Spin g-factor of nucleon and lepton can express anomalous magnetic moment of electron

Shan-Hong Li
Email: duke3366@163.com

(Septermber 15, 2022)

Abstract

Electron, muon, tauon, proton and neutron seem to be five independent particles, but this paper found that there is a relationship between their spin g-factors. In this paper, we find a formula for calculating the anomalous magnetic moment of electron, which links five particles together. The calculation result of the formula is 0.0011596521807414 . It is in good agreement with the experimental measurement.

Introduction

The formula found in this paper is as follows:

$$
\begin{equation*}
a_{e}=\frac{\alpha}{2 \pi} \frac{\left(g_{p}+g_{n}\right)^{2}}{9 \pi^{2}} \frac{g_{e}^{5}}{g_{\mu}^{5}} \sqrt{\frac{g_{\tau}}{2} \frac{m_{n}}{m_{p}}} \tag{1}
\end{equation*}
$$

Where:
a_{e} is the anomalous magnetic moment of the electron.
α is a fine structure constant. $\quad m_{n}$ is the mass of the neutron.
g_{p} is the spin g-factor of a proton. $\quad m_{p}$ is the mass of the proton.
g_{n} is the spin g-factor of the neutron. $\quad g_{\mu}$ is the spin g-factor of the muon.
g_{e} is the spin g-factor of the electron. g_{τ} is the spin g-factor of the tauon. π is the pi.

The calculation result of the formula (1) is: $a_{e}=0.0011596521807414$.
The latest laboratory measurement is [1]: $a_{e}=0.00115965218073$ (28).
Compared with the two, it can be found that the result of equation (1) is in good agreement.

The spin g-factor of the tauon in this paper is taken from the theoretical value [2]: $g_{\tau}=$ 1.00117721. The values for other physical quantities in formula (1) are taken from the recommended values of 2018 CODATA.

If the value of the spin g-factor of the electron in formula (1) is also taken from the laboratory measurement [1], it is calculated as: $a_{e}=0.0011596521807382$. It can be found that it also conforms well.

In this paper, because the values of g_{n}, g_{μ} and g_{τ} can be selected, the calculation results of formula (1) are greatly affected.

References

[1] arXiv: 0801.1134v2 [physics.atom-ph]
[2] arXiv: hep-ph/0702026v1

