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Abstract. Collatz conjecture (3n+1 problem) is an application of Cantor’s

isomorphism theorem (Cantor-Bernstein) under recursion. The set of 3n+1 for
all odd positive integers n, is an order isomorphism for (odd X, 3X+1). The

other (odd X, 3X+1) linear order has been discovered as a bijective order-
embedding, with values congruent to powers of four. This is demonstrated

using a binomial series as a set rule, then showing the isomorphic structure,

mapping, and cardinality of those sets. Collatz conjecture is representative of
an order machine for congruence to powers of two. If an initial value is not

congruent to a power of two, then the iterative program operates the (odd

X, 3X+1) order isomorphism until an embedded value is attained. Since this
value is a power of four, repeated division by two tends the sequence to one.

Because this same process occurs, regardless of the initial choice for a positive

integer, Collatz conjecture is true.

1. Introduction

Many problems in mathematics remain open and they provide the motivation
for this work1. A well-reasoned argument using combinatorics and order theory has
been found to reduce the mathematical abstraction known as Collatz conjecture
(3n + 1 problem). The set of 3n + 1 for all odd positive integers n, is an order
isomorphism for (odd X, 3X + 1). By Cantor’s isomorphism theorem (Cantor-
Bernstein), any two unbounded countable dense linear orders are order-isomorphic.
The other (odd X, 3X+1) linear order has been discovered as an embedding. Under
recursion, it is the relationship between two structurally identical (odd X, 3X +1)
linear orders and the mappings between them that governs sequence behavior.

There exists a bijective order-embedding for (odd X, 3X + 1) that can be rep-
resented by the set of 4q for all positive integers q. This is demonstrated using
the binomial series expansion of (1 + 3)q. Series rearrangement provides the neces-
sary isomorphic structure and the cardinality to coalesce all sets under observation.
Thus, the pair of order isomorphic linear orders share a countably infinite set of
values. The escape value for any Collatz sequence comes from that denumerable
set. These special values are recognized to be the even-index terms of the Jacobsthal
sequence; which is the interpretation of Rule 50 for the triangle read-by-row (suc-
cessive states) generated by an elementary cellular automaton. Iteration continues
until one of these values is attained by the sequence and then the sequence tends to
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one. That is, the up to isomorphism loop is a part of, but not the entire machine
under investigation.

Known to be Turing-complete2, the statement of Collatz conjecture is equivalent
to an order machine. An iterative program (i.e. while loop on n) operates under
recursion until n is equivalent to an escape value. Since the escape value is strictly
odd [Lemma 2], it guarantees on the next iteration that n 7→ 3n + 1, which is
equivalent to a value of 4q for some positive integer q. And although the up to
isomorphism loop has ‘stopped’, the recursive machine continues to operate until
the ‘off value’ is reached.3 That is, after 4q is repeatedly divided by two, which tends
the sequence to one. Since this same process occurs regardless of the initial choice
for a positive integer n, and because cardinality guarantees an escape value will
always be attained under the recursion, it will be shown that Collatz conjecture

is true.

2. Background

2.1. History of Collatz conjecture. By all accounts, Jeff Lagarias is the ultimate
authority on this problem. He has composed multiple papers on the subject [13,
14,17,18] and has compiled and maintained two annotated bibliographies spanning
nearly 50 years of research, 1963-1999 [15] and 2000-2009 [16]. For background,
history, and research related to this problem, these are excellent references.

Collatz conjecture is notorious for being simple to state, but impossible to prove.
Though not a Millennium Prize Problem, there is a substantially similar reward
being offered by Bakuage Co., Ltd. (Japan) for a solution [23]. The conjecture
“concerns the behavior of the iterates of the function which takes odd integers n to
3n+1 and even integers n to n/2” [13]. While largely attributed to Lothar Collatz,
who is believed to have introduced the idea in 1937, the origin of this problem is
obscure. Shrouded in mystery, it was largely circulated by word-of-mouth from
known associates of Collatz and likely disseminated by others even prior to that
time [18]. It is known as: the 3x+ 1 problem, Kakutani’s problem, Syracuse prob-
lem, Thwaites conjecture, Ulam conjecture, and Hasse’s algorithm. The sequences
generated from the conjecture may be referred to as hailstone sequences or won-
drous numbers, which is partly due to the wide range of values seen in many of the
sequences. Notwithstanding name, the conjecture “asserts that starting from any
positive integer n, repeated iteration of this function eventually produces the value
1.” [13]

Proof of the conjecture has remained intractable. Paul Erdős4 is often quoted
as saying: “Mathematics is not yet ripe enough for such questions.” And according
to Lagarias (2010) [17]: “The track record on the 3x + 1 problem so far suggests
that this is an extraordinarily difficult problem, completely out of reach of present
day mathematics.” Although difficulty is a function of perspective, these sentiments
mirror the observation that any Collatz sequence is randomly generated. While an
onerous task, mathematicians have persevered. Research will be discussed after
presenting the problem in detail.

2Can be used to simulate a Turing machine; most programming languages are Turing-complete.
3The function n 7→ 3n + 1 will not be called again. The function n 7→ n/2 will iterate until

the sequence reaches one.
4Second-hand statement of Paul Erdős [11].



COLLATZ CONJECTURE: AN ORDER MACHINE 3

2.2. Define the 3n+1 problem and Collatz conjecture. A sequence is gener-
ated from the selection of a positive integer n. Once c0 = n is selected, two rules
are applied to generate the sequence using function f and recursion ci. If ci is even,
then that number is divided by two. If ci is odd, then that number is multiplied by 3
and one is added. These rules are applied under recursion until, as it is conjectured,
the value of the sequence tends to one.

Define the function f ,

(2.1) f(ci) :=

{
ci/2, if ci ≡ 0 (mod2) [even number]

3ci + 1, if ci ≡ 1 (mod2) [odd number]

and define the sequence (ci) recursively.

(2.2) ci :=

{
c0 = n, for i = 0, where n ≥ 1, n ∈ N
f(ci−1), for i > 0

Example calculations and sequences follow before formally stating the conjecture.

Example 2.1. Example calculation for a Collatz sequence.

Let n = 3, then c0 = n = 3.
Three is odd since 3 ≡ 1(mod2), so c1 = f(c0 = 3) = 3(3) + 1 = 10
Ten is even since 10 ≡ 0(mod2), so c2 = f(c1 = 10) = 10÷ 2 = 5
Five is odd since 5 ≡ 1(mod2), so c3 = f(c2 = 5) = 3(5) + 1 = 16
Sixteen is even since 16 = 42 ≡ 0(mod2)
This process continues until the following Collatz sequence is obtained:
(c0 = 3, c1 = 10, c2 = 5, c3 = 16, c4 = 8, c5 = 4, c6 = 2, c7 = 1)

Example 2.2. Example Collatz sequences.

Let n = 3 : (3, 10, 5, 16, 8, 4, 2, 1).
Let n = 5 : (5, 16, 8, 4, 2, 1).
Let n = 7 : (7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1).
Let n = 21 : (21, 64, 32, 16, 8, 4, 2, 1).
Let n = 85 : (85, 256, 128, 64, 32, 16, 8, 4, 2, 1).

Example 2.3. The (1, 4, 2, ...) loop.
There is a closed loop sequence that occurs when ci is equivalent to 1. Let n = 1,

then the generated sequence is: (1, 4, 2, 1, ...). This sequence is an infinite loop under
the conjecture recursion criteria. Therefore, it is agreeable that attaining ci ≡ 1 is
sufficient to stop the recursive process.

Conjecture statement. The famous Collatz conjecture states, regardless of the
initial choice of a positive integer, c0 = n, iteration of f will always generate a
sequence that will tend to one, that is (ci) → 1.

Remark 2.4. A sufficient proof will show that any Collatz sequence goes to one for
any positive integer starting value. This will not be as difficult as was once thought.
A new perspective will reduce the situational complexity of the problem allowing for
proof to proceed as an intelligible delineation.

2.3. Research and results. The amount of computations performed for this prob-
lem is astonishing. As explained by Muller (2021) [19]: over 268 sequences have
been calculated for Collatz conjecture—and all of them eventually come back down
to one. While that is a substantial amount of evidence, it doesn’t prevent the
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existence of a counter-example. According to Kontorovich [19], counter-examples
prove themselves auspicious and informative, so sometimes research needs to be
so directed. In fact, Conway (1972) [6] proved that while Collatz conjecture is
Turing-complete, it is still subject to the halting problem. That is, there could
exist a sequence that enters an infinite loop and never stops running, providing yet
another possibility for a counter-example.

Beyond data and algorithms, several types of analysis have been performed for
this problem. Those studies are wide and varied, and include: sequence stop-
ping time, coefficients for least iterate, linear transformations, periodicity, residue
classes, density bounds, conjugacy maps, graphs and hypergraphs. This author
concedes that most of these research methods are beyond his present technical
understanding. Therefore, depending on the study of interest, readers should de-
fer to the author or mathematics professional in that particular field or sub-field.
Understanding of the aforementioned methods are not required to realize proof.
Boundedness, heuristic probability, and the most recent research related to orbits
will now be discussed.

In 1976, Terras [27] showed that almost all Collatz sequences reach a point below
their initial value. The same result was discovered independently by Everett (1977)
[10]. From those founding papers, that bound was significantly improved upon over
the next several decades. Further validity was found by Barone (1999) [2] using a
heuristic probabilistic argument, where the major finding was “that iterates of the
3x + 1-function should decrease on average by a multiplicative factor (3/4)1/2 at
each step” [15]. These studies indicated that most Collatz sequences were bounded
and decreasing.

More recently, Tao (2019) [26] showed the 3x+1 problem follows a stricter set of
criteria, proving that almost all Collatz orbits will attain a bounded value. During a
presentation by Tao in 2020 he stated: “This is about as close as one can get to the
Collatz conjecture without actually solving it” [19]. Although a wonderful result,
and a testament to the power of mathematics, it was still not a complete proof.
But, the research now indicated it was highly improbable that a counter-example
could be found.

3. Preliminary

Standard set and order theory language and notation will be used. The most
relevant definitions will be given in text, while others will be provided in appendix,
or omitted. The sets, later to be defined and examined, are strictly monotone
enumerations for all n ∈ N. The mappings between them are central to proving the
conjecture. This section will bring continuity to the manuscript.

3.1. Notation. Set N will represent the natural numbers with zero; defined as the
non-negative integers starting with zero.

(3.1) N := {0, 1, 2, 3, ...}

Or equivalently,

(3.2) N = {0} ∪ Z+

(3.3) Z+ = {1, 2, 3, 4, ...}
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Defining N in this way will provide cohesiveness to all sets and mappings under
investigation. This notation will also prevent superfluous set superscript and union
notation for better readability.

3.2. Cardinality. Enumeration of N proceeds in the usual fashion. The function
f : N → Z+ defined by f(n) = n+1 for n ∈ N is in one-to-one correspondence with
the positive integers. To this end, the cardinality of N, is recognized to be the first
infinite cardinal number represented as aleph-naught, ℵ0.

(3.4) |N| = ℵ0

Definition 3.1 (Cardinal numbers). The c.n. of the empty set is zero, |∅| = 0.
The c.n. of In = {1, 2, 3, ..., n} is n, |In| = n. The c.n. of N is ℵ0, |N| = ℵ0.

3.3. Order. The term order [Appendix 5.2] is used throughout this manuscript
and is meant to convey an ordering relation ≤ on a set. For example, all sets to be
examined are strict (linear) orders that are countably infinite. The primary focus
will be the two (odd X, 3X+1) linear orders that are order isomorphic by Cantor’s
isomorphism theorem. This will be the general usage.

3.4. Free and bounded variables. The binomial theorem [Appendix 5.1] and
binomial series expansions are fundamental to this presentation. Most equations
are defined for a free variable, usually designated as n, and a variable bounded by
n usually designated as k. These equations are shown to be valid for all n ∈ N;
therefore, a value may always be found for any chosen n.

This is both a blessing and a curse. A countably infinite set may be constructed
from an equation, or its many equivalences, in a natural way. However, when
attempting to show an equality or a comparison, in certain cases, the meaning
of n can become obscured. For example, it is not desirable to have n = E(n),
when it is meant that n (LHS) is distinct from the n (RHS) of E(n) . Therefore,
equations will be derived using n and k per the usual presentation given in most
texts, but when set definitions are given, other free variable names (i.e. m, q) will
be substituted. That way, the above example changes to n = E(q) for distinct n
and q where n, q ∈ N, thus conveying the proper meaning.

3.5. Zero point. For further coherence, the Collatz conjecture function definition
can be extended to include a value for n = 0. Since the conjecture statement
requires a choice, selecting a positive integer value; this will give the system a state
when no choice has been made. This adds completeness to the theory and further
utilizes the definition for N. Notice, f(0) = 3(0) + 1 is a suitable definition for this
purpose.

(3.5) f(0) := 1

Thus, reaching the value of one is equivalent to ‘turning off’ the order machine and
allowing for a new choice to be made.

3.6. Methodology. The purpose of this presentation is to provide a new perspec-
tive of the 3n + 1 problem. A seemingly trivial observation leads to conjectural
proof. First, equations are derived using the binomial theorem. Then, denumer-
able equinumerous sets are defined, using each equivalent equation as a set rule.
Next, mappings and Cantor theorems are introduced to show the (odd X, 3X +1)
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order isomorphism. Finally, everything is put together under recursion to create
the order machine.

The major insight is the coordination between two (odd X, 3X+1) linear orders,
one of which is a bijectional order-embedding. Since any even X is divided by two
until it becomes an odd X [Lemma 4, Corollary 3], this continues the recursion
on the (odd X, 3X + 1) order isomorphism. Once an odd X embedded value is
attained, then the sequence tends to one, which leads to the observation that is
Collatz conjecture. To best understand the end goal from the beginning, please see
the figures for the order machine (OM) [Figure 1] and the pseudo-code for the OM
algorithm [Figure 2].

4. Proof of Collatz conjecture

4.1. Combinatorics methods and results. Perform a series expansion using the
binomial theorem,

(4.1) 4n = (1 + 3)
n
=

n∑
k=0

(
n

k

)
3k n ∈ N

continue the equality, and notice the structure of the RHS.

(4.2)

n∑
k=0

(
n

k

)
3k = 3

[
n∑

k=1

(
n

k

)
3k−1

]
+ 1 = 3[E(n)] + 1

This is the major observation that leads to the proof of Collatz conjecture. From a
value perspective, the above equality seems uninteresting. However, from a ‘struc-
tural perspective’ the RHS ‘looks a lot like’ 3n + 1. It can be seen that E(n) is
well-defined and ordered by N. Later, the value of E(n) is noted to be strictly odd
[Lemma 2]. This is an important point. The observation of Collatz conjecture is
the bijective coordination between a pair of (odd X, 3X + 1) linear orders. Defini-
tions, calculations, and properties of E(n) follow. The relationship of E(n) to the
Jacobsthal sequence is also discussed.

(4.3) E(n) :=

n∑
k=1

(
n

k

)
3k−1 n ≥ 1, n ∈ N

Or equivalently,

(4.4) E(n) =
1

3
(4n − 1)

Any free variable name (e.g. m, q, r, x) may be substituted for ‘n’ in this definition
without loss of generality.

Example 4.1. E(n) example calculations (by definition).

E(n) =

n∑
k=1

(
n

k

)
3k−1
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Figure 1. Order machine (OM)

Initial choice of a positive integer, c0 = n

even ci odd ci

ci ÷ 2 3ci + 1

‡ci ≡ E(q), order-embedded escape value

†3E(q) + 13[
∑q

k=1

(
q
k

)
3k−1] + 1

∑q
k=0

(
q
k

)
3k

(1 + 3)q

4q

1

Under recursion, even integers are divided by two (i.e. ci ÷ 2), which generates odd
integers for the (odd X, 3X + 1) order isomorphism [Corollary 3]. This continues
until an escape value, E(q), is attained‡. Since it is always true that
3E(q) + 1 = 4q, repeated division by two tends the sequence to one.

For example. Let, ci ≡ E(3) = 21. Then, 3(21) + 1 = 64 = 43. Since
43 ≡ 0(mod2), the sequence tends to one.

‡Escape is guaranteed by cardinality (Cantor-Bernstein theorem).

†The set of all 3[E(q)] + 1 is a bijectional, order-embedding isomorphism for
(odd X, 3X + 1).

(1) E(q) :=
∑q

k=1

(
q
k

)
3k−1 = 1

3 (4
q − 1) for q ≥ 1, q ∈ N

(2) E(q) is strictly odd [Lemma 2].

(3) (E(q)) = (1, 5, 21, 85, 341, 1365, ...)
*This sequence is recognized to be the even-index Jacobsthal numbers
(OEIS A002450), which is the interpretation of Rule 50 (OEIS A071028)

for an elementary cellular automaton.
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Figure 2. Pseudo code for OM algorithm

variable int n;

function DivTwo(n)
return n/2;

function Primitive(n)
return 3n+ 1;

function PrintVal(n) // outputs sequence
print n;

Please choose a positive integer. // input
scan n;

if ( n > 1 ) {

/* Iterate until an escape value E(q) is attained, then 3E(q) + 1 = 4q */

while ( n ≇ 2r ) { // ‘up to isomorphism’ loop

if ( n ≡ 0(mod2) ) {
n = DivTwo(n); // even n, divide by two
PrintVal(n);

}
else ( n ≡ 1(mod2) ) {

n = Primitive(n); // odd n, multiply by 3 and add one
PrintVal(n);

}
}

/* Sends any value of n ∼= 2r to one */

while( n > 1 ) {

n = DivTwo(n); // 2r ≡ 0(mod2), n→ 1
PrintVal(n);

}

return 0; // successful program execution
}
else(exit); // initial choice of n is 1 or is invalid

‡The two while loops may be interpreted mathematically as: any positive integer,
greater than one, is either congruent to 2r ≡ 0(mod2) or it isn’t [Lemma 4,
Corollary 2]. If it isn’t, it remains in the ‘up to isomorphism’ loop until it is,
which has 3E(q) + 1 = 4q.
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Let n = 1,

E(1) =

(
1

1

)
31−1

= 1

Let n = 2,

E(2) =

(
2

1

)
31−1 +

(
2

2

)
32−1

= 2(1) + 1(31)

= 5

Let n = 3,

E(3) =

(
3

1

)
31−1 +

(
3

2

)
32−1 +

(
3

3

)
33−1

= 3(1) + 3(31) + 1(32)

= 21

Example 4.2. E(n) example calculations (by equivalence).

E(n) =
1

3
(4n − 1)

Let n = 4,

E(4) =
1

3
(44 − 1)

=
1

3
(256− 1)

= 85

Let n = 5,

E(5) =
1

3
(45 − 1)

=
1

3
(1024− 1)

= 341

Let n = 6,

E(6) =
1

3
(46 − 1)

=
1

3
(4096− 1)

= 1365

The denumerable sequence of E(n) [See Figure 5] may be defined for all n ≥ 1
where n ∈ N.
(4.5) (E(n)) = (1, 5, 21, 85, 341, 1365, 5461, ...)

This sequence is recognized to be (OEIS A002450) [21] the even-index terms of the
Jacobsthal sequence. It is a special list of numbers, each having distinct properties
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attributable to unique factorization and various combinatoric compositions (e.g.
congruent, cyclic, 3-Lehmer, etc.).

Jacobsthal sequence.

Definition 4.3 (Jacobsthal numbers). Like the Fibonacci numbers, the Jacobsthal
numbers (OEIS A001045) [20] are a constant-recursive integer sequence where the
recurrence relation is similarly defined,

(4.6) Jm =


0, if m = 0

1, if m = 1

Jm−1 + 2Jm−2, if m > 1

and there exists a closed-form expression [24],

(4.7) Jm =
2m − (−1)m

3
m ∈ N

which may be used to find the terms of the sequence.

(4.8) Jm = (0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ...)

From the closed-form expression, take only the even-index terms of Jm, by
letting m = 2q for all q ≥ 1 where q ∈ N.

(4.9) J2q =
22q − (−1)2q

3

Since the powers of negative one will always be even,

(4.10) (−1)2q = [(−1)2]q = [(−1) · (−1)]q = 1q = 1

the expression is able to be simplified, in this case.

(4.11) J2q =
22q − 1

3

Rearrangement gives the desired result,

(4.12) E(q) = J2q =
1

3
(4q − 1)

which provides for another statement of equality,

(4.13) 4q = 3[E(q)] + 1 = 3[J2q] + 1

and demonstrates a little-known, closed-form expression for the even-index Jacob-
sthal numbers.

(4.14) E(q) = J2q =

q∑
k=1

(
q

k

)
3k−1 q ≥ 1, q ∈ N
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These numbers are the interpretation of Rule 50 [36] for the triangle read-by-row
(successive states) generated by an elementary cellular automaton, which has the
following binary sequence (OEIS A071028) [22].

(4.15) (J2q)2 = (12, 1012, 101012, 10101012, 1010101012, ...)

The binary representation of these numbers are simplistically elegant,

(4.16) (J2q)2 = (10)(q−1)12 q ≥ 1, q ∈ N
and demonstrative of Hilbert’s Hotel for a newly arriving guest ‘(10)’.

Example 4.4. Example calculations of J2q in binary.

(J2)2 = (10)012 =12 = 1d

(J4)2 = (10)112 = (10)12 = 5d

(J6)2 = (10)212 = 10(10)12 = 21d

(J8)2 = (10)312 = 1010(10)12 = 85d

(J10)2 = (10)412 = 101010(10)12 = 341d

Remark 4.5. The set of all even-index Jacobsthal numbers is an order-embedding
of the odd positive integers. This will be demonstrated under the guise of 3X + 1
for odd X, given the problem under investigation.

Returning to the original series and expanding out a few terms, notice the struc-
ture of the partial sum of the first two terms (RHS).

(4.17)

n∑
k=0

(
n

k

)
3k = 1 + 3n+

n∑
k=2

(
n

k

)
3k {n | n ∈ N}

For every non-negative integer n, the above expression has a value. And by ex-
tension, the partial sum of the first two terms, which is equivalent to 3n + 1, is
well-defined. So too are the even and odd subsets. This demonstrates how the
binomial series expansion of 4n represented as (1 + 3)n is useful for obtaining both
orders of (odd X, 3X+1) in a natural way. To be understood, the set of 3E(n)+1 is
the denumerable isomorphic order-embedding that governs sequence behavior. The
required lemmas will now be given before proceeding to the combinatorics section
summary.

Lemma 1. 4n ≡ 0(mod2) for all positive integers n ∈ N.

Proof. This will be demonstrated using mathematical induction.
Let n = 1, then 41 = 22 and 22 is twice divisible by two. Thus, 22 ≡ 0(mod2)
which implies 4 ≡ 0(mod2).
Let n = k, then 4k = 22k = (22)k and (22)k is twice divisible by two, k-times.
Thus, 22k ≡ 0(mod2) which implies 4k ≡ 0(mod2).
Let n = k + 1, then 4k+1 = 22(k+1) = 22k+2 = 22k22. From above, 22k ≡ 0(mod2)
and 22 ≡ 0(mod2). Thus, the product implies 4k+1 ≡ 0(mod2). □

Lemma 2. E(n) is strictly odd for all positive integers n ∈ N.

Proof. Let 4n = 3[E(n)]+1 as detailed through the binomial theorem. It is always
true that 4n is evenly divisible by two for all positive integers n [Lemma 1]. Thus,
3[E(n)] + 1 is always even for n ≥ 1. But, that implies 4n − 1 is an odd number.
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So it must be true that 3[E(n)] is also odd. Since 3 is an odd number, the product
3[E(n)] cannot be odd unless E(n) is also odd. □

Proof by contradiction. Assume E(n) is even, then the product 3[E(n)] is also even.
But, that implies 3 [E (n)] + 1 is odd, which is impossible by equivalence to 4n

[Lemma 1]. □

Lemma 3. 3X + 1 is always even for an odd positive integer X.

Proof. Let X be an integer that is odd and positive. Then, X + 1 must be even.
Since 2X is divisible by two, it is even. Thus, the sum of these two even numbers
is also even, and observe (X + 1) + (2X) = 3X + 1. □

Lemma 4. Any positive even integer is either congruent to 2r for r ≥ 1 where
r ∈ N, or it is not (dichotomy).

Proof. Since 2r is even by definition for all r ≥ 1, then those values may be listed.
Any even number not on the list may be readily found (i.e. 6), which must have a
unique factorization (i.e. 2 ·3) that is different from 2r by the fundamental theorem
of arithmetic. □

Corollary 1. No odd positive integer greater than one is congruent to 2r.

Corollary 2. Any positive integer is congruent to 2r or it is not.

Corollary 3. The unique factorization of any even integer, with the powers of two
removed, is necessarily odd.

Combinatorics results summary. The following list illustrates the intercon-
nected relationships detailed above.

(1) For n ≥ 1, it is always true that 4n ≡ 0(mod2) [Lemma 1].
(2) For n ≥ 1, it is always true that E(n) is strictly odd [Lemma 2].
(3) For odd positive X, it is always true that 3X + 1 is even [Lemma 3].
(4) A proposed set of 3n + 1 for all n ≥ 1 where n ∈ N could be divided into

even and odd subsets. [The definition of which may be taken directly from
the binomial series expansion of (1 + 3)n as a partial sum, if so desired.]

(5) Collatz conjecture requires that an even integer is divided by two.
(6) The net effect of (5) under recursion is to convert any even integer into an

odd integer [Lemma 4, Corollary 3 ]. Thus, any even integer remains in its
own loop until it becomes odd and then ci 7→ 3ci + 1 for that iterate value
of ci.

(7) When the value of an odd integer is equivalent to a value of E(n), then
equivalence to 4n is obtained on the next iteration. That is, 3ci + 1 =
3[E(n)] + 1 = 4n.

(8) The net effect of (7) under recursion is that 4n ≡ 0(mod2) sends ci → 1.
(9) From here on, n will be reserved for the initial choice of a positive integer,

where c0 = n is used to start a sequence.

4.2. Set theory methods and results. The sets to be examined are each defined
explicitly by a set rule. They are enumerated by and cardinally equivalent to N. As
such, this presentation is an exposition delineating those sets. The main objective
will be to show the two distinct (odd X, 3X + 1) linear orders. Since these two
denumerable sets are in one-to-one correspondence, they are able to be injectively
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mapped to one other. By the Cantor-Bernstein theorem, the injections between
them guarantee a bijection exists, which embeds the ordered values of 3[E(q)] + 1.
These values are the mechanism controlling conjectural related sequence behavior.
Some definitions will now be reviewed.

Definition 4.6 (Countable). Countable sets are those whose elements can be listed
and indexed by the natural numbers. For example, let M = {m0, m1, m2, m3},
then set M is countable. If a set is not countable then it is uncountable.

Definition 4.7 (Injection). The function f on setM is an injection (one-to-one), if
for all m1,m2 ∈M , if f(m1) = f(m2) that implies m1 = m2. That is, f :M ↪→ N .

Definition 4.8 (Surjection). The function f on set M is a surjection (onto), if for
all n ∈ N , there exists a unique m ∈M such that n = f(m). That is, f :M ↠ N .

Definition 4.9 (Bijection). The function f is a bijection, if each element of its
codomain N is mapped to exactly one element of the domain M . A bijection is both
injective and surjective. That is, f :M → N .

Definition 4.10 (Denumerable). A set M is termed denumerable (or countably
infinite) if there exists a bijection f : N →M .

Definition 4.11 (Equinumerous). Two sets M and N are said to be equinumerous
(or cardinally equivalent) provided there is a one-to-one correspondence (a bijection)
from M to N . That is, h : M → N . This equivalence relation is expressed as
M ≈ N or |M | = |N | and is sometimes termed equipollent, equipotent, or simply
equivalent [8].

From the binomial theorem, the following equivalence statement holds true for
all non-negative integers q.

(4.18) 4q = (1 + 3)q =

q∑
k=0

(
q

k

)
3k = 3

[
q∑

k=1

(
q

k

)
3k−1

]
+ 1 = 3[E(q)] + 1

Using each equivalent term, sets will be defined explicitly for all q ∈ N. Since
equinumerous sets are arguably more fundamental than the principle of counting5,
a theorem will be introduced.

Define A, the countably infinite set of values 4q, where 4q ≡ 0(mod2) for all
q ≥ 1 [Lemma 1].

(4.19) A := 4q {q | q ∈ N}

Or equivalently,

A = {40, 41, 42, 43, 44, 45, ...}
= {1, 4, 16, 64, 256, 1024, ...}

(4.20) B := (1 + 3)q {q | q ∈ N}

5For instance, a small child is able to show one-to-one finger correspondence long before they
are able to count to five [8]
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Or equivalently,

B = {(1 + 3)0, (1 + 3)1, (1 + 3)2, (1 + 3)3, (1 + 3)4, (1 + 3)5, ...}
= {1, 4, 16, 64, 256, 1024, ...}

(4.21) C :=

q∑
k=0

(
q

k

)
3k {q | q ∈ N}

Or equivalently,

C =

{(
0

0

)
30,

1∑
k=0

(
1

k

)
3k,

2∑
k=0

(
2

k

)
3k,

3∑
k=0

(
3

k

)
3k,

4∑
k=0

(
4

k

)
3k,

5∑
k=0

(
5

k

)
3k, ...

}
= {1, 4, 16, 64, 256, 1024, ...}

Now define D, the set of all escape values, E(q), recognized to be the even-index
Jacobsthal numbers, J2q. These are the odd X values used to make 3X+1 congruent
to 4q for all q ∈ N.

(4.22) D :=

{
0, q = 0

E(q), {q ≥ 1 | q ∈ N}

Or equivalently,

(4.23) D :=
1

3
(4q − 1), {q | q ∈ N}

And thus,

D = {0} ∪ {E(q)}
= {0, 1, 5, 21, 85, 341, ...}

Now define G, the embeddable (odd X, 3X + 1) linear order.

(4.24) G := 3d+ 1 {d | d ∈ D}
As a mapping,

(4.25) δ : D → G

Or equivalently,

(4.26) G :=

{
1, q = 0

3[E(q)] + 1, {q ≥ 1 | q ∈ N}

And thus,

G = {1, 3(1) + 1, 3(5) + 1, 3(21) + 1, 3(85) + 1, 3(341) + 1, ...}
= {1, 4, 16, 64, 256, 1024, ...}

Remark 4.12. Set G is a denumerable linear order for (odd X, 3X + 1) since
E(q) is strictly odd [Lemma 2]. Set G, as it will be shown, is bijectional with and
embeddable into the ordinal set of (odd X, 3X + 1), to be labelled set F .

Theorem 4.13. Equinumerosity theorem Equinumerosity is an equivalence re-
lation ≈ on a family of sets [3].
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Proof. The equivalence relation ≈ is reflexive, symmetric, and transitive.

(1) Reflexive. For any set M , M ≈M is a bijection f :M →M .
(2) Symmetric. If M ≈ N is a bijection f : M → N , then f−1 : N → M

implies N ≈M .
(3) Transitive. If M ≈ N and N ≈ P are bijections f : M → N and

g : N → P , respectively, then g ◦ f :M → P implies M ≈ P .

□

Under set definition rules, A, B, C, and G are countably infinite sets. They each
have a mapping, which is equivalent to the bijection ψ, where X ≡ N and Y ≡ A.

(4.27) ψ : X → Y


a : N → A

b : N → B

c : N → C

g : N → G

These mappings are congruent, ψ(x) = y, and invertible, ψ−1(y) = x, for all x ∈ X
and y ∈ Y .

(4.28) ψ−1 : Y → X


a−1 : A→ N
b−1 : B → N
c−1 : C → N
g−1 : G→ N

These are equinumerous sets,

(4.29) A ≈ B ≈ C ≈ G

which are cardinally equivalent.

(4.30) |A| = |B| = |C| = |G| = ℵ0

Each set is strictly ordered, monotonic, increasing, and denumerable. For any
x ∈ X it is always true that x < ψ(x). For all distinct x1, x2 ∈ X, it is always
true that x1 < x2 implies ψ(x1) < ψ(x2) and x2 < x1 implies ψ(x2) < ψ(x1). The
set rule, which is enumerated by N, is in one-to-one correspondence between the
domain and codomain of ψ.

Now define F , the ordinal (odd X, 3X + 1) linear order. F is the primary set
under observation from Collatz conjecture since odd ci 7→ 3ci + 1.

(4.31) F :=

{
1, m = 0

3m+ 1, {m ≥ 1 | m = 2k + 1, k ∈ N} (odd m)

Or equivalently (by substitution of m),

(4.32) F =

{
1, m = 0

6k + 4, {k | k ∈ N}



16 MICHAEL WILLIAMS

And thus,

F = {1, 3(1) + 1, 3(3) + 1, 3(5) + 1, 3(7) + 1, 3(9) + 1, ...}
= {1, 6(0) + 4, 6(1) + 4, 6(2) + 4, 6(3) + 4, 6(4) + 4, ...}
= {1, 4, 10, 16, 22, 28, ...}

The mapping f : N → F is strictly ordered, monotonic, increasing, and denu-
merable. The set rule, which is enumerated by N, is in one-to-one correspondence
between the domain and codomain of f . This can be seen as a direct result after
substituting the definition for m and simplifying. For any k ∈ N it is always true
that k < f(k). And for all distinct k1, k2 ∈ N, it is always true that k1 < k2 implies
f(k1) < f(k2) and k2 < k1 implies f(k2) < f(k1).

To obtain k for any escape value, notice that when m = E(q), then 3m+1 = 4q

and 6k+ 4 = 4q. Thus, the value of k is given by solving the equality, 3E(q) + 1 =
6k + 4.

(4.33) k =
1

2
[E(q)− 1]

To obtain k directly from q, recall E(q) = 1
3 (4

q − 1), and substitute E(q) into the
previous result for k and simplify.

(4.34) k =
2

3
(4q−1 − 1)

Example 4.14. Example calculation of k from E(q).

Let q = 11, then E(11) = 1
3 (4

11 − 1) = 1398101.

Using the formula for k with E(11) gives k = 1
2 (1398101− 1) = 699050.

Since m = 2k + 1, m = 2(699050) + 1 = 1398101, which has m ≡ E(11).

Example 4.15. Example calculation for k from q.

Let q = 11, as in the previous example.
Then, k = 2

3 (4
11−1 − 1) = 2

3 (1048575) = 699050.
This result is in agreement with that of the previous example.

Remark 4.16. The motivation now is to show that G is isomorphic to F by struc-
ture and order. By the Cantor theorems, the bijection between F and G is an order
isomorphism that embeds G into F . The automorphism of F , which contains G, is
the primary mapping under Collatz conjecture.

4.3. Cantor theorems. The Cantor-Bernstein theorem and Cantor’s isomorphism
theorem (order theory) will be presented and applied to linear orders F and G. It
will be shown that G is a bijectional order-embedding of F , which is a unique iso-
morphism [9] for (odd X, 3X + 1). This is the mechanism controlling sequence
behavior for Collatz conjecture. A sequence is generated by iteration on F . Any
even number is made odd for continued iteration on F . Once an isomorphic em-
bedded value of G contained in F is attained, then the sequence tends to one.

The Cantor-Bernstein theorem depends on the Zermelo-Fraenkel (ZF) axioms,
but technically, not on the axiom of choice (C). However, it is from the well-ordering
theorem, equivalent to the axiom of choice (first-order logic), that every set is sus-
ceptible to transfinite induction. According to Cantor(1883), this is a fundamental
principle of thought used to guide intuition [4]. These theorems are useful for
proving a bijection exists between two sets, which may otherwise be a difficult con-
struction. They will simplify demonstrating the bijection between F and G, to only
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showing the two injections. Due to the (odd X, 3X + 1) set structure of F and G,
the one-to-one correspondence between these denumerable sets, and since G ⊂ F ,
this is the observation of Collatz conjecture.

Theorem 4.17. Cantor-Bernstein theorem If each of two sets M and N can
be mapped injectively into the other, f :M ↪→ N and g : N ↪→M , then there exists
a bijection from M to N , h :M → N , such that |M | = |N | and M ≈ N .

Proof. Several proofs of this theorem exist and are attributable to Bernstein, Borel,
Dedekind, Zermelo, König, and others. Some proofs rely on the axiom of choice,
while others do not invoke it. The back-and-forth method (Silver, Huntington), the
going-forth method (Cantor), and chain theory (i.e. chains of elements, König) can
be used to show the bijection between M and N [1]. □

Recall set F , the ordinal (odd X, 3X + 1) linear order,

F =

{
1, m = 0

3m+ 1, {m ≥ 1 | m = 2k + 1, k ∈ N}

and G, the embeddable (odd X, 3X + 1) linear order.

G =

{
1, q = 0

3[E(q)] + 1, {q ≥ 1 | q ∈ N}

The denumerable sets of F and G are given by the following mappings,

(4.35) f : N → F

(4.36) g : N → G

which are one-to-one and invertible.

(4.37) f−1 : F → N

(4.38) g−1 : G→ N
The injections as described by the Cantor-Bernstein theorem are given as,

(4.39) α : F ↪→ G

(4.40) β : G ↪→ F

Thus, the bijection between F and G (guaranteed by the theorem) is given as,

(4.41) γ : F → G

Please see the figure enumerating the bijection between F and G [Figure 3].
Since F and G are bijectional with each other, then they must also each have a

bijectional mapping to themselves.

(4.42) σ : F → F

(4.43) τ : G→ G

Thus, σ and τ are the automorphisms of F and G, respectively; that is, σ = Aut(F )
and τ = Aut(G). Since G ⊂ F , Aut(G) is contained in Aut(F ). The denumerable
set of escape values of E(q) contained in setD has the mapping δ : D → G, from the
set definition. Please see the figure demonstrating the embedding of G, containing
D, in F [Figure 4].
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Figure 3. Bijection between F and G.
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. . .

gk
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Cantor’s isomorphism theorem is the Cantor-Bernstein theorem from the view-
point of order theory [Appendix 5.2]. From the Cantor-Bernstein theorem it was
shown that γ : F → G is a denumerable bijection. However, it is the ordering rela-
tion that lends perspective to the embedding of G into F . As such, it is presented
here in the general spirit and verbiage of this manuscript.

Definition 4.18 (Order isomorphism). Given two partially ordered sets (posets)
(M,≤M ) and (N,≤N ), an order isomorphism is a bijection f :M → N having the
property that for every x, y ∈ M , x ≤M y if and only if f(x) ≤N f(y) [33]. That
is, it is a bijective order-embedding [5].

Theorem 4.19. Cantor’s isomorphism theorem Every two countable dense
unbounded linear orders are order-isomorphic [30].

Theorem 4.20. Cantor’s isomorphism theorem (alternate version) Any
two countably dense linear orders with no endpoints are isomorphic.

Proof. The standard proof uses the back-and-forth method to build up an isomor-
phism between any two given orders using a greedy algorithm [30]. In this context,
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Figure 4. Embedding of G in F.
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F and G have one fixed endpoint. G may be obtained as a proper subset of ele-
ments of F and G [Figure 4] by going forth from that fixed endpoint. Since G is
bijectional with F [Figure 3], any element of G may be renamed to an element of
F , and vice versa. □

4.4. Recursion and the order machine. Up until now, even integer division
by two has largely been ignored. However, the purpose of the mapping ci 7→ ci/2
is important and twofold under the conjecture. Since any positive even integer
is either congruent to 2r ≡ 0(mod2) or it isn’t [Lemma 4]; under recursion, this
congruence determines if the sequence tends to one from that value or it doesn’t.
If it doesn’t, then the even integer is divided by two until it becomes an odd integer
[Corollary 3]. As previously discussed, odd integers map to the (odd X, 3X + 1)
order isomorphism until an escape value is reached, then the sequence tends to one.
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The mechanism described above will be referred to as an order machine (OM):
it is the algorithmic interpretation of Collatz conjecture using an (odd X, 3X + 1)
order isomorphism. Please review the OM [Figure 1] and OM algorithm [Figure 2]
figures. The initial choice of a positive integer, c0 = n, starts the machine. That
integer, if not congruent to 2r, enters the first up to isomorphism while loop. De-
pending if the integer is even or odd, the corresponding function DivTwo() or Prim-
itive() is called. This process continues until a value of 3E(q)+1 is attained, which
has the necessary congruence. Then, the second while loop sends the sequence to
one.

The sets on which Collatz conjecture operates can now be understood in a tan-
gible way. If an initial choice for an integer is not congruent to 2r, the recursive
machine operates the (odd X, 3X + 1) order isomorphism until it attains a value
of 4q for some q ∈ N. The order isomorphism is composed of two (odd X, 3X + 1)
linear orders. These denumerable sets are obtained through the binomial series ex-
pansion of 4q as (1+3)q in two different ways [Combinatorics]. Both losets contain
the subset of values where 3E(q) + 1 = 4q. Since all odd integers are represented
by the order isomorphism, and since any even integer not congruent to 2r can be
made odd, the OM is able to accept and process any positive integer.

4.5. Discussion. A series of observations has unravelled the mystery surrounding
Collatz conjecture. There is an (odd X, 3X + 1) order isomorphism between a
pair of (odd X, 3X + 1) linear orders that share a denumerable set of embedded
values. If an initial choice for a positive integer is not congruent to 2r, then values
for odd X are created under recursion to operate the machine. When one of these
odd X values is equivalent to an embedded value, then the sequence is able to
escape by tending to one. Since cardinality guarantees that an escape value will
always be found for any positive integer starting value, the proclamation of Collatz
conjecture is true.

Equinumerosity and the Cantor theorems are powerful devices. A once thought
intractable problem has been proven, but intriguingly, any sequence generated by
the conjecture remains random. This methodology may serve as a guide for other
analogously similar problems, where situational awareness can be used to provide
proof, but random variation is still present. While the Cantor theorems guarantee
an escape value for every sequence starting value, it is not known in advance which
value will be used. However, these escape values are the even-index Jacobsthal
numbers, each of which have special numerical and combinatoric properties, so
there may be an argument that links a sequence starting value to its corresponding
escape value. But that question, and many others, provide the motivation for more
work to be done!

5. Appendix

5.1. The Binomial Theorem. The binomial theorem [29] describes the algebraic
expansion of powers of a binomial. According to the theorem, it is possible to
expand any non-negative integer power of x+ y into a sum,

(x+ y)n =

(
n

0

)
xny0 +

(
n

1

)
xn−1y1 +

(
n

2

)
xn−2y2 +

· · · +

(
n

n− 1

)
x1yn−1 +

(
n

n

)
x0yn

(5.1)
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where
(
n
k

)
is the familiar binomial coefficient

(5.2)

(
n

k

)
=

n!

k!(n− k)!

for n choose k.

This gives the general result,

(5.3) (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
xkyn−k

in compact summation notation.

Proof A1. Proof of the Binomial Theorem.
The proof of this theorem will be demonstrated using mathematical induction.

Assume the general result is true.

(5.4) (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

Let n = 0 and x + y = z. Evaluating the LHS gives (x + y)0 = z0 = 1. And
evaluating the RHS gives

(
0
0

)
x0y0 = 1. Thus, it is true for n = 0.

Let n = 1. Evaluating the LHS gives (x + y)1 = z1 = z. And evaluating the
RHS gives

(
1
0

)
x1 +

(
1
1

)
y1 = x+ y = z. Thus, it is true for n = 1.

Now perform a series expansion of (x+ y)n,

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 +

· · · +

(
n

k

)
xn−kyk + · · · +

(
n

n− 1

)
xyn−1 + yn

(5.5)

and let n = m, where m is a positive integer for which the statement is true.

(x+ y)m = xm +

(
m

1

)
xm−1y +

(
m

2

)
xm−2y2 +

· · · +

(
m

k

)
xm−kyk + · · · +

(
m

m− 1

)
xym−1 + ym

(5.6)

Induction step. Multiply (x+ y)m by (x+ y) to show (x+ y)m+1.

(x+ y)(x+ y)m = (x+ y)

(
xm +

(
m

1

)
xm−1y +

(
m

2

)
xm−2y2 +

· · · +

(
m

k

)
xm−kyk +

· · · +

(
m

m− 1

)
xym−1 + ym

)
= xm+1 +

[
1 +

(
m

1

)]
xmy +

[(
m

1

)
+

(
m

2

)]
xm−1y2 +

· · · +

[(
m

k − 1

)
+

(
m

k

)]
xm−k+1yk +

· · · +

[(
m

m− 1

)
+ 1

]
xym + ym+1

(5.7)
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Simplify the above expression using Pascal’s identity .

(5.8)

(
m

k − 1

)
+

(
m

k

)
=

(
m+ 1

k

)
, where 0 < k ≤ m

Applying the identity

xm+1 +

(
m+ 1

1

)
xmy +

(
m+ 1

2

)
xm−1y2 +

· · · +

(
m+ 1

k

)
x(m+1)−kyk +

· · · +

(
m+ 1

m

)
xym + ym+1

=

m+1∑
k=0

(
m+ 1

k

)
x(m+1)−kyk

= (x+ y)m+1

(5.9)

shows the result is true for m + 1. And by induction, the result is true for all
positive integers m and n. □

Example 5.1. Application of the binomial theorem.
Using the generalized binomial theorem, let x = 1 and y = 3. Then, perform the

necessary algebraic rearrangement.

4n = (1 + 3)n

=

n∑
k=0

(
n

k

)
1n−k3k

=

n∑
k=0

(
n

k

)
3k

= 1 + 3n +

n∑
k=2

(
n

2

)
3k

= 1 + 3

[
n +

n∑
k=2

(
n

2

)
3k−1

]

= 1 + 3

[
n∑

k=1

(
n

k

)
3k−1

]
= 1 + 3[E(n)]

(5.10)

This is an identical structure to 3X +1, but for odd X since E(n) is strictly odd
[Lemma 2]. This was the major observation used to recognize the (odd X, 3X +1)
order isomorphism. To be understood, the values of E(n) for any positive integer n
are the order-embedded escape values controlling the sequence behavior of Collatz
conjecture. Please see the figure demonstrating the enumeration of E(n) [Figure 5].

5.2. Set and Order Theory.

Definition 5.2 (Trichotomy law). For any arbitrary real numbers x, y ∈ R, ex-
actly one of the the following relations is true.
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Figure 5. Enumeration of E(n)
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. . .
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(1) x < y
(2) x > y
(3) x = y

Definition 5.3 (Comparability). Two elements x, y ∈M are said to be comparable
with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true. The
elements x, y are incomparable if they are not comparable.

Definition 5.4 (Partial order). A relation ≤ is a partial order on a nonempty set
M if it satisfies these three properties for all x, y, z ∈M :

(1) Reflexivity: x ≤ x for all x ∈M .
(2) Antisymmetry: x ≤ y and y ≤ x implies x = y.
(3) Transitivity: x ≤ y and y ≤ z implies x ≤ z.

A partially ordered set is also called a poset [35].

Definition 5.5 (Bounded). A subset M of a partially ordered set N is called
bounded below if there is an element b in N such that b ≤ m for all m in M . The
subset M is bounded above if there is an element c in N such that c ≥ m for all m
in M .

Definition 5.6 (Unbounded). Let (N,≤N ) be an ordered set. A subset M ⊆ N is
unbounded in N if and only if it is not bounded.
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Definition 5.7 (Linear order). A linear order is a partial order that is strongly
connected in which any two elements are comparable.

(1) Reflexive, antisymmetric, and transitive for all x, y, z ∈M .
(2) Comparability: either x ≤ y or y ≤ x is true for all x, y ∈M .

A linearly ordered set is also called a loset [34].

Definition 5.8 (Dense order). A linear order ≤ on a set M is said to be dense,
if for all m1,m2 ∈ M for which m1 < m2, there exists an m3 ∈ M such that
m1 < m2 < m3. That is, for any two distinct elements, one less than the other,
there is another element between them.
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