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Abstract: A restricted path integral method is proposed to efficiently simulate a class of
quantum systems and Hamiltonians called sum-of-few-fermions (SFF) by Monte Carlo on a
classical computer without a numerical sign problem. Then a universality is proven to assert that
any bounded-error quantum polynomial time (BQP) algorithm can be mapped to the ground
state of an SFF Hamiltonian and becomes efficiently simulatable. Therefore, the computational
complexity class of bounded-error probabilistic polynomial time (BPP) is precisely the same as
the class of BQP.

The ability to simulate quantum systems efficiently on a programmable computer, classical [1,2] or quantum
[1,3,4], is crucially important for fundamental sciences and practical applications. Of particular importance
is to simulate the ground state of a many-body quantum system efficiently on a classical computer. Among
many numerical methods, quantum Monte Carlo (QMC) [2] is uniquely advantageous as being based on first
principles without uncontrolled systematic errors and using polynomially efficient importance sampling from
an exponentially large Hilbert space, until its polynomial efficiency is spoiled by the notorious numerical sign
problem [5, 6]. On the other hand, a fundamental question in computational complexity theory is whether
the complexity class of bounded-error probabilistic polynomial time (BPP) is the same as that of bounded-
error quantum polynomial time (BQP) [7], which will be answered affirmatively in this presentation by
firstly identifying and characterizing a class of Hamiltonians callws sum-of-few-fermions (SFF), whose Gibbs
kernels and ground states are amenable to efficient Monte Carlo simulations on a classical computer, then
demonstrating that a universal BQP algorithm can be mapped into an SFF Hamiltonian, therefore, QMC
simulated efficiently [8].

Let a triple (C,H,B) represent a general quantum system [8], where C is a configuration space consisting of
eigenvalues of a collection of dynamical variables associated with the quantum system, for example but not
limited to spatial positions of particles, while H def

= H(C) ⊆ L2(C) is a Hilbert space of state vectors (i.e.,
wavefunctions) supported by C, and B def

= B(H) is a Banach algebra of bounded operators acting on vectors in
H, which contains a strongly continuous one-parameter semigroup of Gibbs operators {exp(−τH)}τ ∈ [0,∞),
whose infinitesimal generator H is designated as the Hamiltonian for the quantum system. A Hamiltonian
is the epitome of a general lower-bounded self-adjoint operator h, called a partial Hamiltonian, whose lowest
eigenvalue is denoted by λ0(h) ∈ R, and the associated ground state is denoted by ψ0(h), as either a non-
degenerate wavefunction or an arbitrary representative of the equivalence class of vectors in the ground
state subspace. It is assumed that all fundamental equations of physics, especially the Schrödinger and
quantum field-theoretic equations, are nondimensionalized and written in a so-called natural unit system.
It is without loss of generality (WLOG) to assume that C is a compact Riemannian manifold with a finite
dimension dim(C) ∈ N and a finite diameter diam(C) ∈ R, thus a finite size(C) def

= dim(C) + diam(C), and all
wavefunctions are real-valued, so the Hilbert spaces and Banach algebras are over R [7–10].

Consider a many-fermion system (MFS) of a variable size, comprising a number S ∈ N of fermion species, each
species labeled by s ∈ [1, S] consisting of a number ns ∈ N of identical fermions moving on a low-dimensional
Riemannian manifold Xs, where the total number of particles N∗

def
=

∑S

s= 1 ns may go up unbounded, while
both ds

def
= dim(Xs) and Ds

def
= diam(Xs), ∀s ∈ [1, S] are always bounded by a finite number independent of

N∗. Mathematically, the identical fermions of each species s ∈ [1, S] may be artificially labeled by an integer
n ∈ [1, ns], so that a configuration coordinate (point) qs

def
= (qs1, qs2, · · ·, qsns) ∈ Xnss can represent their

spatial configuration. But physically, the indistinguishability among identical fermions dictates that all of
the label-exchanged coordinates be equivalent and form an orbit Gsqs def

= {πsqs : πs ∈ Gs} for any qs ∈ Xnss ,
where Gs is the symmetry group of permuting ns labels, πs ∈ Gs is a typical permutation. Straightforwardly,
the Cartesian product C def

=
∏S

s= 1 Xnss is a configuration space for the MFS, and the group direct product
G∗

def
=

∏S

s= 1 Gs, called the exchange symmetry group of the MFS, acts on C and partitions it into disjoint
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orbits. Clearly, every pair of permutations π ∈ Gs, s ∈ [1, S] and π′ ∈ Gs′ , s′ ∈ [1, S] with s 6= s′ commute,
hence each Gs, s ∈ [1, S] is straightforwardly a normal subgroup of G∗. All of the even permutations in G∗
form a subgroup A∗, called the exchange alternating group. It is an axiom of physics that any legitimate
quantum state ψ ∈ H(C) must be exchange-symmetric as [πψ](q) def

= ψ(πq) = (−1)πψ(q), ∀q ∈ C, ∀π ∈ G∗.
With respect to G∗ and its actions on C and H(C), an exchange symmetrization operator is defined as
P def

=
∑

π ∈G∗(−1)π π, up to a normalization constant.

For any partial Hamiltonian h, and any (r, q, τ) ∈ C2 × (0,∞), let 〈r|e−τh|q〉 represent an artificial, non-
negative definite, boltzmannonic Gibbs transition amplitude from q to r in (imaginary) time τ due to h,
which ignores the fermionic exchange symmetry and regards all particles distinguishable, let 〈r|e−τh|Pq〉 def

=∑
π∈G∗(−1)π〈r|e−τh|πq〉 or 〈Pr|e−τh|q〉 def

=
∑

π ∈G∗(−1)π〈πr|e−τh|q〉 denote a pre- or post-symmetrized

fermionic Gibbs transition amplitude. The function 〈·|e−τh|·〉 ∈ L2(C2) is called the boltzmannonic Gibbs
kernel, and 〈·|e−τh|P·〉 ∈ L2(C2) or 〈P·|e−τh|·〉 ∈ L2(C2) is called the pre- or post-symmetrized fermionic
Gibbs kernel, associated with a Gibbs operator exp(−τh), τ ∈ (0,∞) generated by a partial Hamiltonian h.
It is obvious that 〈·|e−τh|P·〉 ≡ 〈P·|e−τh|·〉, either one may be referred to as the fermionic Gibbs kernel.

Given an MFS governed by a Hamiltonian H, a computationally important number is the (descriptive) size of
H, denoted by size(H), which is basically the minimum number of classical bits, up to a constant factor, that
is needed to describe H. All computational complexities and singular values of operators will be measured
against size(H). Of great interests are the so-called (computationally) local Hamiltonians [11,12] of the form
H =

∑K

k= 1Hk, K ∈ N, K = O(poly(N∗)), where the size of H is defined as size(H) def
= size(C) + K, thus

size(H) = O(poly(N∗)), each Hk, k ∈ [1,K] moves a small number of artificially labeled fermions. By an
Hk, k ∈ [1,K] moving an n-th fermion of an s-th species, s ∈ [1, S], n ∈ [1, ns], it is meant that there exist
a τ ∈ (0,∞) and two configuration points q = (· · · qsn· · · ) ∈ C and r = (· · · rsn· · · ) ∈ C, such that rsn 6= qsn
while the boltzmannonic Gibbs transition amplitude 〈r|e−τHk |q〉 6= 0 [8].

One exemplary local Hamiltonian describes an MFS having a single fermion species with a large number of
identical particles, which is a conventional Schrödinger operator H = 1

2

∑N∗
n= 1 ∂

2/∂x2
n + V (x1, · · ·, xN∗), but

rewritten into a local Hamiltonian as H =
∑N∗
n= 1Hn, with each partial Hamiltonian moving three artificially

labeled fermions as Hn
def
= 1

6

∑n+1
k=n−1 ∂

2/∂xk‖N∗ +V (x1, · · ·, xN∗)/N∗, ∀n ∈ [1, N∗], where k ‖N∗ denotes the
unique number in [1, N∗] such that k − (k ‖N∗) ≡ 0 (mod N∗), ∀k ∈ N.

Another exemplary local Hamiltonian H =
∑K

k= 1Hk describes an important class of MFS called a many-
species fermionic system (MSFS), that comprises a large number S ∈ N of fermion species, each of which
has no more than a small constant of identical fermions, where each Hk, k ∈ [1,K] moves either all or none
of the identical particles of any fermion species. For each k ∈ [1,K], the species and fermions moved by Hk

constitute a subsystem called a few-fermion cluster, or just a few-fermion in short, which is associated with
a factor subspace Ck and a factor subgroup Gk ≤ G∗, in the sense that, C′k and G′k ≤ G∗ exist such that
Ck×C′k ' C and Gk×G′k ' G∗. Obviously, each Gk, k ∈ [1,K] is a normal subgroup of G∗ and itself a direct
product of a small number of normal subgroups from the list {Gs}s∈[1,S].

Definition 1. Given an MSFS with a variable number S ∈ N of fermion species, a form sum H =
∑K

k= 1Hk,
K = O(poly(S)) defining a local Hamiltonian is called a sum of few-fermions, when each Hk, k ∈ [1,K],
called a few-fermion interaction (FFI), involves no more than a small constant number of fermion species,
moves either all or none of the identical particles of each involved fermion species, and is invariant under
any exchange of identical particles, namely, π−1Hkπ = Hk, ∀π ∈ G∗.

Such MSFS and H are said to be sum-of-few-fermions (SFF), with sum-of-few-fermions (SFF) serving as an
adjective. Although an SFF system may have a large total number of particles N∗, each FFI Hk, k ∈ [1,K]
corresponds to a few-fermion comprising a small number of fermions and species. Due to the small size of
a few-fermion, it is always computationally easy, with the complexity bounded by a constant, to solve any
Hk, k ∈ [1, k] or any associated Gibbs kernel or any related physics, either analytically or numerically.

Definition 2. Let H =
∑K

k= 1Hk be a form sum defining an SFF Hamiltonian. The form sum is called a Lie-
Trotter-Kato (LTK) decomposition, and H is called LTK-decomposed, when ∀ε > 0, there exists an m ∈ N,
m = O(poly(size(H) + ε−1)), such that 〈r|{∏K

k= 1 e
−Hk/m}m|Pq〉 ∈ 〈r|e−H |Pq〉 (1− ε, 1 + ε), ∀(r, q) ∈ C2
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satisfying |〈r|e−H |Pq〉| > ε e−λ0(H). The same form sum is called a ground-state projection (GSP) decompo-
sition, and H is called GSP-decomposed, when ∀ε > 0, there exists an m ∈ N, m = O(poly(size(H) + ε−1)),
such that ‖{∏K

k= 1Πk}m−Π∗‖ < ε, where ‖·‖ denotes the operator norm, Π∗
def
= lim τ→∞ e−τ [H−λ0(H)] and

Πk
def
= lim τ→∞ e−τ [Hk−λ0(Hk)] are projections to the ground state subspaces of H and Hk, k ∈ [1,K].

The definition of an LTK- or GSP-decomposed Hamiltonian is inspired by the LTK product formula e−τH =
limm→∞{

∏K

k= 1 e
−τHk/m}m, τ ∈ (0,∞), which suggests to divide [0, τ ] into time intervals delimited by time

instants {τn def
= (n/K) δτ}n∈ [0, N ], δτ

def
= τ/m, N def

= mK, and break the Gibbs operator e−τH down into a

sequence of Gibbs operators {Gn def
= e−δτHn‖K}n∈ [1, N ], so to compute Gibbs kernels using the Feynman path

integral, also known as the functional integration [13,14]. n ‖K denotes the unique number in [1,K] such that
n−(n ‖K) ≡ 0 (mod K), ∀n ∈ N. Each Gibbs operator Gn and the spacetime domain C×[τn−1, τn], n ∈ [1, N ]
constitute a Feynman slab, delimited by two Feynman planes (Cn−1, τn−1) def

= {(qn−1, τn−1) : qn−1 ∈ C} and
(Cn, τn) def

= {(qn, τn) : qn ∈ C} [8]. If necessary, each Feynman slab associated with a constant FFI Hn‖K ,
n ∈ [1, N ] can be further divided into thinner Feynman slices so that the Gibbs operators are easier to
compute or approximate.

A number of consecutive Feynman slabs with the corresponding sequence of Gibbs operators {Gn}n∈ [n1, n2],
0 < n1 ≤ n2 ≤ N constitute a Feynman stack with the two Feynman planes (Cn1−1, τn1−1) and (Cn2

, τn2
)

forming its boundaries [8]. Let n0
def
= n1− 1, ∀n1 ∈ N. Pick two points qn0 ∈ Cn0 and qn2 ∈ Cn2 on the two

boundary Feynman planes, the set of all Feynman paths

Γ(qn2 , τn2 ; qn0 , τn0) def
= {γ(t) : t ∈ [τn0

, τn2
] 7→ C such that γ(τn0

) = qn0
, γ(τn2

) = qn2
} (1)

together with the sequence of partial Hamiltonians {Hn‖K}n∈ [n1, n2] constitute a Feynman spindle [8], which
gives rise to two Gibbs transition amplitudes, one being boltzmannonic and defined as

ρ(qn2
, τn2

; qn0
, τn0

) def
=

∫
· · ·
∫
{∏n2

n=n1
〈qn|e−δτHn‖K |qn−1〉}{

∏n2−1
n=n1

dqn} , (2)

the other being fermionic and symmetrized as

ρ(qn2
, τn2

;Pqn0
, τn0

) def
=

∑
π ∈G∗(−1)πρ(qn2

, τn2
;πqn0

, τn0
) . (3)

In equation (2), the fermionic exchange symmetry is ignored and the integration over all particle-distinguished
Feynman paths yields a non-negative definite, boltzmannonic Gibbs transition amplitude. On the right side
of equation (3), even though the whole group G∗ is used for the domain of exchange symmetry, it is really
only those permutations in the subgroup Gn1:n2 generated by the set of subgroups {Gn = Gn‖K}n2

n=n1
that

are active and relevant, since ρ(qn2
, τn2

;πqn0
, τn0

) = 0 for all π 6∈ Gn1:n2
.

For Feynman slabs or slices that are sufficiently thin, there are simple rules for Feynman flights [8], which
determine the associated Gibbs transition amplitude between two points q and r on two narrowly separated
Feynman planes respectively [13, 14]. It is almost always the case, here taken as an axiomatic premise, that
all partial Hamiltonians in consideration are of the Schrödinger type, as a sum of an elliptic differential
operator −∆ and a bounded potential V , so to substantiate the Hopf lemma and the strong Hopf extremum
principle [8, 15, 16], and ensure that the boltzmannonic Gibbs transition amplitude of a Feynman flight

becomes exponentially localized as 〈r|e−δτ(−∆+V )|q〉 ≤ c1e−c2 dist(r,q)2/δτc3 when δτ > 0 approaches 0, where
c1, c2, c3 are positive constants, dist(r, q) denotes the geodesic distance between q and r on the Riemannian
manifold C. Said rules for Feynman flights induce a Wiener measure that assigns a non-negative amplitude
W (γ) = e−U(γ) to each Feynman path γ. Importantly, the action functional U(γ) is linear with respect to
path concatenation, in that U(γ) = U(γ1) + U(γ2) holds when two segments of Feynman paths γ1 and γ2

concatenate into a continuous Feynman path γ def
= γ2 ∗ γ1, which starts at the start point of γ1, goes to the

end point of γ1 that coincides with the start point of γ2, and continues till the end point of γ2.

The formulation of Feynman path integral is rightly suited for simulating a Gibbs kernel via Monte Carlo
integration over a many- but finite-dimensional space. Path integral Monte Carlo would realize BPP simula-
tions of quantum systems, were it not for the sign problem [5,6] due to the presence of negative amplitudes,
particularly in fermionic systems. QMC methods using restricted path integrals (RPIs) [6, 17–20] have been
proposed and applied to avoid negative amplitudes. But previous RPIs are only approximate methods as
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they rely on a priori approximations for the nodal surfaces of Gibbs kernels associated with the total Hamil-
tonian, which are unknown and hard to compute. Here I will show that for an SFF Hamiltonian, negative
amplitudes can be avoided by restricting Feynman paths locally, with respect to the efficiently computable
nodal surface of a Gibbs kernel associated with an individual FFI.

By Feynman’s rule of amplitude multiplication for events occurring in succession [13], also known as the
Chapman-Kolmogorov equation in probability theory, in conjunction with the (anti)symmetry of Gibbs
kernels under particle exchanges, the fermionic Gibbs transition amplitude due to a Feynman stack, from a
start point qn0

∈ Cn0
at τn0

, n0 = n1− 1 to an end point qn2
∈ Cn2

at τn2
, can be computed as

ρ(qn2
, τn2

;Pqn0
, τn0

) =
∫
qn1
∈Cn1

ρ(qn2
, τn2

; qn1
, τn1

) ρ(qn1
, τn1

;Pqn0
, τn0

) dqn1

=
∫
qn1
∈Rn1

ρ(qn2
, τn2

; qn1
, τn1

) ρ(qn1
, τn1

;Pqn0
, τn0

) dqn1

∝
∫
qn1
∈Rn1

/G∗

∑
π ∈G∗ ρ(qn2

, τn2
;πqn1

, τn1
) ρ(πqn1

, τn1
;Pqn0

, τn0
) dqn1

(4)

∝
∫
qn1∈Rn1/G∗

∑
π ∈G∗ ρ(qn2

, τn2
;πqn1

, τn1
) (−1)πρ(qn1

, τn1
;Pqn0

, τn0
) dqn1

∝
∫
qn1∈Rn1/G∗

ρ(qn2
, τn2

;Pqn1
, τn1

) ρ(qn1
, τn1

;Pqn0
, τn0

) dqn1
,

where Rn1

def
= Rn1

(qn0
, τn0

) def
= {qn1

∈ Cn1
: ρ(qn1

, τn1
; qn0

, τn0
) > 0} ⊆ Cn1

is called the boltzmannonic range
of qn0

from τn0
to τn1

, “∝” indicates an equality up to a universal (that is, (qn2
, qn1

, qn0
)-independent)

constant, Rn1
/G∗ is any subset of Rn1

that tiles up Rn1
under the action of G∗, i.e.,

⋃
π ∈G∗ π(Rn1

/G∗) ⊇
Rn1

. It suffices to choose Rn1
/G∗ = N+

n1
(qn0

, τn0
) def

= {qn1
∈ Rn1

: ρ(qn1
, τn1

;Pqn0
, τn0

) > 0}, which is
the set union of all of the positive nodal cells of ρ(qn1

, τn1
;Pqn0

, τn0
) regarded as a function of qn1

∈ Cn1
,

having qn0
, τn0

, τn1
fixed. Similarly, let N−n1

(qn0
, τn0

) def
= {qn1

∈ Rn1
: ρ(qn1

, τn1
;Pqn0

, τn0
) < 0} denote the

set union of all of the negative nodal cells. Clearly, any odd permutation π ∈ G∗\A∗ induces a one-to-one
correspondence between the set of positive nodal cells and the set of negative nodal cells. Therefore,

ρ(qn2
, τn2

;Pqn0
, τn0

) ∝
∫
qn1
∈N+

n1
(qn0

,τn0
)
ρ(qn2

, τn2
;Pqn1

, τn1
) ρ(qn1

, τn1
;Pqn0

, τn0
) dqn1

. (5)

In general, it has been rigorously proved that, under the action of the group G∗, any nodal cell Nn1
tiles up

the configuration subspace Rn1
, thus, N+

n1
(qn0

, τn0
) = A∗Nn1

(qn0
, τn0

) def
=

⋃
π∈A∗

πNn1
(qn0

, τn0
), provided

that the FFIs are of the Schrödinger type and substantiate the Hopf lemma and the strong Hopf extremum
principle [6, 8]. Moreover, any wavefunction or Gibbs kernel over Rn1 is fully determined by and easily
recovered from its restriction on N+

n1
(qn0

, τn0
).

Now consider ρ(q, τ ;Pqn0 , τn0) def
= 〈q|e−(τ−τn0

)KHn1‖K |Pqn0〉 as a (q, τ)-jointly continuous function of (q, τ) ∈
C × (τn0

, τn1
+ δ1), δ1 > 0. The preimage {(q, τ) : ρ(q, τ ;Pqn0

, τn0
) > 0} is an open set, the connected

component of which containing the trivial node-free path {(qn0
, τ) : τ ∈ (τn0

, τn1
]} is called the nodal tube or

the Ceperley reach of qn0
∈ Cn0

[6,8], which is denoted by Tn1
(qn0

, τn0
). Let Tn1

(τ ; qn0
, τn0

) def
= Tn1

(qn0
, τn0

)∩
C × {τ}, ∀τ ∈ (τn0 , τn1 ], which is clearly a nodal cell of the fermionic Gibbs kernel ρ(q, τ ;Pqn0 , τn0) as a
function of q ∈ C. It is well known that, inside the nodal tube Tn1(qn0 , τn0), the fermionic Gibbs kernel
ρ(q, τ ;Pqn0

, τn0
) coincides with an RPI ρR(q, τ ; qn0

, τn0
), which is a boltzmannonic path integral over all

particle-distinguished Feynman paths that lie fully within the nodal tube Tn1
(qn0

, τn0
) [6, 8, 17–20].

In a hypothetical procedure of numerical integration, the fermionic Gibbs kernel ρ(qn1 , τn1 ;Pqn0 , τn0) as
a function of qn1 ∈ N+

n1
(qn0 , τn0) may be sampled using two nested loops, where an outer loop moves the

configuration coordinate qn1
∈ N+

n1
(qn0

, τn0
), while an inner loop regards qn0

and qn1
being fixed, samples

from the set Γ(qn1 , τn1 ;G∗qn0 , τ0) def
=

⋃
π ∈G∗Γ(qn1

, τn1
;πqn0

, τ0) of Feynman paths that connect a start
point in the orbit G∗qn0

to the end point qn1
, and integrates the signed Wiener measure (−1)πW (γ) for each

Feynman path γ connecting a certain πqn0
, π ∈ G∗ to qn1

. It turns out that any Feynman path crossing
or making contact with the boundary of the nodal tubes {∂Tn1

(πqn0
, τn0

)}π ∈A∗ belongs to a G∗-orbit of
sets of Feynman paths that integrate to a net zero amplitude, so all of which can be removed from path
integration. Specifically, let γ1 denote a segment of Feynman path connecting a point (q, τ) ∈ ∂Tn1(qn0 , τn0),
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τ ∈ (τn0 , τn1 ] to the end point qn1 , then for each π ∈ G∗, the set of concatenated Feynman paths

γ1 ∗ Γ(q, τ ;πqn0
, τn0

) def
= {γ1 ∗ γ0 : γ0 ∈ Γ(q, τ ;πqn0

, τn0
)} ,

together with the relevant FFIs constitute a post-tethered Feynman spindle, which yields a Wiener mea-
sure

∫
γ0 ∈Γ(q,τ ;πqn0 ,τn0 )

W (γ1)W (γ0) dγ0 = W (γ1) ρ(q, τ ;πqn0
, τn0

). With π traversing the group G∗, it enu-

merates a G∗-orbit of post-tethered Feynman spindles associated with {γ1 ∗ Γ(q, τ ;πqn0 , τn0)}π ∈G∗ , whose
corresponding Wiener measures should be signed accordingly and summed up to yield∑

π∈G∗W (γ1) (−1)πρ(q, τ ;πqn0
, τn0

) = W (γ1) ρ(q, τ ;Pqn0
, τn0

) = W (γ1) ρ(Pq, τ ; qn0
, τn0

) , (6)

which makes a net zero contribution to ρ(qn1 , τn1 ;Pqn0 , τn0), when (q, τ) ∈ ∂Tn1(qn0 , τn0). Moreover, it
is obvious that the same analysis applies to a more general G∗-orbit of post-tethered Feynman spindles
associated with {γ′1 ∗ Γ(q, τ ;πqn0

, τn0
)}π ∈G∗ , where τ ∈ (τn0

, τn1
], and γ′1 is a Feynman path connecting

the point (q, τ) to any point (q′, τ ′) ∈ C × (τn1
, τN ], including (q′, τ ′) = (qN , τN), so to conclude that any

Feynman path crossing or making contact with the boundary of the nodal tube ∂Tn1
(qn0

, τn0
) belongs to

a G∗-orbit of sets of Feynman paths that make a net zero contribution to the Gibbs transition amplitude
ρ(q′, τ ′;Pqn0 , τn0), thus can be safely removed from path integration. The only thing to note is that the
calculation of the Wiener measure W (γ′1) for the path γ′1 may involve other FFIs than Hn1

.

Still further, it is straightforward to write the fermionic Gibbs kernel in the post-symmetrized from as
ρ(Pqn1 , τn1 ; qn0 , τn0) and apply exactly the same analyses on a G∗-orbit of pre-tethered Feynman spindles
associated with

{Γ(πqn1
, τn1

; q, τ) ∗ γ0
def
= {γ1 ∗ γ0 : γ1 ∈ Γ(πqn1

, τn1
; q, τ)}}π ∈G∗ ,

where γ0 is a segment of Feynman path connecting (qn0 , τn0) to (q, τ) ∈ T ∗n1
(qn1 , τn1), Γ(πqn1 , τn1 ; q, τ) is the

set of Feynman paths associated with the Feynman spindle between (q, τ) and (πqn1 , τn1) for each π ∈ G∗, and

T ∗n1
(qn1

, τn1
) is a backward nodal tube for the Gibbs kernel ρ(Pqn1

, τn1
; q′, τ ′) def

= 〈Pqn1
|e−(τn1−τ

′)KHn1‖K |ρ′〉
regarded as a function of (ρ′, τ ′) ∈ C×(τn0− δ0, τn1), δ0 > 0 with respect to the fixed qn1 ∈ Cn1 and τn1 , where
T ∗n1

(qn1 , τn1) is the connected component of the open set {(q′, τ ′) : ρ(Pqn1 , τn1 ; q′, τ ′) > 0} that contains
the path {(qn1

, τ ′) : τ ′ ∈ [τn0
, τn1

)}. It is clear that any Feynman path crossing or touching the boundary
of a backward nodal tube can be safely removed from path integration, and similarly, the purge of nodal
surface-touching Feynman paths can be extended to when γ0 starts at a time earlier than τn0

.

Consider a practical Markov chain Monte Carlo (MCMC) procedure that samples a dual-symmetrized Gibbs
kernel ρ(PqN , τN ;Pq0, τ0) for the whole Feynman stack associated with the Gibbs operators {Gn}n∈ [1, N ],
where (qN , q0) ∈ (C/G∗)2, C/G∗ can be any subset that tiles up C under the action of G∗. It follows from the
above analyses and method of RPI that

ρ(PqN , τN ;Pq0, τ0)

=
∫
qN−1∈CN−1

∫
q1∈C1

ρ(PqN , τN ; qN−1, τN−1) ρ(qN−1, τN−1; q1, τ1) ρ(q1, τ1;Pq0, τ0) dq1dqN−1

∝
∫
qN−1∈N+

N (qN ,τN )

∫
q1∈N+

1 (q0,τ0)

∑
(πN−1,π1)∈G2

∗
ρ(PqN , τN ;πN−1qN−1, τN−1)

× ρ(πN−1qN−1, τN−1;π1q1, τ1) ρ(π1q1, τ1;Pq0, τ0) dq1dqN−1 (7)

∝
∫
qN−1∈N+

N (qN ,τN )

∫
q1∈N+

1 (q0,τ0)
ρ(PqN , τN ; qN−1, τN−1)

× ρ(PqN−1, τN−1;Pq1, τ1) ρ(q1, τ1;Pq0, τ0) dq1dqN−1

∝
∫
qN−1∈NN−1(qN ,τN )

∑
πN−1 ∈A∗

∫
q1∈N1(q0,τ0)

∑
π1 ∈A∗ ρR(πN−1qN , τN ;πN−1qN−1, τN−1)

× ρ(PqN−1, τN−1;Pq1, τ1) ρR(π1q1, τ1;π1q0, τ0) dq1dqN−1 , ∀(qN , q0) ∈ (C/G∗)2 ,

where N1(q0, τ0) is the nodal cell of ρ(·, τ1;Pq0, τ0) at τ1 enclosing q0, and NN(qN , τN) def
= TN(qN , τN) ∩ (C ×

{τN−1}) is the backward nodal cell of ρ(PqN , τN ; qN−1, τN−1) at τN−1 enclosing qN , N+
1 (q0, τ0) and N+

N (qN , τN)
are the corresponding set unions of nodal cells and backward nodal cells respectively, while ρR(πq1, τ1;πq0, τ0)
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and ρR(πqN , τN ;πqN−1, τN−1) for any π ∈ A∗ are non-negative definite transition amplitudes computed using
RPIs within the first and the last Feynman slabs respectively. In other words, the first and the last Feynman
slabs have been path rectified, with the fermionic exchange and sign considerations no longer necessary and
relevant. The same method of RPI can be repeated to have all Feynman slabs path rectified, such that

ρ(PqN , τN ;Pq0, τ0) ∝ {∫
qn∈Nn

∑
πn ∈A∗}

N−1

n= 1
ρR(πN−1qN , τN ;πN−1qN−1, τN−1)

×
∏N−1

n= 1
ρR(πnqn, τn;πnqn−1, τn−1)

∏N−1

n= 1
dqn , (8)

∀(qN , q0) ∈ (C/G∗)2, where Nn def
= Nn(qn−1, τn−1) for each n ∈ [1, bN/2c], bN/2c def

= max{n ∈ N : 2n ≤ N}
represents the nodal cell of the pre-symmetrized Gibbs kernel of the n-th Feynman slab with respect to
(qn−1, τn−1), and Nn def

= N ∗n+1(qn+1, τn+1) for each n ∈ [1 + bN/2c, N − 1] denotes the backward nodal cell
of the post-symmetrized Gibbs kernel of the (n+ 1)-th Feynman slab with respect to (qn+1, τn+1). Due to
the frequent insertion of π ∈ A∗ permutations, the Feynman paths in a path integral such as equation (8)
appear to undergo abrupt coordinate jumps in the space C × (τ0, τN ], which do not represent actual physical
discontinuities, since all points in any orbit A∗q, q ∈ C are physically equivalent and represent the same
physical reality. Indeed, such Feynman paths are actually continuous in the space (C/A∗) × (τ0, τN ], where
C/A∗ is an orbifold regarding each orbit A∗q, q ∈ C as a single point. A practical and effective means to
incorporate such exchange equivalence is to associate each point (qn, τn), n ∈ [0, N ] on a Feynman plane
with two equivalent coordinates q−n ∈ A∗qn and q+

n ∈ A∗qn, where q−n serves the Feynman stack or slice from
τn−1 to τn, and q+

n is used by the Feynman stack or slice from τn to τn+1.

It is worth noting that all path rectifications are done on a per Feynman slab basis, requires a solution
for the nodal surface of the specific FFI associated with each Feynman slab, which can be obtained at
no more than a constant computational cost due to the bounded number of fermion species moved by
each FFI, while each species has a bounded number of identical particles. It is also important to note
that the order in which the Feynman slabs are path rectified in equations (7) and (8) apparently creates
a sequence of conditional dependence among the nodal cells on the Feynman planes and integrations over
the corresponding configuration coordinates. However, such conditional dependence is insubstantial, since
the order of the Feynman slabs being path rectified can be arbitrary, and different choices of such an order
yields the same result for ρ(PqN , τN ;Pq0, τ0). Specifically, for any n ∈ [1, N−1], if desired, the method of
RPI can be applied iteratively such that the first to the (n−1)-th Feynman slabs are firstly path rectified in
sequence, then the (N−1)-th to the (n+1)-th Feynman slabs are path rectified backward in order, leaving
ρ(Pqn−1, τn−1;Pqn+1, τn+1) as the only fermionic and signed factor in the LTK product of Gibbs kernels,
which is finally path rectified by discarding any Feynman path from a given q+

n−1 ∈ A∗qn−1 at τn−1 to a

given q−n+1 ∈ A∗qn+1 at τn+1 that ever crosses or touches a nodal surface of either ρ(q, τ ;Pqn−1, τn−1),
τ ∈ (τn−1, τn] or ρ(Pqn+1, τn+1; q, τ), τ ∈ [τn, τn+1) as a function of q ∈ C, ∀τ ∈ (τn−1, τn+1). In particular,
the fully rectified path integral integrates over the points qn such that, both q−n ∈ A∗qn is in the Ceperley
reach of q+

n−1 with respect to 〈·|e−δτHn‖K |Pq+
n−1〉, and q+

n ∈ A∗qn is in the Ceperley reach of q−n+1 backward

with respect to 〈Pq−n+1|e−δτH(n+1)‖K |·〉. This perspective justifies a Monte Carlo subroutine that wiggles a
Feynman path by walking only one coordinate on a single Feynman plane at any given time, subject to the
constraint of no nodal crossing or touching in the two bordering Feynman slabs or slices.

In one exemplary embodiment of numerical simulation, a random and warm start q0 ∈ C is chosen, and the
RPI of equation (8) is approximated by running an MCMC procedure that starts with an initial Feynman
path having qn = q0, ∀n ∈ [0, N ], and repeats two nested loops for a polynomial number of times, where
an outer loop walks each coordinate qiK , i ∈ [0,m] in turn using a Metropolis-Hastings algorithm [21,22] or
Gibbs sampling [23] based on a conditional probability Pr(qiK | q−(i+1)K , q

+
(i−1)K), with the index i− 1 or i+ 1

being void and the coordinate q+
(i−1)K or q−(i+1)K being omitted when i = 0 or i = m, while an inner loop

samples from all of the restricted Feynman paths running from a fixed q+
(i−1)K ∈ N+

(i−1)K , passing a proposed
q−iK ∼ q+

iK ∼ qiK ∈ N+
iK , and finally reaching a fixed q−(i+1)K ∈ N+

(i+1)K , ∀i ∈ [0,m], so to compute an RPI
approximating the probability

Pr(qiK | q−(i+1)K , q
+

(i−1)K) ∝ ρR(q−(i+1)K , τ(i+1)K ; q+

iK , τiK) ρR(q−iK , τiK ; q+

(i−1)K , τ(i−1)K) , (9)

which coincides with the dual-symmetrized Gibbs kernel 〈Pq(i+1)K |e−δτH |qiK〉〈qiK |e−δτH |Pq(i−1)K〉 as a func-
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tion of qiK ∈ CiK/A∗ restricted to a positive nodal cell. At each instant of time during either the inner or
the outer loop, a random permutation π ∈ A∗ and two random integers (n1, n2) ∈ [0, N ]2, n1 < n2 can be
chosen, such that a segment γ(n1 :n2) of the instantaneous Feynman path that starts at τn1

and ends at τn2

can be transformed into πγ(n1 :n2), where in particular, the sequence of points {(qn, τn) : n ∈ [n1, n2]} as an
element of the so-called cylinder set is transformed into {(πqn, τn) : n ∈ [n1, n2]}. The two nested loops create
and operate at two timescales, where the inner loop is related to a short timescale, within which a random
walk among the restricted Feynman paths mixes rapidly to yield a good estimate for Pr(qiK | q−(i+1)K , q

+
(i−1)K),

while the outer loop is associated with a long timescale, in which the coordinates {qiK}i∈[0,m] walk randomly
and mix at a slower but still polynomial rate. The slow dynamics of the outer loop always sees the fast
dynamics of the inner loop in its equilibrium at any instant on the long timescale.

Specifically, for an SFF Hamiltonian that is LTK-decomposed, given a fixed τ > 0, an m ∈ N can be chosen
sufficiently large such that δτ = τ/m is sufficiently small. The inner loop is essentially a multi-dimensional
integration over the points {qn : n ∈ [(i− 1)K, (i+ 1)K]} ∈ (C/A∗)2K+1 weighted by the Wiener measure∏(i+1)K−1

n= (i−1)K
〈qn+1|e−δτH(n+1)‖K |qn〉, while subject to the constraint that 〈Pqn+1|e−δτH(n+1)‖K |Pqn〉 does not

change sign or vanish, ∀n ∈ [(i− 1)K, (i+ 1)K − 1]. The Wiener measure is substantially a product between
a Gaussian measure representing Brownian motions of free particles and a multiplicative factor valued within
the interval [e−2δτKV0 , e2δτKV0 ], the latter being due to the potential energy terms in the FFIs that are
bounded within [−V0, V0], V0 > 0. A small δτ dictates that the coordinates {qn : n ∈ [(i− 1)K, (i+ 1)K]}
can not be far separated in the C/A∗ orbifold topology lest the Wiener measure be exponentially small, and
each nodal surface can be well approximated locally as a hyperplane bisecting an Euclidean configuration
space, for any configuration point qn, n ∈ [(i− 1)K, (i+ 1)K] that ever gets close to such a nodal surface.
Therefore, the multi-dimensional integration performed by the inner loop is mostly like an MCMC sampling
from and integrating a logconcave distribution over a convex polyhedron defined by the hyperplanes locally
approximating the nodal surfaces. The latter is proved to mix rapidly [24] with a polynomial-sized Cheeger
constant or conductance CheegConst [25–27], so is the former rapidly-mixing with a Cheeger constant no
smaller than e−4δτKV0 × CheegConst.

For each step of the outer loop walking a coordinate qiK ∈ CiK/A∗, i ∈ [0,m] to a new position riK ∈ CiK/A∗,
with all of the other coordinates {qjK : j ∈ [0,m], j 6= i} being fixed, the Metropolis-Hastings algorithm or
Gibbs sampling accepts or rejects the qiK→ riK move with a probability that depends on a ratio between two
conditional probabilities Pr(riK | q−(i+1)K , q

+
(i−1)K) /Pr(qiK | q−(i+1)K , q

+
(i−1)K), subject to a constraint that both

qiK and riK can be reached by restricted Feynman paths from both q+
(i−1)K and q−(i+1)K . This is essentially

a random walk over a nodal cell of Pr(qiK | q−(i+1)K , q
+
(i−1)K) ∝ 〈Pq−(i+1)K |e−δτH |(qiK〉 〈(qiK |e−δτH |Pq+

(i−1)K〉
as a function of qiK ∈ CiK/A∗. The outer loop overall is to drive the distribution of coordinates from an
initial φ({qiK}i∈ [0,m]) ∈ L1((C/A∗)m+1) to a stationary distribution φ0({qiK}i∈ [0,m]) at equilibrium. To see
how fast the process converges, expand the multi-variable function φ(·) in terms of products among the
eigenfunctions {ψn def

= ψn(H)}n≥0 listed in the order of increasing energies, such that

φ({qiK : i ∈ [0,m]}) =
∑

n0n1···nm cn0n1···nm ψn0
(q0)ψn1

(qK) · · ·ψnm(qmK) . (10)

Assume that the ground state ψ0(H) is non-degenerate. Then it is obvious that the equilibrium distribution is
precisely φ0({qiK}) = ψ0(q0)ψ0(qK) · · ·ψ0(qmK). Any monomial ψn0(q0) · · ·ψni(qiK) · · ·ψnm(qmK) in equation
(10) that has an excited state ψni , ni 6= 0, i ∈ [0,m] as a factor will have its coefficient cn0n1···nm strictly
reduced by a factor e−α(i)δτ [λni (H)−λ0(H)] < 1 after each step of the outer loop walking the coordinate qiK ,
with α(0) = α(m) = 1 and α(i) = 2 for all i ∈ [1,m−1]. Therefore, the mixing time [28] of the outer loop is
upper-bounded by O(m/∆λ), with ∆λ def

= λ1(H)− λ0(H) being the spectral gap of H.

Theorem 1. Let H =
∑K

k= 1Hk be an SFF Hamiltonian that is LTK-decomposed, whose ground state is
non-degenerate and separated from all excited states by an Ω(1/poly(size(H))) energy gap. Then the Gibbs
kernel 〈Pr|e−τH |Pq〉, (r, q) ∈ C2 is BPP simulatable for all τ ∈ [0,∞), namely, there is a Monte Carlo
algorithm that runs for a time no longer than poly(size(H), ε−1) to generate a random sample of (r, q) ∈ C2,
whose probability distribution is no more than ε away from 〈Pr|e−τH |Pq〉 in the total variance distance [28],
for all (r, q) ∈ C2, for any given ε > 0.

Proof. By the exchange symmetry, it is sufficient to simulate the Gibbs kernel 〈r|e−τH |Pq〉 for q ∈ C and for
r ∈ N (q; τH), with N (q; τH) denoting the nodal cell of 〈·|e−τH |Pq〉 with respect to and containing a start
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point q ∈ C. Due to the polynomial energy gap, it is WLOG to assume that τ is O(poly(size(H))) bounded,
because e−τ [H−λ0(H)] becomes essentially a projection to the ground state when τ is sufficiently large. Employ
an MCMC procedure as specified in the above exemplary embodiment, with an m chosen sufficiently large
but still O(poly(size(H))) bounded, so that δτ = τ/m is sufficiently small and the inner loop converges well
within O(poly(size(H))) iterations. Again due to the polynomial energy gap and the uniqueness of ψ0(H),
the outer loop needs to iterate only poly(size(H), ε−1) times to produce a random sample (r, q) ∈ C2 that is
distributed ε-close to 〈r|e−τH |Pq〉. The overall runtime is clearly O(poly(size(H), ε−1)).

Running such an MCMC procedure for a polynomial number of times generates a polynomial number of
random samples of (r, q) ∈ C2 according to the Gibbs kernel 〈r|e−τH |Pq〉, q ∈ C, r ∈ N (q; τH). In particular,
by enforcing a periodic boundary condition r = qN = q0 = q and running the MCMC for a polynomial number
of times, enough samples can be generated to estimate the partition function Z def

=
∫
〈q|e−τH |Pq〉dq to within

a polynomial accuracy. In general, for any observable Q whose matrix elements 〈q|Q|r〉, (q, r) ∈ C can be
efficiently computed, a Feynman slab implementing 〈q|Q|r〉 can be added to extend a Feynman stack that
computes 〈r|e−τH |Pq〉, (q, r) ∈ C, then the extended Feynman stack can be MCMC simulated, again with
the periodic boundary condition enforced, to estimate the expectation value Z−1

s
〈q|Q|r〉 〈r|e−τH |Pq〉 dqdr

to within a polynomial accuracy at the cost of a polynomial runtime. For many applications, there is a
contextual prescription to choose a guaranteed warm start q ∈ C. Alternatively, almost all configuration
points are a warm start so long as the Hamiltonian H is well-behaved analytically, e.g., when H = −∆ + V
is of the Schödinger type with a bounded potential V .

For an SFF Hamiltonian H =
∑K

k= 1Hk that is GSP-decomposed, it is convenient to adopt the perspective
and method of reptation QMC [8, 29–31], where a sequence of Gibbs operators {Gk}k∈ [1,K] is applied to
a known initial quantum state |Φ〉 in turn and repeated for m ∈ N, m = O(poly(size(H))) times, with
Gk

def
= e−δτ [Hk−λ0(Hk)], ∀k ∈ [1,K], δτ being no longer small but sufficiently large such that Gk is essentially

the same as Πk = lim τ→∞ e−τ [Hk−λ0(Hk)] up to an error that is exponentially small, ∀k ∈ [1,K], and
m being sufficiently large such that the projected state |Ψ〉 def

= (
∏K

k= 1 Gk)
m|Φ〉 is essentially the same as

ψ0(H) up to an error this is O(1/poly(m)). For any measurement operator Q of interest, the expectation
value 〈Ψ|Q|Ψ〉 = 〈Φ|(

∏K

k= 1GK−k+1)
m
Q (

∏K

k= 1Gk)
m|Φ〉 can be estimated by RPI with a Feynman stack

consisting of 2mK Feynman slabs, each of which corresponds to a Gibbs operator Gk, k ∈ [1,K] and is path
rectified in accordance with the nodal structure of the Gibbs kernel 〈·|Gk|·〉, which is efficiently computable
and readily available in relation to the associated FFIHk, ∀k ∈ [1,K]. EitherQ is coordinate-diagonal, so that
〈Ψ|Q|Ψ〉 can be computed straightforwardly from a polynomial number of Feynman path samples, or else Q
involves a small number of fermion species, and the total Hamiltonian is modified into H + η Q, η ∈ R, which
is still SFF, so that an RPI-based reptation QMC is performed for the Hamiltonian H + η Q, from which
〈Ψ|Q|Ψ〉 is derived by invoking the Feynman-Hellman theorem [29,31]. In order to ensure a warm start, it is
helpful to employ a sequence of SFF Hamiltonians H(t) =

∑K

k= 1 Hk(t), t ∈ [0, 1], which evolves adiabatically
from an easily solvable H(0) having |Φ〉 as its unique ground state to H(1) = H, the target Hamiltonian,
such that the Feynman stack associated with the nested sequence of FFIs {{Hk(t/m)}k∈ [1,K]}t∈ [1,m] projects
|Φ〉 at the start into |Ψ〉 = ψ0(H(1)) in the middle [8].

The above method of reptation QMC uses path integral to compute an inner product 〈Ψ|Q|Ψ〉 for the
wavefunction |Ψ〉 =

∏mK

n= 1 Gn|Φ〉, with Gn
def
= Gn‖K , ∀n ∈ [1,mK]. Alternatively, a time-inhomogeneous

MCMC can be constructed to compute or sample from the outer (dyadic) product |Ψ〉〈Ψ|, that is a density
matrix or operator, also called a Gibbs wavefunction of the second order. Such time-inhomogeneous MCMC
repeats an iterative loop comprisingmK+1 steps, wherein the zeroth step picks a random sample |r0〉〈q0| from
a positive nodal cell of |Φ〉〈Φ| according to the density function Φ(r0)Φ(q0), and stores a triple (r0, q0, p0) with
p0

def
= Φ(r0)Φ(q0) as the initial value of a state variable for the time-inhomogeneous Markov chain; Next, for

each n ∈ [1,mK], the n-th step fixes (rn−1, qn−1) and samples a random dyadic |rn〉〈qn| from a positive nodal
cell of Gn|rn−1〉〈qn−1|G+

n according to the density function 〈rn|Gn|rn−1〉〈qn−1|G+
n |qn〉, then updates the

value of the state variable from (rn−1, qn−1, pn−1) to (rn, qn, pn), with pn
def
= 〈rn|Gn|rn−1〉〈qn−1|G+

n |qn〉; In
each said n-th step, n ∈ [1,mK], the density function is efficiently computable and easily path rectified since
each Gn, n ∈ [1,mK] is associated with an FFI; Finally, the mK-th step produces a value (rmK , qmK , pmK)
of the state variable, which represents a random sample |rmK〉〈qmK | from |Ψ〉〈Ψ| with a probability weight
pmK . Repeating said iterative loop for a polynomial number of times generates an ensemble of samples to
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represent |Ψ〉〈Ψ|, from which a physical quantity of interest can be derived.

Not only SFF Hamiltonians can be simulated efficiently, but also they are universal for many-body physics
and quantum computing. The following will show that any BQP algorithm given as an ordered sequence
of controlled R-gates [8–10] {Ut def

= I ⊗ Z+
t + Rt ⊗ Z−t }t∈ [1,T ], T ∈ N on a quantum computer of n ∈ N

rebits can be mapped to an LTK- or GSP-decomposed SFF Hamiltonian, where Rt
def
= X sin θ(t) +Z cos θ(t),

θ(t) ∈ [−π, π) is a self-inverse gate applied to a rebit indexed by an i(t) ∈ [1, n], and Z±t are Z± def
= (I±Z)/2

operators applied to a control rebit indexed by a j(t) ∈ [1, n], ∀t ∈ [1, T ], X def
= σx and Z def

= σz are the
familiar Pauli matrices acting on a single rebit as the simplest quantum system (C0,H0,B0), with C0 def

= {0, 1},
H0

def
= {α|0〉+ β|1〉 : α, β ∈ R}, B0 being the Banach algebra of 2× 2 real matrices. Such a BQP algorithm,

or its associated quantum circuit, is said to have a computational size T + n.

Definition 3. A homophysics M : (C,H,B) 7→ (C′,H′,B′) between two quantum systems with Hamiltonians
H ∈ B and H ′ ∈ B′ is an injective mapping that sends any subset D ⊆ C to a unique D′ def

= M(D) ⊆ C′,
maps any ψ ∈ H to a unique ψ′ def

= M(ψ) ∈ H′, and sends any Q ∈ B to a unique Q′ def
= M(Q) ∈ B′,

such that C ⊇ D 7→ M(D) ⊆ C′ embeds the Boolean algebra of subsets [32] of C into the Boolean algebra of
subsets of C′; 2) H 3 ψ 7→M(ψ) ∈ H′ embeds the Hilbert space H into H′; 3) B 3 Q 7→M(Q) ∈ B′ embeds
the Banach algebra B into B′; 4) there exists a constant c > 0, c + c−1 = O(poly(size(H))), with which
〈M(ψ)|M(Q)|M(φ)〉 = c〈ψ|Q|φ〉 holds ∀ψ, φ ∈ H, ∀Q ∈ B; 5) size(H) = O(poly(size(H ′))) and size(H ′) =
O(poly(size(H))). A homophysics M is called an isophysics when the mapping M is also surjective.

Firstly, it is useful to construct a bi-fermion system (C1,H1,B1) consisting of two non-interacting identical
fermions moving on a circle T def

= R/2Z [8], governed by a single-particle Hamiltonian −(1/2)∂2/∂x2 +V (x),
x ∈ T, with an external potential V (x) = V0 [d(x, 0)> 1− a0]

Iver
−V0 [d(x, 0)<a0]

Iver
, x ∈ [−1, 1) (mod 2) '

T, a0 = γ−1
0 , V0 = γ2

0 , γ0 � 1 being a large constant, where d(x, y) denotes the geodesic distance between
x ∈ T and y ∈ T along the circle, [·]

Iver
is an Iverson bracket [33] which returns a number valued to 1 or 0

depending on if the Boolean expression inside the bracket is true or false. When γ0 is sufficiently large, the
potential well and barrier become essentially Dirac deltas, V (x) ' γ0δ(x+ 1)− γ0δ(x), x ∈ [−1, 1) (mod 2),

such that a bi-fermion under a nominal Hamiltonian HBF = (γ2
0 −π2)/2 +

∑2
i= 1[−(1/2)∂2/∂x2

i +V (xi)],
(x1, x2) ∈ T2 behaves like a rebit with two low-energy states

ψ+(x1, x2) = (1−π12) sinπ[d(x1, 0)− a0] e−γ0d(x2,0), (x1, x2) ∈ [−1, 1)2, (11)

ψ−(x1, x2) = (1−π12) sinπx1 e
−γ0d(x2,0), (x1, x2) ∈ [−1, 1)2, (12)

that are degenerate at E0 = 0, where π12 is the fermion exchange operator swapping the particle labels 1
and 2. Choose α0 = 2γ−1

0 log γ0, then for all x such that d(x, 0) > α0, the amplitude of the single-particle
bound state |e−γ0d(x,0)| < γ−2

0 , which is rather small. Construct potential functions

X(x1, x2) = γ0 (1 +π12) [ d(x1, 0)> 1− a0 ∧ d(x2, 0)<α0 ]
Iver
− (π2/4γ2

0) , (13)

Z+(x1, x2) = (1 +π12) [ d(x1,+1/2)< 1/2 ∧ d(x1, 0)>α0 ∧ d(x2, 0)<α0 ]
Iver

, (14)

Z−(x1, x2) = (1 +π12) [ d(x1,−1/2) < 1/2 ∧ d(x1, 0)>α0 ∧ d(x2, 0)<α0 ]
Iver

, (15)

∀(x1, x2) ∈ [−1, 1)2. It is clear that a bi-fermion implements a rebit via a homophysics M1 : (C0,H0,B0) 7→
(C1,H1,B1) such that, with |±〉 def

= (|0〉 ± |1〉)/
√

2,

M1 (|±〉 ∈ H0) = ψ±(x1, x2) ∈ H1 , (16)

M1 (X ∈ B0) = (2γ2
0/π

2) [HBF + X(x1, x2)] ∈ B1 , (17)

M1 (Z±∈ B0) = γ0HBF + Z±(x1, x2) ∈ B1 . (18)

Via linear combinations, the operators M1(X), M1(Z+), M1(Z−) generate all partial Hamiltonians that are
of interest for quantum computing on a single bi-fermion, because span{X,Z+, Z−} contains all Hermitian
elements in B0. It is noted in passing that, although it is preferred for the single-particle potential V (x),
x ∈ T to have a narrow and deep potential well around x = 0, approximating a fairly strong Dirac delta
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to localize one of the two fermions in a small neighborhood of x = 0, there is no practical necessity other
than convenience of mathematical analysis, to require a steep potential barrier around x = ±1. Rather, it
is perfectly fine to place a relatively wide and low potential barrier, as long as its width and height are
chosen properly to be commensurate with the Delta-like potential well around x = 0, such that the nominal
bi-fermion Hamiltonian HBF defines a degenerate two-state Hilbert space implementing a rebit.

Next, it is also straightforward to construct a homophysics M2 : (C2
0 ,H2

0,B2
0) 7→ (C2

1 ,H2
1,B2

1), with C2
i

def
= Ci×

Ci, H2
i

def
= Hi⊗Hi, B2

i
def
= Bi⊗Bi, ∀i ∈ {0, 1}, so to implement a pair of interacting rebits using two bi-fermions

conditioned and interacting through the following partial Hamiltonians,

M2 (X1 ⊗ Z±2 ) = (2γ2
0/π

2) [HBF,1 + HBF,2 + X(x11, x12)Z±(x21, x22) ] , (19)

M2 (Z±1 ⊗ Z
±
2 ) = γ0HBF,1 + γ0HBF,2 + Z±(x11, x12)Z±(x21, x22) , (20)

where ∀i ∈ {1, 2}, Xi, Z
±
i , Zi = Z+

i − Z
−
i are the X- and Z-gates on the i-th rebit, HBF,i is the nominal

Hamiltonian of the i-th bi-fermion, (xi1, xi2) ∈ T2 is the two-fermion configuration of the i-th bi-fermion.
X1 ⊗ Z±2 and Z1 ⊗ Z±2 are called single-rebit-controlled gates, whose linear combinations include all single-
rebit-controlled R gates, which are already universal for ground state quantum computing (GSQC) in the
sense that, using the so-called perturbative gadgets, up to an error tolerance ε > 0, the low-energy physics
of any system of n ∈ N rebits under a computationally k-local Hamiltonian, k ∈ N being a fixed number,
can be homophysically mapped to the low-energy physics of another system of poly(n, ε−1) rebits under
a Hamiltonian that involves only one-body and two-body interactions, especially the controlled R-gates,
whose operator norms are upper-bounded by poly(ε−1) [10,34–36]. In particular, the “XX from XZ gadget”
of Biamonte and Love [10] can be employed to effect homophysically an X ⊗X interaction between a first
and a second rebits through X ⊗ Z interactions with a zeroth rebit,

I −X1 ⊗X2

M
=⇒ γ2

0 (I −X0) + (I −X1 ⊗X2) (21)

M
=⇒ γ2

0 (I −X0) + γ0 Z0 ⊗ (X1 +X2) + 2I +O(γ−1
0 ) ,

where
M

=⇒ reads and stands for “is homophysically mapped to”, γ0 � 1 is a large constant. Then the
linear combinations of X ⊗ X and Z ⊗ X include all two-rebit interactions of the form R(θ) ⊗ X, with
R(θ) def

= X sin θ + Z cos θ, θ ∈ [−π, π). Alternatively, there is a special class of few-rebit interactions called
multi-rebit-controlled gates of the form Ri(θ)⊗

∏
j∈J Z

±
j , with θ ∈ [−π, π), i indexing a rebit being operated

upon, J being a set indexing a fixed number of control rebits. Such a multi-rebit-controlled R-gate does not
require a decomposition into two-rebit couplings, but can be implemented through a linear combination of
the following homophysics,

M (Xi ⊗
∏
j ∈J Z

±
j ) = (2γ2

0/π
2) [HBF,i +

∑
j ∈J HBF,j + X(xi1, xi2)

∏
j ∈J Z

±(xj1, xj2) ] , (22)

M (Z±i ⊗
∏
j ∈J Z

±
j ) = γ0HBF,i + γ0

∑
j ∈J HBF,j + Z±(xi1, xi2)

∏
j ∈J Z

±(xj1, xj2) . (23)

At any rate, it has been established that any computationally k-local Hamiltonian H involving n ∈ N
rebits, with k ∈ N being a fixed number and n a variable, can be homophysically implemented as an SFF
Hamiltonian M(H) involving no more than poly(n, ε−1) bi-fermions, such that the low-energy physics of
H and M(H) are homophysical up to a variable error tolerance ε > 0, where each FFI in M(H) moves
no more than k′ ∈ N bi-fermions, with k′ being another fixed number, and has an operator norm that is
upper-bounded by poly(ε−1), while all bi-fermions are mutually distinguishable entities.

Given a universal BQP algorithm {Ut def
= I ⊗ Z+

t + Rt ⊗ Z−t }t∈ [1,T ], T ∈ N, with each controlled R-gate Ut
operating on an i(t)-th, i(t) ∈ [1, n] and a j(t)-th, j(t) ∈ [1, n] rebits in an n-rebit logic register represented by
(CL def

= {0, 1}n,HL,BL) as a quantum subsystem, each Rt being self-inverse, ∀t ∈ [1, T ], where the successive
applications of the controlled-R gates are meant to generate a series of quantum states |φt〉L def

= Ut|φt−1〉L,
t ∈ [1, T ], from a given initial state |φ0〉L till a computational result |φT 〉L = (

∏T

t= 1 Ut)|φ0〉L at the end, the
celebrated Feynman-Kitaev construct [3,8,11,12] introduces a clock register represented by (CC ,HC ,BC) as a
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quantum subsystem to support clock states {|t〉C}t∈[0,T ] ⊆ HC , so that the clock and logic registers constitute
a GSQC system represented by (CC×CL,HC⊗HL,BC⊗BL), on which the product states {|t〉C |φt〉L}t∈ [0,T ] ⊆
HC ⊗HL map and encode the entire computational history of the BQP algorithm. Then Feynman’s clocked
Hamiltonians HFeyn, t

def
= |t〉C〈(t−1)|C ⊗Ut + |(t−1)〉C〈t|C ⊗Ut, t ∈ [1, T ] ensure that the associated quantum

gates Ut, t ∈ [1, T ] are applied to the logic register in the correct order when the clock register undergoes
transitions between what he called the program counter sites (namely, the clock states) |t〉C , t ∈ [1, T ] [3].
Finally, Kitaev’s GSQC Hamiltonian (also called the Feynman-Kitaev Hamiltonian) HFK

def
= Hclock +Hinit +

Hprop enforces computational constraints via energy penalties, with Hclock restricting the clock register to
the manifold of span({|t〉C : t ∈ [0, T ]}), Hinit setting the initial state, while Hprop performing the quantum
computation as Feynman suggested, such that the ground state ψ0(HFK) = (T + 1)−1/2

∑T

t= 0 |t〉C |φt〉L is
unique and polynomially gapped [11,12].

There are several choices of encoding a clock register for the clock states {|t〉C}t∈[0,T ] [37,38]. Take Kitaev’s
domain wall clock for example, which has a clock register consisting of T + 2 rebits indexed by integers within

[0, T + 1], and uses |t〉C def
= |1〉⊗(t+1)

C |0〉⊗(T−t+1)
C , t ∈ [0, T ], such that [8, 11,12]

HFK
def
= Hclock + Hinit +

∑T

t= 1
Hprop, t , (24)

Hclock
def
= Z+

C, 0 + Z−C, T+1 +
∑T

t= 1
Z+
C, t−1 ⊗ Z

−
C, t , (25)

Hinit
def
= Z+

C, 1 ⊗ (I − |φ0〉L〈φ0|L) , (26)

Hprop, t
def
= Z−

C, t−1 ⊗ Z
+
C, t+1 ⊗ (I −XC, t ⊗ Ut) , ∀t ∈ [1, T ] , (27)

where QδC, t means to apply a single-rebit operator Qδ to the t-th rebit of the clock register, ∀Q ∈ {X,Z},
∀δ ∈ {+,−, void}, ∀t ∈ [0, T + 1]. The partial Hamiltonians {Hprop, t}t∈ [1,T ] are called the Feynman-Kitaev
propagators. It is clear that size(HFK) = O(T +n). It is WLOG to assume that the initial state |φ0〉L〈φ0|L
is CL-diagonal, because, otherwise, |φ0〉L must be preparable from a CL-coordinate eigenstate by another
BQP algorithm. It is straightforward to implement such an HFK into an M(HFK) for a system of 2T +n+ 2
bi-fermions, where each of the T + 2 clock rebits and n logic rebits corresponds to one unique bi-fermion,
each of the operator monomials in equations (25) and (26) is mapped straightforwardly to an interaction
among the corresponding bi-fermions as in equation (23), while the remaining T bi-fermions supply enough
auxiliary rebits for perturbative gadgets to implement logic gates of the form R(θ) ⊗ X, θ ∈ [−π, π) that
may appear in an operator monomial of equation (27).

Theorem 2. A homophysics M exists, which maps the Feynman-Kitaev Hamiltonian HFK as defined in
equations (24-27) to an SFF Hamiltonian M(HFK) that is both LTK- and GSP-decomposed.

Proof. An M(HFK) as constructed above is obviously SFF, with each FFI corresponding to one of the
operator monomials in equations (25-27), each FFI involving no more than 6 bi-fermions and moving even
less. Such an SFF Hamiltonian is clearly LTK-decomposed, which also happens to be GSP-decomposed,
because HFK is frustrate-free [8, 11,12,39,40], so is M(HFK).

Theorem 3. BQP ⊆ BPP, therefore BPP = BQP, as BPP ⊆ BQP is well known.

Proof. By Theorem 2, any BQP algorithm of size N ∈ N can be mapped to an SFF Hamiltonian M(HFK)
with size(M(HFK)) = O(poly(N)), which is both LTK- and GSP-decomposed, as well as polynomially energy
gapped. Theorem 1 says that such an M(HFK) can be efficiently simulated via Monte Carlo on a classical
computer, hence BQP ⊆ BPP.

In conclusion, it has been proved that BPP and BQP are exactly the same computational complexity class.
As a consequence, any quantum system can be efficiently simulated via Monte Carlo on a classical computer,
by just constructing a BQP algorithm simulating the quantum system, then mapping the BQP algorithm to
an efficient MCMC through a Feynman-Kitaev construct.

Finally, it is useful to note that the analyses, algorithms, and methods presented supra can be extended
straightforwardly to physical and computational systems over a discrete or continuous-discrete product
configuration space [8], only that the nodal restriction or path rectification may need to invoke the so-called
lever rule [8, 41,42] using efficiently solved nodal structures of FFIs or their associated Gibbs kernels.
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20. F. Krüger and J. Zaanen, “Fermionic quantum criticality and the fractal nodal surface,” Phys. Rev. B, vol. 78, 035104

(2008).
21. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equations of state calculations by fast

computing machines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092 (1953).
22. W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, no. 1,

pp. 97-109 (1970).
23. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE

Trans. Pattern Anal. Machine Intel., vol. 6, no. 6, pp. 721-741 (1984).
24. L. Lovász, S. Vempala, “The geometry of logconcave functions and sampling algorithms,” Random Struct. Alg., vol. 30,

no. 3, pp. 307-358 (2007).
25. J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in R. C. Gunning (Ed.), Problems in Analysis,

pp. 195-199 (Princeton University Press, 1970).
26. M. Jerrum and A. Sinclair, “Approximating the permanent,” SIAM J. Comput., vol. 18, no. 6, pp. 1149-1178 (1989).
27. F. Chung, Spectral Graph Theory, CBMS Lecture Notes 92 (AMS Publications, 1997).
28. D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times (American Math. Society, 2008).
29. S. Baroni and S. Moroni, “Reptation quantum Monte Carlo,” arXiv:cond-mat/9808213 (1998).
30. S. Baroni and S. Moron, “Reptation quantum Monte Carlo: a method for unbiased ground-state averages and imaginary-

time correlations,” Phys. Rev. Lett., vol. 82, no. 24, pp. 4745-4748 (1999).
31. G. Carleo, F. Becca, S. Moroni, and S. Baroni, “Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with

a directed-update scheme,” Phys. Rev. E, vol. 82, 046710 (2010).
32. P. R. Halmos, Measure Theory (Springer, 1974).
33. https://en.wikipedia.org/wiki/Iverson bracket
34. S. P. Jordan and E. Farhi, “Perturbative gadgets at arbitrary orders,” Phys. Rev. A, vol. 77, 062329 (2008).
35. S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal, “Quantum simulation of many-body Hamiltonians using pertur-

bation theory with bounded-strength interactions,” Phys. Rev. Lett., vol. 101, 070503 (2008).
36. Y. Cao and D. Nagaj, “Perturbative gadgets without strong interactions,” Quan. Inf. Comp., vol.15, no. 13/14, pp.

1197-1222 (2015).
37. D. Nagaj, “Fast universal quantum computation with railroad-switch local Hamiltonians,” J. Math. Phys., vol. 51, 062201

(2010).
38. N. P. Breuckmann and B. M. Terhal, “Space-time circuit-to-Hamiltonian construction and its applications,” J. Phys. A:

Math. Theor., vol. 47, 195304 (2014).
39. S. Bravyi and B. Terhal, “Complexity of stoquastic frustration-free Hamiltonians,” SIAM J. Comput., vol. 39, no. 4, pp.

1462-1485 (2010).
40. S. P. Jordan, D. Gosset, and P. J. Love, “Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and

Markov matrices,” Phys. Rev. A, vol. 81, 032331 (2010).
41. H. J. M. van Bemmel, D. F. B. ten Haaf, W. van Saarloos, J. M. J. van Leeuwen, and G. An, “Fixed-node quantum Monte

Carlo method for lattice fermions,” Phys. Rev. Lett., vol. 72, pp. 2442-2445 (1994).
42. S. Sorella and F. Becca, SISSA Lecture Notes on Numerical Methods for Strongly Correlated Electrons, 5th draft (March

10, 2015).

12

https://arxiv.org/abs/2012.14523
https://arxiv.org/abs/quant-ph/0210187

