
1

Matrix Exponential Computational Algorithm

Kenneth C. Johnson

KJ Innovation

(Posted 14-Mar-2022.)

http://vixra.org/

Abstract

A numerical algorithm for the matrix exponential is developed, based on the scale-and-

square method applied to a Padé approximant for small-norm matrices.

1. Introduction

A generalized Padé approximation method for numerically solving nonhomogeneous,

coupled linear differential equations with non-constant coefficients was developed in [1, 2]. This

paper refines and simplifies that work for the homogeneous, constant-coefficient case:

 [] []
d

F x D F x
dx

= (1)

where []F x is a vector function of scalar argument x and D is a constant, square matrix. (In

this paper square braces “[]” delimit function arguments while round braces “ () ” are

reserved for grouping.) The solution of Eq. (1)

 [] exp[] [0]F x x D F= (2)

The matrix exponential is calculated by the scale-and-square method:

 times

2 2 2 2exp[] exp[2] ((exp[2]))
p

p

p pX X X− −= = (3)

where exp[2]p X− approximated by a rational polynomial (Padé approximation)

 1 1 1exp[2] [2] [2]p p pX P X P X− − − − − − − (4)

(P is a polynomial function.)

The scaling power p is chosen to achieve a specified relative tolerance limit in the

approximation error. Denoting the []F x approximation error as []F x , the tolerance condition

is

 [] []F x F x  (5)

Formulas for the P polynomial coefficients, approximation error bound, and choice of scaling

power p are developed. The squaring operation in Eq. (3) can be susceptible to numerical

roundoff error in the matrix diagonal, but an alternative squaring operation is used to avoid the

precision loss.

The algorithm improves upon the accuracy and runtime performance of the MATLAB®

expm function [3, 4]. An implementation is posted on the MathWorks® File Exchange [5].

http://vixra.org/

2

2. The Padé approximation

Following the method described by Gautschi [6], an order- n Padé approximant to exp[]x D

is derived by applying 2 1n+ integration-by-parts operations to the following expression,

2

2 1 2 2 2 2 2

0

exp[]() (1) exp[] ()
n j

h
n n j n j n

jh
j

x h

x h

d
D x D x h dx D x D x h

dx

+ −

−
=

=

=−

− = − − (6)

The derivative factor is expanded via the general Leibniz rule,

()2 2

0

0

() () ()

!
() ()

!()!

! ! !
() ()

!()! ()! ()!

j j
n n n

j j

k j kj
n n

k j k
k

j
n k n j k

k

d d
x h x h x h

dx dx

j d d
x h x h

k j k dx dx

j n n
x h x h

k j k n k n j k

−

−
=

− − +

=

− = + −

  
= + −  

−   

  
= + −  − − − +  





 (7)

At the lower integration limit (x h= −) the ()n kx h −+ factor is nonzero only if k n= , and at the

upper limit (x h=) the factor ()n j kx h − +− is nonzero only if k j n= − . With j k , neither

condition holds when ;j n hence the summation terms 0, 1j n= − vanish in Eq. (6) and the

sum reduces to

()

2
2 2 2

0

2
2 2

(1) exp[] ()

! !
(2) exp[] (2) exp[]

()!(2)!

x h
n j

j n j n

j
x hj

n
n j n j

j n

d
D x D x h

dx

n j
h D h D h D h D

j n n j

=

−

=−=

− −

=

− − =

− − −
− −





 (8)

The summation index j is replaced by 2n j− and the result is substituted back into Eq. (6) to

obtain

2 1

2 2exp[]() []exp[] []exp[]
(2)!

n
h

n

h

D
x D x h dx P h D h D P h D h D

n

+

−
− = − − − (9)

where1

0

[]
n

j

j

j

P X c X
=

= (10)

1

0

!(2)!2 1
1

(2)! !()! ! 2

j j

j

k

n n j k
c

n j n j j n k

−

=

 −
= = − 

− − 
 (11)

1 The function []P h D corresponds to []Q h− in [1] and corresponds to “ [,](2)P n n h D ” in [5].

3

Denoting the P function for Padé order n as
nP , the polynomial coefficients jc for

nP can be

efficiently calculated from the following recursion formula. (I is an identity matrix.)

0

1

2

1 12

[] ,

[] ,

[] [] []
4 1

n n n

P X

P X X

X
P X P X P X

n
+ −

= 


= + 

= +
− 

I

I (12)

An algorithm for calculating []P X with a minimal number of matrix multiplies is outlined in the

Appendix.

A factor of exp[]hD is multiplied into both sides of Eq. (9),

2 1

2 2exp[()]() []exp[2] []
(2)!

n
h

n

h

D
x h D x h dx P h D h D P h D

n

+

−
+ − = − − (13)

For sufficiently small h the left side of Eq. (13), which is of order 2 1nh + , can be neglected. This

leads to the Padé approximation,

1exp[2] [2] [] []h D h D P h D P h D− = − (14)

1exp[2]p h D+ is approximated as [2]ph D ,

 1 2 2exp[2] exp[2] [2]
p pp h D h D h D+ =   (15)

The right side of Eq. (15) is an approximation to exp[]x D for 12px h+= . Note that even with

the approximation, the relation 1exp[] exp[]x D x D −− = holds exactly (from Eq. (14)):

 ()2 2
1

[2] [2]
p p

h D h D
−

 − =  (16)

For small h , [2]h D is close to an identity matrix (I) and the matrix diagonal’s precision

is limited by the dominant I term. To avoid precision loss, exp[]x D can be calculated initially

with the identity function subtracted off. Eq. (14) is modified as

 1[2] [] ([] [])h D P h D P h D P h D− − = − − −I (17)

The squaring operation (2  ) is implemented using the relation

 2 2() 2() − = − + −I I I (18)

This operation is applied to [2]h D −I p times to obtain 2[2]
p

h D − I , after which I is

added into the result.

4

3. Error analysis

The relative error in the exp[2]h D approximation, denoted as [rel][2]h , is defined by

 [rel][2] ([2])exp[2]h D h h D = +I (19)

The relative error in 1exp[2]p hD+ (i.e., 2exp[2]
p

h D) is denoted as [rel] 1[2]p h + and is similarly

defined by

 2 [rel] 1 2[2] ([2])exp[2]
p pph D h h D + = +I (20)

These definitions imply the following relation between [rel][2]h and [rel] 1[2]p h + ,

 [rel] 1 [rel] 2[2] ([2])
pp h h ++ = +I I (21)

The error [rel][2]h is required to be within the bound

[rel][2]h  (22)

where is the Frobenius norm (the root-sum-square of the matrix elements). This implies the

bound

[rel] 1 [rel] 2 [rel] 2

2 2

[2] ([2]) (1 [2]) 1

(1) 1 exp[] 1 exp[2] 1

p p

p p

p

p

h h h  

  

+ = + −  + −

 + −  − = −

I I
 (23)

 is defined by

 exp[2] 1 , 2 log[1]p p  −− = = + (24)

(The log[1]+ factor can be calculated accurately with MATLAB’s log1p function.)
[rel] 1[2]p h + is thus within the bound

[rel] 1[2]p h +  (25)

With 12px h+= , this implies Eq. (5)

1 2 1 [rel] 1 1

[rel] 1 1 [rel] 1 1 1

[2] ([2] exp[2]) [0] [2]exp[2] [0]

[2] [2] [2] [2] [2]

pp p p p

p p p p p

F h h D h D F h h D F

h F h h F h F h

 

 

+ + + +

+ + + + +

=  − =

=   
 (26)

(from Eq’s. (2), (14), (20), and (25)).

The following formula for [rel][2]h is obtained by eliminating []P h D between Eq’s. (13)

and (14), and substituting Eq. (19):

2 1

[rel] 1 2 2[2] [] exp[()]()
(2)!

n
h

n

h

D
h P h D x h D x h dx

n


+
−

−
= − − − − (27)

A bound on
[rel][2]h is determined by separating Eq. (27) into three factors and establishing a

separate bound for each factor,

5

 [rel] 1[2] ([] []) ([]exp[])h P h D P h D P h D h D −= − − −  (28)

where

2 1

2 2exp[]()
(2)!

n
h

n

h

D
x D x h dx

n

+

−
 = − (29)

The divisor in the first factor of Eq. (28) is approximately quadratic in :h [] []P h D P h D− =
2 2 4/ (2 1)h D n Oh− − +I . The following bounding condition is applied to the divisor, with R

representing the two right-hand factors in Eq. (28),

1 1

[] [] 1

([] []) (1 [] [])

P h D P h D

P h D P h D R P h D P h D R− −

− −  →

−  − − −

I

I
 (30)

This (30) follows from the general relation
1 1() (1)A R A R− −+  −I when 1A  :

1 1

1 1

() () (1)
jj

j j

A R R A R R A R A R
 

− −

= =

+ = + −  + = − I (31)

The matrix product [] []P X P X− has a Taylor series of the form2

2 2

0

(1) !(2 2)!
[] [] ,

(2)!

jn
j

j j j

j

j n j
P X P X a X a c

n j=

− −
− = =

−
 (32)

The following bound is obtained from this series,

2 2 2 2

1 1 1

2 2

[] [] | | ()

[] [] 1

n n n
j

j j

j j j

j j j

P X P X a X a X a i X

P i X P i X

= = =

− − =   = 

= − −

  I
 (33)

(The i factor cancels the (1) j− factor in ja .) Eq’s. (30) and (33) are combined to obtain the

following condition,

()

2 2

1
1 2 2

[] [] 2

([] []) 2 [] []

P i h D P i h D

P h D P h D R P i h D P i h D R
−

−

−  →

−  − −

 (34)

This condition can be reformulated by separating P into even and odd parts,

 [even] [odd]1 1
2 2

[] ([] []) , [] ([] [])P X P X P X P X P X P X= + − = − − (35)

2 Eq. (32) can be verified with the following Mathematica script:

c[n_, j_] := n! (2 n - j)! 2^j/(2 n)!/j!/(n - j)!

P[x_, n_] := Sum[c[n, j] x^j, {j, 0, n}]

a[n_, j_] := (-1)^j j! (2 n - 2 j)! c[n, j]^2/(2 n - j)!

PP[x_, n_] := Sum[a[n, j] x^(2 j), {j, 0, n}]

FullSimplify[PP[x, n] - P[x, n] P[-x, n]]

6

 [even] 2 [odd] 2[] [] ([]) ([])P X P X P X P X− = − (36)

()

[even] 2 2 [odd] 2 2

1
1 [even] 2 2 [odd] 2 2

([]) ([]) 2

([] []) 2 ([]) ([])

P i h D P i h D

P h D P h D R P i h D P i h D R
−

−

− −  →

−  − + −

 (37)

h is constrained to satisfy the premise (first inequality) of Eq. (37). In practice, the constraint

2 can be replaced by a somewhat tighter limit, e.g., 1.9 , to ensure that the right-hand

reciprocal factor is not very large.

The second factor in Eq. (28), []exp[]P h D h D− , is separated into even and odd functions,

 1
2

1
2

[]exp[]

([]exp[] []exp[])

([]exp[] []exp[])

P h D h D

P h D h D P h D h D

P h D h D P h D h D

− =

− + − +

− − −

 (38)

The odd function is equal to Eq. (9) times 1
2− ,

 1 1
2 2
([]exp[] []exp[])P h D h D P h D h D− − − = −  (39)

(cf. Eq. (29)). The even function is bounded by taking advantage of the fact that []P h D is

close to exp[]h D for small h : 2 2 3exp[] [] / (4 2)h D P h D h D n Oh −  = − + . These

differences are separated out in the even function, and the differences are then further separated

into even and odd terms:

[even] 2 [odd] 2

[]exp[] []exp[]

[] [] (exp[] []) (exp[] [])

[] [] (cosh[] []) (sinh[] [])

P h D h D P h D h D

P h D P h D h D P h D h D P h D

P h D P h D h D P h D h D P h D

− + −

= + − − − − − −

= + − − − + −

I

I

 (40)

The function exp[] []X P X− has a Taylor series expansion with non-negative coefficients,

1

2 11

exp[] [] 1 1
2 ! !

j j jn

j j nk

k X X
X P X

n k j j

− 

= = +=

  
− = − − +  −  

  (41)

The even and odd parts of Eq. (41), [even]cosh[] []X P X− and [odd]sinh[] []X P X− , also have non-

negative Taylor series coefficients, and so do the squares of the these functions. Furthermore,

the squared terms are even functions of X comprising monomial powers
2 jX , which are

bounded by
2

2 2 2
jj

jX X X = ; hence

 [even] 2 2 [even] 2 2(cosh[] []) (cosh[] [])X P X X P X−  − (42)

 [odd] 2 2 [odd] 2 2(sinh[] []) (sinh[] [])X P X X P X−  − (43)

The squared terms in Eq. (40) are bounded using Eq’s. (42) and (43),

7

[even] 2 [odd] 2

[even] 2 [odd] 2

2 [even] 2 2 2 [odd] 2 2

(cosh[] []) (sinh[] [])

(cosh[] []) (sinh[] [])

(cosh[] []) (sinh[] [])

h D P h D h D P h D

h D P h D h D P h D

h D P h D h D P h D

− − + −

 − + −

 − + −

 (44)

Eq’s. (38)-(40) are combined and substituted in Eq. (28),

[even] 2

[rel] 11
2 [odd] 2

(cosh[] [])
[2] ([] [])

(sinh[] [])

h D P h D
h P h D P h D

h D P h D
 −

  − −
= − + −     + − −  

I
I (45)

Eq’s. (37) and (44) are combined with Eq. (45) to obtain the bound

()

[even] 2 2 [odd] 2

1
[even] 2 2 [odd] 2

[rel] 1
2 [even] 2 2

2

2 [odd] 2 2

([]) ([]) 2

1 2 ([]) ([])

[2] 1 (cosh[] [])

(sinh[] [])

P i h D P i h D

P i h D P i h D

h h D P h D

h D P h D



−

− −  →

 
+ − + − 

   + −  
   + − +   

 (46)

A bound on  is obtained from Eq. (29). The integral is unchanged when the integrand

factor exp[]x D is replaced by cosh[]x D , and the product
2 1 cosh[]nD x D+

 has the bound

2 2 1 2 2 2 1 2
2 1

0 0

2 2
2 1 2 1 2

0

cosh[]
(2)! (2)!

cosh[]
(2)!

j n j j n j
n

j j

j
j

n n

j

x D x D
D x D

j j

x D
D D x D

j

+ + + + 
+

= =


+ +

=

= 

 =

 



 (47)

 thus has the bound

2 1 2 1
2 2 2 2

2 1 2 1
2 2 2 2 2 2

exp[]() cosh[]()
(2)! (2)!

cosh[]() cosh[] ()
(2)! (2)!

n n
h h

n n

h h

n n
h h

n n

h h

D D
x D x h dx x D x h dx

n n

D D
x D h x dx h D h x dx

n n

+ +

− −

+ +

− −

 = − = −

 −  −

 

 

 (48)

The integral in Eq. (48) reduces to3

2 2 2 2 2

0

2 1 2 1

0

(1) !
()

!()!

(1) ! 2(2)!!
2

(2 1) !()! (2 1)!!

jnh h
n j n j

h h
j

jn
n n

j

n
h x dx x h dx

j n j

n n
h h

j j n j n

−

− −
=

+ +

=

−
− =

−

 −
= = 

+ − + 

 



 (49)

3 The last equality in Eq. (49) can be verified with the following Mathematica script:
s = Sum[(-1)^j n!/(2 j + 1)/j!/(n - j)!, {j, 0, n}];

FullSimplify[(2 n)!!/(2 n + 1)!!/s]

8

With this substitution Eq. (48) simplifies to

2 1 2

2

2 () cosh[]

(2 1)(2 1)!!

nh D h D

n n

+

 
+ −

 (50)

Eq. (50) can be replaced by a slightly looser bound that does not require explicit calculation of
2 1() nh D + , as outlined in the Appendix (Eq. (60)).

The right side of relation (50) is substituted for  in Eq. (46) to determine a bound on
[rel][2]h , from which a bound on

[rel][]x is determined, with 12px h+= , via Eq. (21). The

minimum p required to achieve the specified tolerance bound (Eq. (25)) is found using a

bracket-and-bisection algorithm.

The algorithm performance could potentially be improved, in some cases, by applying a

balancing similarity transformation to D :

 1 1, exp[] exp[]D T BT x D T x B T− −= = (51)

where B has closely-matched row and column norms. (The transformation T can be

determined using MATLAB’s balance function [7].)

References

[1] K. Johnson, Numerical Solution of Linear, Nonhomogeneous Differential Equation Systems

via Padé Approximation (v8, January 15, 2017). https://vixra.org/abs/1611.0002.

[2] Linear differential equation solver (lde.m) , MATLAB Central File Exchange, 15 Jun 2021.

https://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-

solver-lde-m

[3] expm, Matrix exponential, 2020. https://www.mathworks.com/help/matlab/ref/expm.html

[4] Al-Mohy, A. H. and N. J. Higham, “A new scaling and squaring algorithm for the matrix

exponential,” SIAM J. Matrix Anal. Appl., 31(3) (2009), pp. 970–989.

[5] pageexpm, https://www.mathworks.com/matlabcentral/fileexchange/107959-pageexpm

[6] Gautschi, Walter. Numerical analysis. Springer Science & Business Media, 2011, section

5.9.2.

[7] balance, https://www.mathworks.com/help/matlab/ref/balance.html

https://vixra.org/abs/1611.0002
https://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver-lde-m
https://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver-lde-m
https://www.mathworks.com/help/matlab/ref/expm.html
https://www.mathworks.com/matlabcentral/fileexchange/107959-pageexpm
https://www.mathworks.com/help/matlab/ref/balance.html

9

Appendix: Polynomial evaluation

 The polynomial []P X (Eq. (10)) is separated into even and odd parts (Eq. (35)),

[even] [odd]

floor[/2]
[even] [even] 21

2

0

floor[(1)/2]
[odd] [odd] 21

2

0

[] [] []

[] ([] []) ()

[] ([] []) ()

j n
j

j

j

j n
j

j

j

P X P X P X

P X P X P X c X

P X P X P X X c X

=

=

= −

=

= +

= + − = 


= − − =






 (52)

where

[even] [odd]

2 2 1,j j j jc c c c += = (53)

If n is even and greater than 2 then the number of matrix multiplies in Eq. (52) is unchanged

when n is incremented by 1, so n is limited to being odd,

 2 1n m= + (54)

[even] [even] 2

0

[odd] [odd] 2

0

[] ()

[] ()

j m
j

j

j

j m
j

j

j

P X c X

P X X c X

=

=

=

=


= 



=







 (55)

The coefficient vector is zero-padded to arbitrary length,

[even] [odd]0, 0 forj jc c j m= =  (56)

The even and odd polynomial sums are reorganized as follows,

11
[even] [even] 2 2

0 0

11
[odd] [odd] 2 2

0 0

[] () (())

[] () (())

j Nk M
j N k

j N k

k j

j Nk M
j N k

j N k

k j

P X c X X

P X X c X X

= −= −

+

= =

= −= −

+

= =

 
=  

  


  
=   

  

 

 

 (57)

where

 1, ceil[(1) /] 1N m M m N + = +  (58)

The polynomial order of [even][]P X is 2m in Eq. (55) and is 2(1)N M − in Eq. (57).

(2(1) 2N M m−  according to Eq. (58).) The polynomial order of [odd][]P X is 2 1m+ in Eq.

(55) and is 2 1N M − in Eq. (57). (2 1 2 1N M m−  + .)

The number of matrix multiplies needed to evaluate []P X via Eq. (10) and Horner’s method

is 2m . The same number is needed to calculate [even][]P X and [odd][]P X via Eq’s. (55). Using

Eq’s. (57), the number of matrix multiplies, denoted count , is

10

1

max[0, 2]

(1)

2max[0, 1]

2(1 and (1))

(0)

count

N

M

M

M N M m

m

=

+ −

+ 

+ −

−  − =

+ 

 (59)

(The computation cost additionally includes the matrix division in Eq. (17) and p multiplies

from Eq. (18).) The logical terms in Eq. (59) (e.g., 1M ) evaluate to 1 or 0 depending on

whether the condition is true or false. The leading 1 term accounts for the 2X factor. The

max[0, 2]N − term accounts for one-time precomputation of the powers 2() jX ,

2, 3, , 1j N= − in the sums over index j . The (1)M  term accounts for the additional

power 2()NX used in the sums over index k (not required if 1M =). The 2max[0, 1]M − term

accounts for the two sums over index k via Horner’s method for [even]P and [odd]P . The

2(1 and (1))M N M m − = term is subtracted because under this condition the first step in

calculating [even]P and [odd]P via Horner’s method (for 1k M= −) multiplies 2()NX by a scalar

factor (the j sum), not a matrix. (For 1k M= − , the j sum’s terms are all zero except for

0j = .) The (0)m  term accounts for the extra X factor in [odd]P .

For large m , 2(1)count N M + − from Eq. (59) with /M m N from Eq. (58). count is

approximately minimized with 2 2N M m  and 2 2 2count m − . This is a reduction by

a factor of order / 2m in count relative to a straightforward implementation of Eq. (10).

N and M are selected to satisfy conditions (58) and to minimize count . Within these

constraints, N and M are selected to minimize M , as this will generally minimize the number

of matrix additions. Following is a tabulation of m , n , N , M , and count for m up to 13.

11

m n N M count

0 1 1 1 1

1 3 2 1 2

2 5 3 1 3

3 7 4 1 4

4 9 5 1 5

5 11 6 1 6

6 13 3 3 6

7 15 4 2 7

8 17 4 3 7

9 19 5 2 8

10 21 5 3 8

11 23 6 2 9

12 25 6 3 9

13 27 7 2 10

Eq. (50) can be replaced by a looser bound that does not require explicit calculation of
2 1() nh D + . This factor has the following bound,

 1 2
2 12 1

1 2() ; 2 1
n j jnh D h D D j j n
++  + + = + (60)

The powers 1 22 2
, ,

j j
D D are selected from the precomputed matrices for Eq’s. (57) (with

X h D=).

