t) over time. For large redshifts, the scale parameter was correspondingly small and, as a 

result, the associated distances were also correspondingly small. 

d) The distance De at the that time (te) is interesting: It shows a maximum for a specific redshift and only 

approaches zero for very large redshifts. This is also the reason for the further approximation of D0 to D only for 

very large redshifts. 

 

Table 1 summarizes all calculated redshift distances of the 27 SNIa [Mpc]. 

 

SNIa Rea Ree R0e R0a De D0 D 

1980N 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

1981B 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1981D 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

1989B 2,706.26 2,702.02 2,708.23 2,712.48 4.25 4.26 10.47 

1990N 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1994D 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1994ae 2,698.51 2,689.00 2,702.92 2,712.48 9.52 9.57 23.49 

1995al 2,695.53 2,683.98 2,700.87 2,712.48 11.54 11.61 28.50 

1998aq 2,700.16 2,691.76 2,704.05 2,712.48 8.40 8.44 20.72 

1998bu 2,706.26 2,702.02 2,708.23 2,712.48 4.25 4.26 10.47 

2001el 2,703.04 2,696.60 2,706.02 2,712.48 6.44 6.46 15.88 

2002fk 2,695.72 2,684.31 2,701.00 2,712.48 11.41 11.48 28.17 

2003du 2,690.74 2,675.97 2,697.59 2,712.48 14.78 14.90 36.51 

2005cf 2,692.33 2,678.63 2,698.68 2,712.48 13.70 13.81 33.86 

2006dd 2,700.72 2,692.70 2,704.43 2,712.48 8.019 8.054 19.78 

2007af 2,694.66 2,682.53 2,700.27 2,712.48 12.13 12.21 29.95 

2007on 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

2007sr 2,697.17 2,686.74 2,702.00 2,712.48 10.43 10.49 25.74 

2009ig 2,689.75 2,674.30 2,696.90 2,712.48 15.45 15.58 38.18 

2011by 2,700.16 2,691.76 2,704.05 2,712.48 8.40 8.44 20.72 

2011fe 2,708.37 2,705.56 2,709.67 2,712.48 2.81 2.81 6.92 

2011iv 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

2012cg 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

2012fr 2,700.75 2,692.76 2,704.45 2,712.48 7.99 8.03 19.72 

2012ht 2,699.45 2,690.58 2,703.56 2,712.48 8.88 8.92 21.91 

2013dy 2,699.79 2,691.13 2,703.79 2,712.48 8.65 8.69 21.35 

2015F 2,701.03 2,693.23 2,704.64 2,712.48 7.81 7.84 19.26 

 

Table 1. Redshift distance D and the further redshift distances Di and Rjk of all 27 SNIa. 
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To interpret the distances from Table 1: 

For a more detailed explanation, we take the SNIa 2006dd, for example, and use it to interpret the meaning of 

the distances in the table. 

The "light-travel time" always means the time interval between the emission of light (time te, 2006dd) by the SNIa 

2006dd and today (t0), i.e. Δt = t0 - te, 2006dd. This light-travel time is generally different for all observable cosmic 

objects, here especially for the individual SNIa we have considered. 

 

a) Today's (t0) distance between the selected SNIa and us as observers is D0 ≈ 8.054 Mpc. 

b) The then (te) distance between this SNIa and us as observers was De ≈ 8.019 Mpc. 

According to this, the distance between the two cosmic objects has increased by about 0.035 Mpc during the 

light-travel time Δt = t0 - te, 2006dd. 

c) The SNIa has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 11.73 

Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observers has been expansively shifted away from the origin of the coordinates by ΔRa 

= R0a - Rea ≈ 17.765 Mpc during the light-travel time due to a(t). 

The difference between the two displacement distances is of course the increase in the distance between the two 

cosmic objects noted above. 

e) The light path covered by the photons within the time Δt = t0 - te, 2006dd (redshift distance) is D ≈ 19.78 Mpc. It 

is unequal to the other mentioned distances Di and greater than these. 

 

 

4.6 Evaluation of the data from the black hole in M87 

 

For the sake of simplicity, we summarize the data taken from the literature on the galaxy M87 with the black 

hole (BH) in it in the first line of Table 2 {see [5] and [6]}. 

The second line lists the data specified here, which usually differ from those in the literature. 

 

 

D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.45 -21.84 

   

0.227 2.3584E+45 

 

Table 2. Summary of data from galaxy M87 with the black hole in it. 

 

The theory was adapted to the measured angle size ΘBH from the literature. Overall, a larger redshift distance D, 

a smaller absolute magnitude MB and a significantly larger mass MBH of the black hole follow. 

 

 

Table 3 lists the values found by means of our theory for all redshift distances Rjk, Di and for D. 
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[ Mpc ] Rea Ree R0e R0a De D0 D 

we 2,700.92 2,693.03 2,704.56 2,712.48 7.89 7.92 19.45 

literature --- --- --- --- --- --- 16.8 

 

Table 3. Redshift distances Di, D and Rjk from the black hole in M87. 

 

From these values, the expansion-related shifts in distance of the galaxy M87 and of the galaxy with us as 

observers can be calculated, which took place during the time of light travel. 

 

The theory from the literature does not know the first 6 listed distances. It can therefore not be calculated using 

this theory and also not determine in terms of value. 

 

The distance D differs because of the physical meaning: In our theory, D is the real physical light path, which is 

not the case in the literature. 

 

We briefly interpret the meaning of the distances in Table 3, whereby the light-travel time is again defined as 

above: 

a) Today's (t0) distance between the black hole (BH) or the galaxy M87 and us as observers is D0 ≈ 7.92 Mpc. 

b) The then (te) distance between the BH (or M87) and us as observers was De ≈ 7.89 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.03 Mpc during the light-

travel time Δt = t0 - te, BH, M87. 

c) The BH (or M87) has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

11.53 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observer was expansively shifted away from the origin of the coordinates by ΔRa = R0a 

- Rea ≈ 11.57 Mpc during the light-travel time due to a(t). 

e) The light path (redshift distance) covered by the photons during the time Δt = t0 - te, BH, M87 is D ≈ 19.45 Mpc. 

It is unequal to the other mentioned distances Di and greater than these. 

 

Fig. 16 shows the various calculated distances in a clear form. 
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Figure 16. Visualization of the distances Di, D and Rjk with regard to M87 and observer. 

 

Note: The distances are not drawn to scale here. 

 

 

4.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 

 

The galaxy UDFj-39546284 [8] currently holds the record among the galaxies with a redshift of z = 10.3, while 

the quasar J0313 [7] with z = 7.642 holds the analog record among the quasars. 

 

Table 4 shows the corresponding distances Rjk, Di and D together. 

 

object name z D D0 De Ree R0e Rea R0a object 

J0313 7.642 2,681.858 1,789.782 207.103 30.622 264.636 313.872 2,712.480 quasar 

UDFj-39546284 10.300 2,703.075 1,905.566 168.634 9.405 106.281 240.042 2,712.480 galaxy 

 

Table 4. All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts. 

 

Table 5 summarizes the spatial shifts of the objects with respect to the coordinate origin due to the expansion 

during the associated light travel times. 
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object name R0e - Ree R0a - Rea object 

J0313 234.014 2,398.608 quasar 

UDFj-39546284 96.876 2,472.438 galaxy 

 

Table 5. Expansion-related shifts in the distance of the quasar and the galaxy. 

 

We have already explained above how the tables are to be interpreted. 

 

Fig. 17 shows the distances Di and D of the 3 special astrophysical objects analyzed here in one diagram, 

whereby we have entered all numerical values for the distances in Mpc. 

 

 

 

Figure 17. All distances Di and D for M87, J0313 and UDFj-39546284. 

 

The middle curve shows the current distances D0 of the objects from us as observers. These distances are clearly 

smaller than the associated light paths D. 

 

5 Additions 

 

5.1 About the mass of Friedmann sphere 
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The cause of the expansion of the universe visible to us as observers is its constant mass M or the time-varying 

density ρM(t), respectively. It ensures that the scale parameter changes over time. To check this statement, simply 

set the matter density in the Friedmann equation to zero. 

 

Every cosmologist therefore has to ask himself where exactly this mass is located in the universe. He can gain an 

answer for this by borrowing the appropriate ideas from classical non-relativistic Newtonian cosmology. There 

he has to imagine a mass sphere whose radius changes over time (e.g. grows). This means that the mass in 

question is completely within this sphere, and it is evenly distributed and remains there according to the 

cosmological principle. In relativistic cosmology, the time depend product of scale parameter and coordinate 

distance R(t) = a(t) r takes over the role of the physical radius of the mass sphere, and it holds that the entire 

mass to be considered is inside this sphere (Friedmann sphere named here).  

 

Incidentally, the Friedmann equation of the flat universe looks strangely exactly as the equation of the non-

relativistic Newtonian cosmology. There is no relativity seen in the equation e.g. in the sense of limiting the rate 

of change da/dt of the scale parameter to the speed of light. 

 

The Fig. 18 shows the projection of a Friedmann sphere in to the plane at time t0 (today) in which examples of 

possible places for an observer and galaxy observed are drawn. 
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Figure 18. Friedmann sphere with examples of physical locations of an observer and a galaxy. 

 

Because of the law of conservation of mass  
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(36a)

 
 

which is used here we see that R0a is today's radius of the Friedmann sphere with today's mass density ρ0. 

 

An observable galaxy can minimally have the co-moving coordinate with re = 0. If a galaxy is placed there, we 

observe an infinitely large redshift for such a galaxy according to our redshift distance. For all other locations re 

≠ 0 of an observed galaxy, a smaller redshift is always measured. 

 

Because an infinitely large redshift is always observed for the light path D = R0a, it can be assumed that in the 

physical radius R0a = a0 ra of a Friedmann sphere, the co-moving coordinate ra has the maximum possible value r 

= 1 according to the complete FLRWM. R0a therefore describes the maximum size of the Friedmann sphere, 

which of course is time-dependent. This maximum value of the co-moving and dimensionless radial coordinate r 

follows from the FLRWM with positive curvature ε = 1 and, from our point of view, can theoretically not simply 

be neglected despite the flat space-time assumed for today's universe. 

 

Of course, each observer can also e.g. look in exactly the opposite direction to the direction shown (green 

arrow). In this case, he looks again into a Friedmann sphere, which belongs to this direction. For D = R0a there is 

also an infinite redshift in this direction. The observer can of course also look in any other directions. The 

observer always looks into Friedmann spheres, which of course partially overlap. 

 

Overall, there is a part of the universe with a spherical radius R0a, that is visible to any observer. A universe 

thought to be spherical corresponds to at least one sphere with the radius 2∙R0a, since beyond R0a there is always 

also mass. Every observer sits on the surface of Friedmann spheres. Nevertheless, he can believe that his place is 

also in a center of such a Friedmann sphere. 

 

If we would put the position of an observer a little outside the Friedmann sphere shown in Fig. 18, he would find 

the same situation as described above, if the universe would be actually much larger than a sphere with the 

radius 2∙R0a or even infinitely large. 

 

 

5.2 About the derivation of the redshift distance in the literature 

 

In the literature, the observer is usually placed in the coordinate origin ra = 0 (see Fig. 19). Because of re ≥ ra = 0, 

this results in the light path simply as Dliterature = a0 re. This depends only on the co-moving coordinate location re 

of the observed galaxy and on the today’s value of the scale parameter a0. An earlier scale parameter such as ae 

does not play a role in this approach, which we consider as a strong limitation of the generality.  
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In this case, the photons run inside a mass sphere from the outside to the inside, i.e. always towards the origin ra 

= 0 (incoming photons). Any other way of defining Dliterature would be physically nonsense. 

 

 

 

 

Figure 19. Observer generally placed on the center of the co-moving coordinate system (ra = 0). 

 

The calculation analogous to our derivation of the redshift distance (see chapter 2.2) results first in 
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(59) 

 

We have denoted the index of the maximum distance for which z = ∞ is reached with 0, because the calculation 

based on Dliterature, i = a0 re, i generally gives the today’s distance between any galaxy i and any observer. 

 

In the literature, the magnitude distance is indicated with 

 

   ,1 literaturem DzD   (60)
 

 

whereby with the help of factor (1 + z) an overall thinning of the number of photons due to the enlargement of 

the spherical area on which the radiation hits after its way through the universe and the energy loss due to the 

redshift is taken into consideration. 

 

So it results first in 
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Here, too, the prefactor is a distance parameter for which can be introduced an apparent magnitude. 

 

If, in a case which is also possible, the observed galaxy (each one because there are many; see Fig. 20) each 

placed to its own coordinate origin (outgoing photons), the result of calculation - for obvious reasons of 

symmetry - is of course the same redshift distance as above. This can easily be checked by means of an 

elementary calculation. 

 

 

 

Figure 20. Observed galaxies (i = 1, 2) each in their own coordinate origin (re,i = 0). 

 

Therefore, this results for the magnitude-redshift relation in 
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For the angular size-redshift relation we find 
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For the number-redshift relation we get accordingly 
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All three equations also result from the well-known Mattig equation (1958), if the delay parameter q0 = 1/2 is set 

there, whereby this equation describes a flat universe {see e.g. A. R. Sandage et al. [10]}. 

 

We have used Eq. (63) in the measured value diagram Fig. 13 for comparison with the theory presented here. 

 

 

5.3 Consideration of the radiation density in the early days of cosmological expansion 

 

When deriving the redshift distance in chapter 2.2, we neglected the relativistic radiation density ρR that was 

originally dominant in the early days of the universe. The reason for this is that today, actually for several billion 

years, this density no longer plays a role in the further development of the universe over time due to its small 

value compared to the non-relativistic mass density ρM. 

 

If this radiation density is taken into account from the start when deriving the redshift distance according to the 

scheme in chapter 2.2 the result is a more complex redshift distance because it then also dependent on a further 

parameter: 

 

 

mattericrelativistnonMindexradiationRindextodayindex

and
R

R
andraRwith

z
z

z

R
RzD

M

R

RMRM

S

a

RM

aa

RM

RM

RM

a
RMRMaRM





























































:::0

12
1

.
1

1

1

1
1

)1(
),,;(

,0

,0

,0,0
0

,0

00

,0

,0

,0

0
,0,00










 

 

 

 

 

 

(65) 

 

Here the current density quotient Ω0,RM is included as a further parameter, which takes into account the very 

early radiation era. For today's radiation density, the designation ρ0,R was introduced again and today's non-

relativistic mass density was named ρ0,M. The parameter β0,RM corresponds to our parameter β0 in Eq. (31). 
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With the numerical values for today's density quotient Ω0,RM mentioned in chapter 1, it can be seen immediately 

that ρ0,R or Ω0,RM can actually be neglected. 

 

In addition, when comparing Eq. (65) with the measured values (e.g., magnitude-redshift diagram of the 

quasars), there is no longer any effect fitting the measurement curve for a density quotient smaller then Ω0,RM ≈ 

0.01. 

 

If we set Ω0,RM = 0 in Eq. (65) - this corresponds to our neglect of today's radiation density ρ0,R - we get Eq. (31) 

again. Accordingly, this Eq. (31) is actually valid as today's redshift distance, containing the parameters R0a and 

β0,RM =  β0 only. 

 

 

6. Final considerations 

 

6.1 Hubble parameter 

 

At this point we explicitly point out that our equation of today's Hubble parameter - which also only applies to 

very small redshifts - differs significantly from the definition (!) used in the literature: 
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For an arbitrary point in time t this is 
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The index a generally indicates the proximity to the observer (r = ra). 
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In our theory, the numerator contains the constant physical speed of light c in a vacuum, while the current, i.e. 

variable, spatial expansion speed (da/dt) can be found at this point in the literature. 

 

In the more recent past - time tx - our distance from the coordinate origin Rxa < R0a was slightly smaller than the 

current one and the Hubble parameter was therefore correspondingly larger (also via the parameter βx). 

 

In the case of the Hubble parameter in literature, the - actually non-physical - spatial expansion speed da/dt can 

have been arbitrarily large and, in addition, the scale parameter a(t) arbitrarily small. 

Both types of Hubble parameters therefore show completely different behavior! 

 

In addition, our Hubble parameter is actually made up of physical quantities, while the Hubble parameter in the 

literature is only defined using the non-physical scale parameter a(t), even if the latter can be assigned a suitable 

unit of measurement - e.g. Mpc. This means that a(t) per se is not a physical distance. This meaning only applies 

to the real physical distance R(t) = a(t) r and the differences that can be calculated from it. 

 

The Hubble parameter is the proportionality factor between the Hubble speed VH = cz and a distance, i.e. the 

actual Hubble law applies 
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For the redshift z it simply follows 
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(68) 

 

In the literature, the redshift z is therefore dependent on the ratio of the current speed of the observer (his galaxy) 

related to the origin of the coordinates to the speed of light in the product with the ratio of an object distance D lit 

and the current distance of the observer's galaxy from the origin of the coordinates. 
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Our redshift, on the other hand, is dependent on the ratio of the light path distance D and the current distance of 

the observer galaxy from the coordinate origin R0a and is besides proportional to the factor that contains the 

parameter β0. 

Using the parameter β0 
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we see in our case 
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(70) 

 

i.e. an direct dependence on the Schwarzschild radius RS, or more precisely on the ratio R0a to RS. 

 

Overall, it is somewhat unclear in the literature what exactly corresponds to the distance Dlit. A example for this 

statement is, that the Eq. (66b) can also be written as 

 

  .0,000,00 literatureRHRoraHa alitalit    (66c) 

 

Fig. 21 shows the difference between the non-approximated redshift distance D and the linear Hubble redshift 

distance that is approximated. 

 



 47 

 

 

Figure 21. Non-approximated redshift distance D compared to the linear Hubble redshift distance. 

 

It can be seen that the two curves already clearly separate from each other at z ≈ 0.03, and that Hubble's law 

results in distances that are significantly too large for larger redshifts, so that it is no longer applicable from 

around this value. 

 

Recall: 

Of course, it should be noted that the Hubble parameter H0a in our theory results from an approximation for 

small redshifts z. 

 

 

6.2 Mean values 

 

If we replace in the Eq. (38) 
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the parameter m0a using Eq. (56a) containing the absolute magnitude M 

 

 

0 

500 

1000 

1500 

2000 

2500 

0 0,1 0,2 0,3 0,4 0,5 

D
( 

z 
)  

z 

D( z ) with R0a = 2,712.48 Mpc and β0 = 0.7311668 
real redshift distance linear Hubble law 



 48 

 

 

    pcRMRm aaa  00100 5log5  (56a)
 

 

we get 

 

    .5log51log5
1

1
1

1
log5),;( 01010

0

1000 MRzz
z

Rzm aa 





















  

 

(71) 

 

From this equation it follows immediately 
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We have introduced the distance modulus μ = m - M. 

 

Note: 

While the redshift z and the apparent magnitude m are actual measurable variables, the distance modulus μ has 

to be regarded as a parameter because the absolute magnitude M cannot be measured directly. 

 

The parameter β0 is known to us from the evaluation of the quasar catalog by Véron-Cetty [1]. In [3] the 

following parameters characterizing all 27 SNIa are given: absolute magnitude MB, redshift z and maximum 

apparent magnitude mB. 

This allows us to calculate the associated R0a, i for all SNIai (i numbers the individual SNIa). Table 6 shows the 

result: 

 

zi R0a,i [ Mpc ] zi R0a,i [ Mpc ] zi R0a,i [ Mpc ] 

0.00435635 2,685.59 0.00229826 2,989.52 0.00845251 2,160.13 

0.00350242 2,620.06 0.00349242 3,130.03 0.00456316 2,811.99 

0.00435635 2,685.59 0.00621763 3,059.04 0.00151772 2,602.36 

0.00229826 2,868.15 0.00807892 2,850.38 0.00435635 2,636.57 

0.00350242 3,608.37 0.00748518 2,242.44 0.00350242 2,749.87 

0.00350242 2,699.68 0.00435635 2,685.59 0.00434300 2,543.10 

0.00517691 3,137.28 0.00661458 2,079.37 0.00482667 2,956.51 

0.00629102 2,821.83 0.00435635 2,636.57 0.00470325 2,488.62 

0.00456316 3,069.12 0.00567726 2,088.18 0.00423960 2,902.49 

< R0a > = 2,733.65 

     

Table 6. Various distances R0a, i of the 27 SNIai calculated using the distance modules μi. 
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It may seem strange that we get a different value for R0a, i for each SNIai, which is actually the current physical 

distance of the observer from the coordinate origin (r = 0). In particular, the R0a, i for almost equal redshifts zi 

should match! 

But if we form the mean value of the 27 calculated values R0a, i, we find <R0a> ≈ 2,733.65 Mpc. This value is 

very close to the value R0a ≈ 2,712.48 Mpc, which we found above. 

 

Overall, we must obvious conclude that the part of cosmology we are considering is essentially a science of 

averages. 

In principle, this could be seen clearly from the beginning, if we retrospectively look a little more closely about 

the evaluation we carried out, e.g. the quasar catalog and the subsequent finding of R0a. 

 

Only the consideration of a large number of cosmic objects of the same kind results in the correct values of 

astrophysically and cosmologically relevant quantities, respectively, which then are partly mean values only. 

 

 

7. Concluding remarks 

 

The light path D(z) of the photons through the expanding universe corresponds to a dynamic distance and is 

therefore an apparent one. This distance is not identical to the today’s distance D0(z) between the objects. 

For every conceivable observer, the cosmic objects are not spatially where they appear at first glance! 

In cosmology, nothing is what it seems to be if we look at big distances. 

 

Of course, all cosmologically relevant astrophysical objects have a today’s distance D0(z). However, this is not 

observable, but we can calculate it. 

Photons emitted at this distance from the observed galaxy cannot have reached us so far. 

 

A fundamental property of quantum mechanics is that it can only make probability statements about the 

microscopic objects it deals with. Here it is seen that both the measuring and the theorizing astrophysics and 

cosmology, respectively, strictly speaking, can only make statements about mean values of very distant and large 

numbers of objects. 

This may be one of the reasons why both theories - the theory for the extremely small and the theory for the 

extremely large - do not fit together; i.e. cannot be merged together. 

 

 

 

Note of thanks: 

I would like to thank my wife Gudrun for the long-standing toleration and the corresponding endurance of my 

almost constant virtual absence. What would I be without her?! 
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8. Appendix 

 

In this table appendix, we provide the essential data that we have used and some of the data that we have edited 

or generated for general purposes. 

 

< V >i < z >i σm,i < V >i < z >i σm,i < V >i < z >i σm,i 

17.12072194 0.269543711 1.25551062 19.5118161 1.28508799 0.79265674 19.7439932 1.86740102 0.8223715 

18.42994924 0.434725324 0.69496662 19.4960406 1.30997857 0.82617985 19.7431839 1.90379949 0.8745066 

18.77986464 0.514410603 0.68208433 19.5406994 1.33635871 0.79628275 19.73815 1.91629442 0.85608298 

18.92177101 0.571495206 0.70268585 19.5648675 1.36044896 0.84936023 19.7370051 1.94113536 0.83013271 

19.01993232 0.621120135 0.69571033 19.5526283 1.38646193 0.85285126 19.6390299 1.96661139 0.91303871 

19.07454597 0.665043993 0.72385254 19.5667343 1.41249746 0.82510058 19.7247377 1.99498872 0.83486627 

19.10685279 0.710045685 0.76943643 19.5917766 1.43823632 0.84883691 19.7073435 2.02761873 0.85770271 

19.20756345 0.750830795 0.74776464 19.5835759 1.46348111 0.81435344 19.7225437 2.05895826 0.83582282 

19.23878173 0.788362662 0.82397969 19.6146701 1.4877084 0.77561435 19.7209927 2.09067964 0.87548608 

19.34673999 0.823077834 0.84208852 19.6560914 1.50872984 0.80798031 19.7166723 2.12286464 0.87190043 

19.35605189 0.857111675 0.83026192 19.6421545 1.53039989 0.82193001 19.7562211 2.15726452 0.83914146 

19.35379019 0.889902425 0.83562264 19.6730062 1.55031021 0.78502817 19.6955838 2.1915251 0.87311109 

19.35354202 0.925268472 0.83309066 19.669718 1.57141117 0.81671189 19.7102256 2.23148844 0.89180926 

19.36111675 0.958962211 0.80795962 19.691489 1.59370615 0.79783244 19.6203328 2.27565595 0.8814518 

19.36687535 0.99085674 0.81407063 19.6689622 1.61663057 0.79869119 19.6516638 2.32895262 0.90747466 

19.39208122 1.021072758 0.83447413 19.7130344 1.64024196 0.79496734 19.7034969 2.39616356 0.89952989 

19.41216018 1.049862944 0.81581048 19.7208742 1.66227637 0.79948606 19.6915454 2.47184715 0.93743249 

19.43737733 1.076128596 0.81828949 19.7568415 1.68460462 0.79535961 19.7660462 2.57089058 0.97654953 

19.47736041 1.10186802 0.79353868 19.6973942 1.70912747 0.83259167 19.7708009 2.71401918 0.95905229 

19.4307727 1.129618161 0.80360659 19.7453187 1.7323057 0.83488167 19.7781162 2.90122279 0.85728912 

19.45345178 1.157690919 0.80262312 19.7723632 1.75403384 0.80160723 19.9208291 3.05796277 0.78948482 

19.4499718 1.18469656 0.81310891 19.7568754 1.77625888 0.80788436 20.0279357 3.20401523 0.77347127 

19.50609701 1.208890017 0.7810332 19.7599436 1.79742358 0.80969081 20.2283362 3.40521263 0.78550396 

19.48940778 1.233098139 0.80906834 19.7587704 1.82113988 0.83363286 20.5549521 3.7254264 0.73269653 

19.47597857 1.259028765 0.79685819 19.7435195 1.84394303 0.82211045 21.3169261 4.34427862 1.27303027 

 

Table 7. Mean values from the quasar data set used according to [1]. 

 

<z>i (with i = 1, ..., 75) are the 75 mean values of the redshifts of the quasars in the redshift intervals formed. 

<V>i are the associated 75 mean values of the apparent visual magnitude of the quasars. 

σm, i are the standard deviations with respect to the apparent magnitudes (m-axis in the redshift-magnitude 

diagram). 

 

zi (end of interval) Ni zi (end of interval) Ni 

0.24669 622 3.45369 128,884 

0.49338 3,891 3.70038 130,205 

0.74008 12,827 3.94708 131,357 

0.98677 25,495 4.19377 132,019 
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1.23346 41,724 4.44046 132,432 

1.48015 58,818 4.68715 132,669 

1.72685 78,456 4.93385 132,848 

1.97354 97,109 5.18054 132,902 

2.22023 110,358 5.42723 132,924 

2.46692 117,810 5.67392 132,932 

2.71362 121,463 5.92062 132,949 

2.96031 123,820 6.16731 132,972 

3.20700 126,835 6.41400 132,977 

 

Table 8. Numbers Ni summed up in the redshift intervals zi of the quasars according to [1]. 

 

SNIa μTRGB μCeph μ or <μ> mCSP_B0 mSC_B mB or <mB> Mi or <Mi> VNED z 

1980N 31.46 

 

31.46 12.08 

 

12.08 -19.38 1,306.00 0.004356347 

1981B 30.96 30.91 30.94 11.64 11.62 11.63 -19.31 1,050.00 0.003502423 

1981D 31.46 

 

31.46 11.99 

 

11.99 -19.47 1,306.00 0.004356347 

1989B 30.22 

 

30.22 11.16 

 

11.16 -19.06 689.00 0.002298257 

1990N 

 

31.53 31.53 12.62 12.42 12.52 -19.01 1,050.00 0.003502423 

1994D 31.00 

 

31.00 11.76 

 

11.76 -19.24 1,050.00 0.003502423 

1994ae 32.27 32.07 32.17 12.94 12.92 12.93 -19.24 1,552.00 0.005176915 

1995al 32.22 32.50 32.36 13.02 12.97 13.00 -19.37 1,886.00 0.006291019 

1998aq 

 

31.74 31.74 12.46 12.24 12.35 -19.39 1,368.00 0.004563157 

1998bu 30.31 

 

30.31 11.01 

 

11.01 -19.30 689.00 0.002298257 

2001el 31.32 31.31 31.32 12.30 12.20 12.25 -19.07 1,047.00 0.003492416 

2002fk 32.50 32.52 32.51 13.33 13.20 13.27 -19.25 1,864.00 0.006217635 

2003du 

 

32.92 32.92 13.47 13.47 13.47 -19.45 2,422.00 0.008078922 

2005cf 

 

32.26 32.26 12.96 13.01 12.99 -19.28 2,244.00 0.007485178 

2006dd 31.46 

 

31.46 12.38 

 

12.38 -19.08 1,306.00 0.004356347 

2007af 31.82 31.79 31.81 12.72 12.70 12.71 -19.10 1,983.00 0.006614576 

2007on 31.42 

 

31.42 12.39 

 

12.39 -19.03 1,306.00 0.004356347 

2007sr 31.68 31.29 31.49 12.30 12.24 12.27 -19.22 1,702.00 0.005677261 

2009ig 

 

32.50 32.50 13.29 13.46 13.38 -19.13 2,534.00 0.008452514 

2011by 

 

31.59 31.59 12.63 12.49 12.56 -19.03 1,368.00 0.004563157 

2011fe 29.08 29.14 29.11 9.82 9.75 9.79 -19.33 455.00 0.001517717 

2011iv 31.42 

 

31.42 12.03 

 

12.03 -19.39 1,306.00 0.004356347 

2012cg 31.00 31.08 31.04 11.72 11.55 11.64 -19.41 1,050.00 0.003502423 

2012fr 31.36 31.31 31.34 12.09 11.92 12.01 -19.33 1,302.00 0.004343005 

2012ht 

 

31.91 31.91 12.66 12.70 12.68 -19.23 1,447.00 0.004826672 

2013dy 

 

31.50 31.50 12.23 12.31 12.27 -19.23 1,410.00 0.004703254 
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2015F 

 

31.51 31.51 12.40 12.28 12.34 -19.17 1,271.00 0.0042396 

      

<M>= -19.24 

   

Table 9. Summary of the data which we used from the 27 SNIa according to [3]. 

 

SNIa values that can be traced back to a mean value are marked in green (bold). 

The individual meanings of the data can be found in the article mentioned. 

 

The data for the angular-size redshift diagram can be found in full in [2]. 
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