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Abstract:  The Universe at last scattering is treated as an unbound gas.  The internal kinetic 

energy of the gas effectively constitutes a scalar energy field.  The gas’s adiabatic expansion 

creates a repulsive force:  Entropic pressure.  Gas kinetic energy is converted into entropic 

energy gain (63%) and isoentropic work against gravity (37%) at a constant 63:37 ratio.  A three-

term expression of the gas’s Hubble parameter is derived and found to be exclusively dependent 

on its mass density.  At last scattering, this model gives a Hubble constant that is 125% of the 

value found from the ΛCDM model.  After partition of Universal mass into the cosmic web of 

galaxies and the intergalactic medium (IGM), expansion came mostly from the IGM, presently 

comprising about 85% of total Universal mass and 90% of its volume.  The onset of star 

formation within the cosmic web increased the IGM’s kinetic energy through the action of 

starlight, giving free electrons as an additional repository.  Many of these free electrons are 

suprathermal.  Suprathermal energy from both electrons and protons comprises about half of the 

IGM’s total kinetic energy, persists indefinitely, and is expressed in the ΛCDM model as “dark 

energy” Λ.  Entropic pressure derives from thermodynamic laws not found within general 

relativity.
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INTRODUCTION 

Astronomers measure what we can see, but only a small amount of Universal mass is capable of producing light.  

About 85% of baryons, the mass from which stars form, lie in the intergalactic medium, or IGM.  The IGM 

comprises about 90% of Universal volume.  Although largely invisible, I believe its preponderance in both mass and 

volume gives the IGM a front and central role in Universal expansion. 

 

Just after last scattering,2 the entire Universe was an ideal gas.  It had a low and uniform density, and was made of 

elastically colliding atoms.  Its internal pressure, being unbound, had a time gradient which caused it to become less 

dense.  Today, most of the universe is the IGM.  It’s much less dense than it was, but mostly retains its primordial 

composition, still behaves like a gas, and is ionized.  The IGM is the engine of Universal expansion, ever driven by 

its temporal pressure gradient.  The model using the IGM’s behavior is called the “GCDM” model, for gas-cold-

dark-matter.  The main concepts of the GCDM model are as follows: 

 

1)  The first and second laws of thermodynamics are combined with gas laws and Newton’s laws to produce a 

balanced energy budget which includes entropic energy gain. 

2)  A sphere of gas is modeled around every atom.  Gas expansion works against gravity.  The excess is radial 

kinetic energy, outward from the center.  The instant radial kinetic energy is the differential entropic energy gain. 

3)  Density reduction in what is now the IGM released energy which was 63% entropic. 

4)  The cosmic web of galaxies supplies the IGM with photons which are absorbed and converted to kinetic energy. 

5)  Free electrons in the IGM are the principal reservoir of its kinetic energy, and of these, suprathermal electrons 

are the primary source of “dark energy”. 

 

Nearly all of the Universe today is IGM plasma, which can be treated as a monatomic gas.  Its density reduction can 

be locally viewed as adiabatic, unbound gas expansion.  As the gas expands, it loses internal kinetic energy.  Kinetic 

energy in the IGM is comprised of thermal energy which obeys the gas laws, and suprathermal energy which 

doesn’t.  Their combined energies expend into isoentropic work and entropic energy gain.  Work is performed 

against the change in gravitational potential energy as the Universe gets less dense.  The IGM has a very low 

density, and loss to gravity in a thermal Universe is only 37% of total loss.  The majority is entropic energy gain.  

This gain creates a physical force, entropic pressure 𝐸𝑘
′ , which has been historically neglected in accepted 

treatments of Universal development.  A minor portion of this neglect can be traced back to the physicist Albert 

Einstein.  His theory of general relativity comprises much of cosmology today and isn’t so much isoentropically 

derived as it is anentropic altogether.  There is no provision for entropy within general relativity.  The issue of 

cosmic entropic increase has been considered unsolveable for more than a hundred years, but not for lack of trying.  

Literature treatments of cosmic entropy are numerous and often describe an intrinsic force field as a property of 

empty space.  Many of them derive from one original paper (Verlinde 2011).3  Other than Verlinde, few appear to be 

extensively cited.  Purely isoentropic treatment of the Universe and its constituent domains remains as a cornerstone 

premise in the literature and the classroom, evolving into an ad hoc term in the ΛCDM model: ΩΛ.  The ΩΛ term 

embodies a widely-accepted belief in the existence of a time-invariant, repulsive scalar “dark energy field”, 

commonly referred to using the Greek letter Λ.  Einstein invented Λ, but soon thereafter had a well-documented 

change of heart (O’Raifeartaigh 2018).  Einstein may have felt intuitively that Λ was wrong, but there’s no extant 

evidence to suggest that he quantified his position.  This paper supports Einstein’s misgivings.  There is a Λ-type 

 
2 The time of last scattering is that moment when free electrons entirely disappeared from the Universe and could no longer couple with, or 

scatter, light from what is now the cosmic microwave background.  This time is also called “recombination”.  Semantics aside, recombination 
was a longer process than last scattering.  The latter term is more precise. 
3 Verlinde’s paper defines an end state for an endless Universe, which is convenient for the practicing cosmologist. 

http://dx.doi.org/10.1007/JHEP04(2011)029
https://physicstoday.scitation.org/do/10.1063/PT.6.3.20181030a
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field, unbound kinetic energy, but it’s only scalar in three dimensions. It isn’t constant with time as Einstein initially 

proposed. 

Most of the differential kinetic energy loss in the IGM partitions to 𝐸𝑘
′ , and of this, suprathermal 𝐸𝑘

′  is the cause of 

Λ.  There’s also thermal 𝐸𝑘
′  which doesn’t contribute to Λ.  Entropic pressure 𝐸𝑘

′  behaves much like a scalar field in 

the Universe as a whole, but is found locally as tensors if accreted mass is present.  The in toto 𝐸𝑘
′  value at scale 

stems from unaccreted atoms, and isn’t intrinsic to empty space like e.g. the Higgs field (Higgs 1966). 

I earlier described the temporal reduction in Universal density with gas laws used by the engineering community 

(Johnson 2021)4.  These laws are thermodynamic in nature.  When applied to unbound conditions at scale, 𝐸𝑘
′  

results.  General relativity can’t be used to derive 𝐸𝑘
′ .  General relativity is better seen as a constraint to how 𝐸𝑘

′  

unfolds.  Simpler Newtonian laws are adequate for this purpose, and less obfuscatory. 

The idea that the Universe’s density drop over time can be accurately described without entropic gain is deeply 

entrenched within the community of cosmologists.  If I had to guess, it’s probably because they saw no way to 

include entropy, so they decided it was unimportant and got rid of it.  In the present paper I show how to include 

entropy increase as entropic energy gain, what then happens, and how neglect of this gain led to reintroduction of Λ. 

Events at scale 

We often refer to events at scale, which today means any comoving sphere of mass/energy with an observed radius 

>100 megaparsecs (Mpc) or about three hundred million light-years (ly), the distance at which the Universe 

becomes homogenous and isotropic when viewed through a telescope.  The term “comoving” means the sphere is 

expanding and defines a reference frame for the items in the sphere as they separate.  The contained mass/energy in 

a comoving sphere is constant.  Mass may fuse and release energy, but the total is always the same.  The 100 Mpc 

distance represents a huge increase of volume compared to our everyday life, but for the entire Universe, it’s just the 

opposite:  A huge decrease, from infinite to finite.  A 100 Mpc comoving sphere, being both homogenous and 

isotropic, is the smallest effective proxy for the properties of today’s Universe as a whole. 

The proper distance of a star at the sphere’s surface is how far away it is today, after all the time its light took to get 

to us.  A cube of proper distance has a proper volume.  Proper distance and volume are used for expressions herein. 

ADIABATIC FREE EXPANSION: THE CORE PREMISE OF THE GCDM MODEL 

Reversible and Free Expansion in a Classic Engineering Setting 

In a classic setting, an amount of gas is held in a sealed vessel, which means the gas is trapped inside a physical 

boundary:  The walls of the vessel.  The boundary of a sealed gas can change, like in a piston.  All bound gases are 

sealed.  However, not all boundaries are seals.  There’s imaginary boundaries, which don’t really exist.  They’re 

used for constant amounts of gas.  An unsealed gas is unbound, despite any imaginary boundary we may apply.  The 

math terms, bound and boundary, are common to textbooks over the range of disciplines we use in this paper, so 

we’ll describe gas behavior in sealed vessels this way. 

There are two kinds of gas expansion:  reversible and free.  Reversible expansion is isoentropic by definition: ΔS = 

0, where S is the entropy of the gas (kg-m2/s2-K or J/K).  A classic, perfectly reversible expansion must also be 

adiabatic, which means there is no heat transferred into or out of the vessel.  When a bound gas expands both 

adiabatically and isoentropically, its pressure P (kg/m-s2), internal kinetic energy Ui (J), and temperature T (K) 

decrease.  Energy -ΔUi is lost, leaves the vessel, and converted into work Δ(PV) as the boundary moves.  This PV 

work from e.g. a piston can be stored and reused. 

 
4 A earlier draft of the present paper is also available online (Johnson 2022). 

https://doi.org/10.1103/PhysRev.145.1156
http://doi.org/10.21203/rs.3.rs-734393/v1
https://doi.org/10.21203/rs.3.rs-1236636/v1
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An adiabatic bound gas can also undergo free, Joule expansion, which is entropic (ΔS > 0).  No work is performed.  

As the bound volume V (m3) increases, Ui does not decrease and only P drops.  Adiabatic, freely expanding bound 

gases do convert energy, it’s just not through loss of Ui.  It’s referred to as entropic energy TS and its gain TdS, or 

more generally d(TS), measures the bound gas’s reduced ability to convert Ui into a storable form.  Inside an 

adiabatic bound vessel, the total energy [Ui - PdV + TdS] of a freely expanding gas remains constant.  For any 

bound gas, its density ρ is a primary metric for how much of its Ui can be harnessed. 

The Two Laws of Thermodynamics 

The first and second laws of thermodynamics are held inviolate, by engineers at least, and can be expressed at scale.  

The first law of thermodynamics, in its broadest definition, says that energy is neither created nor destroyed: 

𝑑𝐸 𝑑𝑡⁄ = 0      (1) 

Where E is the sum of mass and energy in an at-scale sphere.  We note here that the terms E and dE do double duty 

in this paper.  They have the meaning given by (1) in our discussion of the fluid and acceleration equations (21)-

(23).  They also refer to adiabatic thermal loss from work:  E = -ΔUi, and when isoentropic, dE = -PdV.  There is 

conflation of these two meanings in derivation of the fluid equation. 

The second law of thermodynamics is more subtle in meaning than the first law, and has had several descriptions 

over the years.  The broadest of these says that entropy at scale is always increasing over time: 

𝑑𝑆 𝑑𝑡⁄ > 0      (2) 

This links time and entropy.  If one assumes an isoentropic process then (2) requires that no time shall elapse.  

Equation (2) can’t be compared directly to (1) because they have different units of measurement.  To make direct 

comparison possible, I will restate (2) in terms of energy: 

𝑑(𝑇𝑆) 𝑑𝑡⁄ > 0      (3) 

Note that (3) only applies to an unbound system.  “System” usually means e.g. a bound vessel’s contents.  In this 

paper it also refers to constant amounts of gas that aren’t bound.  It’s possible to have d(TS)/dV < 0 and d(S)/dV > 0 

in a bound system if heat transfer to or from its surroundings is neglected.  However, for both the system and 

surroundings combined, (3) is always true.  At scale, the system is the surroundings.  There is no scenario at scale 

where the entropy of the system is increasing and its entropic energy isn’t.  The converse applies:  If d(TS)/dV > 0 at 

scale then d(S)/dV > 0 as well. 

Free Expansion in a Classic Setting  

We conduct three different “thought experiments” in which gravity is unimportant.  These will help us better 

understand the nature of free expansion within the GCDM model, where gravity plays a central role. 

Bound, Equilibrium Free Expansion 

 Take a spherical helium balloon, of radius r1 = 10 cm, at a temperature T = 300K and pressure P = 1 atmosphere, 

and place it in the center of a perfectly rigid, insulated, spherical vacuum chamber of radius r2 = 50 cm.  

Gravitational effects are infinitesimal.  The insulation and rigidity of the chamber means any gas expansion from r1 

to r2 will be adiabatic.  The gas in the balloon is monatomic, and its internal kinetic energy Ui is 100% thermal.  For 

a monatomic gas, this is given by: 

𝑈𝑖 =
3

2
𝑛𝑅𝑇 =

3𝑀𝑅𝑇

2Ж
     (4) 
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Where R is the gas constant (8.314 J/mole-K), Ж is the atomic weight of the gas (kg/mole), n is the number of moles 

of gas, and M is the thermodynamic mass of the gas (kg).  Other forms of mass are important at scale and discussed 

later.  The thermal energy Ui in the balloon is defined as the instant sum of its atoms’ individual kinetic energies: 

𝑈𝑖 = ∑ ∑ ∑ {
1

2
𝑚[(𝒗𝑠𝑖𝑛{𝛳′})𝟐 +  (𝒗𝑐𝑜𝑠{𝛳′})𝟐]}2𝜋

𝜑=0
𝜋
𝜃=0

𝑟2
𝑟=0    (5) 

 “Instant” means time stands still.  The tensor v is the atom’s instant kinetic energy, m is the mass of the helium atom 

(6.6 x 10-27 kg), r is the distance from the center, θ is the conic angle of latitude, 𝜑 is the angle of longitude, and 𝛳′ 

is the conic angle of v’s deviance from radial.  These are shown in two dimensions in figure 1.  If you spin figure 1 

around its polar axis you get 𝜑; this is omitted in the graphic for simplicity.  The void between r1 and r2 makes no 

contribution to Ui as long as the balloon is intact.  The balloon is an idle sphere, having a constant radius r1. 

We pop the balloon.  The thermal energy Ui is temporarily and partly transformed into radial kinetic energy Ek: 

𝐸𝑘 = ∑ ∑ ∑ ∑ {
1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}

𝜋 2⁄
𝛳′=0

2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0 − ∑ ∑ ∑ ∑ {

1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}𝜋

𝛳′=𝜋 2⁄
2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0   (6) 

Which is the scalar difference in energy between the outward and inward radial components of the atoms’ tensors.  

Implementation of (6) isn’t as sequential as (5).  We have to determine if the atom is moving in or out before 

assigning it.  Another definition for 𝑈𝑖 can now be given: 

𝑈𝑖 = ∑ ∑ ∑
1

2
𝑚[(𝒗𝑠𝑖𝑛{𝛳′})𝟐]2𝜋

𝜑=0
𝜋
𝜃=0

𝑟2
𝑟=0 + 2 ∑ ∑ ∑ ∑ {

1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}𝜋

𝛳′=𝜋 2⁄
2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0  (7) 

For an idle sphere, the inward and outward radial scalars of v in (6) are equal, so we can just double the inward 

scalar and replace the radial term in (5).  This gives (7), which yields the same result as (5) for an idle sphere but can 

also be used to get Ui for an expanding sphere.  Note that that (6) and (7) always have precise instant values. 

The total kinetic energy Uk in the sphere is: 

𝑈𝑘 = 𝑈𝑖 + 𝐸𝑘      (8) 

When idle, Uk = Ui.  When expanding, Uk stays the same and Ek diminishes 

Ui.  The instant Ek given by (6) is the differential entropic energy gain: 

𝐸𝑘 = 𝑑(𝑇𝑆)     (9) 

Equation (9) is the single most important concept of this entire paper.  It links 

kinetic and entropic energies.  Entropic energy gain can be expressed with (9) 

through kinetic energy calculations without resort to direct calculation of 

entropy.  All conclusions herein arise from (9)’s basic premise:  Unbound 

kinetic energy and entropic energy are two facets of the same phenomenon, 

the second law of thermodynamics (2)-(3). 

In the special condition of uniform comoving density ρ, Ek is given as: 

𝐸𝑘 = 𝐸𝑘
′ 𝑑𝑉     (10) 

Where 𝐸𝑘
′  is the entropic pressure: 

𝐸𝑘
′ =

𝑑(𝑇𝑆)

𝑑𝑉
     (11) 
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At last scatter, the Universe’s ρ was uniform throughout its volume, so (10) and (11) apply.  In the present bound 

example, uniform ρ only occurs at the instant the balloon is popped, giving 𝐸𝑘
′  = P.  Since ρ is not uniform after the 

balloon is popped, (10) and (11) don’t describe the later behavior of the atoms in this example.  However, (8) and 

(9) remain accurate, and since loss to gravity is negligible, Ek = -d(Ui) for the one-meter sphere as a whole during 

expansion.  It lasts for maybe a second; the exact amount of time is unimportant.  During the initial phase of 

expansion, Ui drops to a minimum value Ui’ and Ek reaches its maximum.  The atoms quickly bounce off the wall 

and Ek drops.  When equilibrium is reestablished, Ek→0, the terms of (6) again cancel, and Ui = Uk is unchanged for 

the enlarged idle sphere.  The entropic energy gain ES from volume increase is: 

𝐸𝑆 = 𝑇(𝑆2 − 𝑆1) = 𝑛𝑅𝑇𝑙𝑛 (
𝑉2

𝑉1
)      (12) 

Bound, Nonequilibrium Free Expansion 

Take that same balloon, put it in the center of a large vacuum chamber (r2 = 108 m) and pop it.  A helium atom at T 

= 300K has a root mean square speed vrms = 1368 m/s.  Those atoms will take about 20 hours to reach the wall of the 

chamber if their tensor of movement is perfectly radial.  As they expand, they stop colliding with each other at any 

meaningful rate.  After that happens, we can say that atomic movement is in a nonequilibrant “unbound free 

expansion” regime which is best considered at a time period when the atoms have stopped colliding, but haven’t hit 

the wall yet.  During the regime, almost all of the kinetic energy is radial: Ui ≈ 0 and Uk ≈ Ek.  The radial component 

of each outward atom’s speed, or radial velocity vr, is proportional to its distance from the center: 

𝑣𝑟/𝑟 =  𝐻 =  1/𝑡      (13) 

 Where t is the elapsed time.  The atomic Hubble parameter H is simply expressed by (13).  Once the atoms stop 

colliding, Ek remains unchanged until they start to hit the wall.  Eventually the atoms bounce off the wall, the regime 

slowly comes to an end, thermal equilibrium is reestablished, and Ui rises back to its starting value.  A classic Joule 

expansion has a similar Ui profile:  Helium gas at 300K is allowed to pass unimpeded through a connecting tube 

from a small pressurized chamber into a much larger vacuum chamber.  The gas cools while it passes through the 

tube as Ui partitions into Ek, which in the tube is linear kinetic energy, not radial.  The thermal energy Ui, when 

applied to the gas inside the tube, is well defined since the instant temperature is constant along short lengths of the 

tube and can be measured in situ.5  The enlarged vessel’s boundary again eventually yields thermal equilibrium, with 

Ui unchanged from its starting value.6 

Unbound, Nonequilibrium Free Expansion 

What if there’s no boundary?  There’s no equilibrium to be reached, so for a freely expanding gas, more and more of 

Ui is permanently converted to gain as time passes.  One can approach Universal conditions by looking only at the 

comoving central core of a large popped sphere with rinner = 10-6 router, or some similar small fraction of the total.  

That inner sphere would be nearly homogenous (dρ/dr ≈ 0), and as such, has a uniform instant value of Ui which 

obeys (10) and (11).  The H value of the inner sphere’s surface would be more complex than (13) and perhaps 

similar to the Universe at its cosmic redshift z = 1089,7 the time of last scattering.  That is, if the universe happens to 

be 100% helium, and denser.  With proper parameters and a computer, this sort of treatment could be accurate at 

scales large enough to include gravity.  I’m not suggesting that the Universe has finite mass, only that it can be so 

modeled. 

 

 
5 For turbulent flow. This description is adequate for our purposes.  Fluid mechanics is a complex subject, outside the scope of the paper. 
6 The Joule-Thompson effect for helium is negligible at this temperature. 
7 The cosmic redshift z is given by (35).  The term z also means the z axis of an xyz grid but the different contexts should be clear. 
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GCDM VERSUS ΛCDM: COMPARISON 

Einsteinian Energy vs. Newtonian Mass; Euclidean Space at Scale. 

The behavior of common mass in e.g. a rock closely follows the laws of gravity and motion discovered by Isaac 

Newton.  Einstein’s laws of general relativity, a refinement of Newton’s laws, considers Newtonian mass as a form 

of energy through the well-known equation E = mc2, a special case of: 

𝐸𝑚
2  =  𝑚2𝑐4  + (𝑚’𝑣’)2𝑐2     (14) 

Where Em is the total or Einsteinian energy of the mass.  The rest mass m is when it stands still relative to its 

neighbors, and is exactly Newtonian.  This m could mean a helium atom as before, or a larger mass.  The term c is 

the speed of light (3 x 108 m/s), and m’ is the relativistic mass, an increase m’/m at a relative speed v’.8  When v’ << 

c, (14) simplifies to: 

𝐸𝑚 = 𝑚𝑐2 +
1

2
𝑚𝑣′2

      (15) 

The ΛCDM model discards 
1

2
𝑚𝑣′2

 as insignificant (22).  The GCDM model discards 𝑚𝑐2 as unchanged between 

successive thermodynamic states (45).  The Einsteinian energy of rest mass plays only a supporting role in the 

GCDM model, as a source of kinetic energy in the IGM arising from nuclear fusion in the cosmic web. 

Newtonian laws operate in Euclidean or flat spacetime, a continuous array of infinitely large three-dimensional 

instant Cartesian grids x,y,z over linear time t.  General relativity combines space and time into a single curved non-

Euclidean description.  All measurements to date support its conclusions, which led to the question of Universal 

curvature beyond scale.  This does not preclude the idea that at scale, the Universe is well approximated by flat 

space and linear time if v' << c.  This author is hardly an expert in general relativity, but will attempt to show why 

Newtonian laws in Euclidean space are adequate. 

We consider two isolated massive objects with v' << c.  Every point in spacetime around these objects has a set of 

ten gravity tensors and ten momentum tensors in a four-dimensional normalized coordinate system x, y, z, and t.  All 

the tensors must be used to accurately describe the relative movement of the two masses.  When the objects are far 

away from each other, the gravitational tensors of the system approach two isolated sets, and their relative 

movement can be fairly described with Newtonian momentum in Euclidean space.  Exactly what “far away” means 

depends on the masses in question, and the distance between them. 

We consider two isolated helium atoms.  The distance beyond which Newtonian and Euclidian space becomes an 

accurate description is very low:  maybe a micron, depending on the level of rigor one chooses to pursue.  At last 

scattering, the mean distance between atoms was more than a millimeter, so Newtonian laws in Euclidean space give 

a good description of their relative movement. 

We consider a large assembly of atoms, like a gas.  If the atoms are evenly dispersed, the gravitational stress tensors 

in x,y,z between any two atoms remain at zero as density increases.  There’s no lateral stress even at very high 

densities.  This means that the instant volume occupied by the gas is Euclidean.  In the Universe at scale, we make 

the approximation that the instant IGM is uniformly dense.  This works well, as we will see later.  Practically, the 

instant Euclidean approximation is accurate for any two atoms if they both lie in the same gravitationally unbound 

region of the Universe. 

 
8 𝑚′ = 𝑚(1 − 𝑣′2

𝑐2⁄ )
−

1

2 
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Time stress is a different story.  There’s always some t stress in an unbound assembly of atoms, and there’s two 

tensors: gravitational and entropic.  The gravity tensor changes monotonically with ρ.  In Newtonian physics, 

attractive gravity stress in a model sphere can be expressed as dU/dρ, where U is the gravitational potential energy 

(33).  We assume Newton’s G stays constant.  A variable G gives Einstein’s time curvature.  If G increases with 

time, so do the gravity tensors. 

Repulsive entropic stress d(TS)/dρ has a different density dependence than U.  At low ρ, d(TS)/dρ is dominant over 

dU/dρ.  At higher ρ, dU/dρ can wrest control, resulting in collapse into accreted bodies.  This paper only considers 

low-density conditions in the IGM, where d(TS)/dρ rules. 

Universal curvature is presently considered by astronomers be “very small” (Planck 2020).  The present paper goes 

farther in that direction with two axioms: 

1) The instant Universe is exactly flat for all time after inflation. 

2) Newton’s constant G is invariant with time. 

These axioms consider the debate about Universal curvature as settled in favor of absolute flatness.  This may be 

controversial, along with the neglect of non-Euclidean curvature near e.g. galaxies.  At scale these bodies of accreted 

matter are only local perturbations in a much more voluminous and massive flat landscape.  All available evidence 

suggests that the Universe has no curvature. 

GCDM 

The GCDM model unifies Ui with H.  Its energy budget is expressed with rest mass, unlike the ΛCDM model, 

which turns rest mass into energy.  At last scattering, the Universe was homogenous and isotropic at scales eight or 

more orders of magnitude below 100 Mpc, as evenly dispersed atoms.  These atoms collided elastically.  They 

repelled each other on contact and their aggregate kinetic energy was repulsive, like any other gas.  Gravitational 

anisotropy in x,y,z was locally significant only on a micron scale if even that.  There was significant relativistic mass 

present from what is now the cosmic microwave background (CMB), but its effects were uniform and didn’t affect 

the Euclidean nature of that instant spacetime.  Newtonian laws combined with gas laws can provide an accurate 

description of baryon movement at scale back then.  The arising thermal model is then slightly modified to include 

suprathermal energy which better describes the more recent Universe.  General effects arising from density variance 

are only marginally relevant in the instant IGM today.  It remains flat, with minor changes inside and proximity to 

accreted mass at its edges.  Special effects, however, are more important.  They are just detectable in the model at 

around z = 10 and became prominent after z = 0.308.  The model indicates that today, particles moving at near-

relativistic speeds comprise about half of the kinetic energy in the IGM. 

ΛCDM 

The ΛCDM model combines three formulas to describe H and its change over time dH/dt: 

1) The Friedmann equation which gives a relation between H and Einsteinian density ϵ. 

2) The fluid equation which describes comoving ϵ vs. V. 

3) The equation of state which divides ϵ into three different constituents. 

The ΛCDM model is a benchmark, giving the most accurate empirical fit to date.  It converges with the GCDM 

model at z = 0.  The ΛCDM’s “dark energy” term ΩΛ is restated in the GCDM model as 𝛺ß𝑠
 (90).  Unlike ΩΛ whose 

source Λ is baffling, 𝛺ß𝑠
 has a known origin: suprathermal electron and baryon kinetic energies in the IGM.  The 

models have different theoretical foundations and their predictions diverge.  Dissection of their foundations clarifies 

their differences.  Two texts, Ryden (2017) and Liddle (2015), were consulted for this dissection. 

https://doi.org/10.1051/0004-6361/201833880
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The Friedmann Equation 

We start with the Friedmann equation (16), given in both its Einsteinian and Newtonian forms.  The debate over the 

curvature of the Universe is largely settled now, and most of us believe it to be flat at scale and above in both time 

and space.  The Friedmann equation can then be simply expressed: 

𝐻2 =
8𝜋𝐺𝜖

3𝑐2 ≈
8𝜋𝐺𝜌

3
     (16) 

Where H = vr/r is the time-dependent Hubble parameter, G is Newton’s constant, 6.6743 x 10-11 m3/kg-s2, ρ is the 

comoving rest mass density (kg/m3) and ϵ is the comoving Einsteinian energy density (J/m3).  For mass at rest, ϵ = 

ρc2.  The Newtonian expression of (16) doesn’t include mass equivalence from CMB energy, hence the “≈”.  

Equation (16) describes what happens when a sphere of rocks are all hurtling away from each other as the sphere 

expands.  The rocks lose Ek as they work against their mutual gravitational attraction.  Both models share a 

calculated value, the critical density, given by (17): 

  𝜖𝑐𝑟𝑖𝑡 =
3𝐻2𝑐2

8𝜋𝐺
= 𝜌𝑐𝑟𝑖𝑡𝑐2     (17) 

The GCDM model uses ρ(z) = ρcrit which does include CMB energy.  It’s a resultant value of the comoving 

equilibrium arising from perpetual dominance of gas gain over total work in the IGM at scale.  The ΛCDM model 

uses ϵ(z) = ϵcrit.  It’s a Euclidean fulcrum between positively curved spacetime, where the hurtling rocks slow down 

too much and end up collapsing, vs. negatively curved spacetime, where the rocks possess Ek >> 0 forever.9  At the 

fulcrum, the rocks’ Ek is exactly spent by work, and Ek → 0 asymptotically at infinite time. 

The term ϵ is almost completely comprised by rest mass.  Skipping ahead a bit, we use (36) to arrive at ϵ.  At last 

scatter, when z = 1089, relativistic mass from the CMB was important: about 24% of ϵ.  However, by z = 10, it was 

only 0.3%.  That was more than eleven billion years ago.  Today at z = 0, the GCDM model gives CMB energy as 

only 0.03% of ϵ.  Mass density ρ is thus a 99.7-99.97% accurate estimate of ϵ/c2 for most of the Universe’s history.  

Equation (16) can be practically expressed for this time period with Newtonian ρ.  Furthermore, the Universe is 85% 

gas by weight.  The reader should be able to comprehend how it can thus be locally seen as mostly an unbound gas 

with repulsive Ui, expanding in flat space.  In the GCDM model, H ≡ Ek is fed by Ui via (44).  The Friedmann 

equation (16) makes no provision for entropic pressure arising from differential gas expansion; it’s incomplete, so 

it’s inaccurate.  The resultant deviance of (16)’s predictions from observation gave credence to Einstein’s time-

invariant Λ as an added term: a plug-in, preexisting solution. 

Another way to look at the limitation of the Friedmann equation (16) is that it only considers outward radial motion 

of accreted bodies in its model sphere.  The off-radial or peculiar motion isn’t included.  Unaccreted atoms also have 

peculiar motion which comprises their internal kinetic energy Ui.  Atomic peculiar motion, like that of accreted 

matter, is untreated by (16). 

The Fluid and Acceleration Equations 

If all the energy in the Universe was bodies of accreted mass, its expansion could be fairly described with (16) and 

(17).  However, as Einstein pointed out, CMB light has energy which also imparts mass density.  CMB energy 

density drops off faster than that of accreted mass.  To reconcile these differing rates of density drop, the fluid 

equation (21) was devised.  Its derivation starts with (18), the engineer’s preferred expression of the first law of 

thermodynamics.  This is not the same as (1).  Engineers work with bound systems, and (18) describes the behavior 

of gas in e.g. a vessel: 

 
9 These curved Universes continue to underpin current cosmology, for example calculation of the value of H at last scatter from the CMB.  The 

debate about a flat Universe is far from over. 
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𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉      (18) 

Where dE is the differential change of thermal energy Ui inside the vessel.  Also in this vessel, 

𝑑𝑄 = 𝑇𝑑𝑆       (19) 

Where dQ is the differential heat flow (J) to or from the vessel.  A restriction is placed on (19), dQ = 0.  So far, so 

good:  The system is adiabatic,10 like the Universe.  If dQ = 0 in (19), then dS = 0 as well.  This precept is used to 

set dS in (18) to 0.   However, a vessel is required for heat to flow in (19).  A vessel isn’t required for (18), but if dS 

in (18) is differentiated over time, a term TdS/dt arises which at scale cannot be set to zero since that is inconsistent 

with (2).  This issue isn’t taken seriously enough in current theory.  It’s instead skirted by removal of TdS prior to 

differentiation.  The outcome is: 

 

−𝑃𝑑𝑉/𝑑𝑡 =  𝑑𝐸/𝑑𝑡      (20) 

From (1), dE/dt should at scale be zero.  Neglect of (2) leads to inconsistency with (1).  Equation (20) is nonetheless 

used to derive the fluid equation (21): 

𝑑𝜖

𝑑𝑡
+ 3𝐻(𝜖 + 𝑃) = 0      (21) 

By excising entropic gain, (21) inverts P into a gravity term.  Pressure becomes a proxy for mass density ρ, or ϵ if 

you prefer.  Gas “pressure” is now attractive, and trivially small. 

The Newtonian expression of (21) is: 

𝑑𝜌

𝑑𝑡
+ 3𝐻(𝜌 + 𝑃/𝑐2) = 0     (22) 

Equation (22) better shows why gas pressure is thought to be insignificant.  The kinetic energy of any one atom is, 

from (15), dwarfed by its rest mass term.  The fluid equation, however, isn’t accurate.  It has a problem in its 

derivation:  Application of a bound expression (18) to unbound conditions.  The results aren’t good: 

1) Inconsistency with both the first and second laws of thermodynamics (1) and (2). 

2) Gas pressure P is inverted from repulsive to attractive. 

3) Gas thermal energy Ui is excised as trivial. 

4) CMB entropic energy gain is unaccounted.  This will be discussed shortly and isn’t especially important.  It 

doesn’t affect H after last scatter and is only needed to balance the energy budget (45). 

The Friedmann equation (16) is differentiated and combined with (21) to give the acceleration equation: 

𝑑𝐻

𝑑𝑡
= − [

4𝜋𝐺

𝑐2
(𝜖 + 𝑃)]      (23) 

In (23), the expression dH/dt is governed only by G and energy (mass) density (ϵ + P).  Entropic pressure 𝐸𝑘
′ , which 

comprises part of P, is insignificant and even if significant would be an attractive term. 

The acceleration equation (23) is inaccurate.  It derives from the fluid equation (21) which is inconsistent with both 

laws of thermodynamics (1) and (2).  These laws cannot be simply ignored.  The attempt by the fluid equation to 

adhere to general relativity as the sole source of Universal behavior improperly conflates E between bound (18) and 

unbound (1) systems.  Setting dS = 0 in (19) is conditionally allowed in a perfectly adiabatic bound system.  

 
10 A truly adiabatic vessel has yet to be devised.  High-field magnet users aren’t happy; they have to settle for the best they can get. 
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However, transfer of dS = 0 from (19) to (18) is inconsistent with (2) at scale.  This results in (20) which is again 

conditionally allowed when bound, but inconsistent with (1) at scale, so (20) is inaccurate.  Equation (20)’s 

inaccuracy is then incorporated into (21), followed by (23). 

The Jeans resonance model of star formation (Owen and Villumsen 1997) is relevant to our discussion here.  At last 

scatter, both (23) and the Jeans model operated concurrently within any given volume.  The Jeans model treats P as 

repulsive, an offset against gravitational collapse.  The acceleration equation (23) treats P as attractive and is 

inconsistent with the Jeans model.  The GCDM model treats P as repulsive, which is consistent with the Jeans 

model’s treatment of P. 

The Equation of State 

The ΛCDM equation of state describes the relation between pressure P and density ϵ.  It treats P as attractive, and 

has three terms: baryonic11, relativistic, and Λ: 

𝑃 = 𝑤𝑏𝜖𝑏 + 𝑤𝑟𝑒𝑙𝜖𝑟𝑒𝑙 + 𝑤𝛬𝜖𝛬     (24) 

The ϵ terms are the Einsteinian energy densities of baryons (ϵb), photons (ϵrel), and Λ (ϵΛ).  The w terms are 

dimensionless numbers: wb << 1,  wrel = 1/3, and wΛ = -1.  Equation (24) is combined with (23) to complete the 

ΛCDM model (36). 

Baryonic Mass 

The mass of baryonic, everyday matter is nonrelativistic, which means it moves much slower than light: v’ << c.  Its 

Einsteinian energy content is given by (15).  Baryons comprise stars, cars, and helium balloons.  Baryonic mass is 

considered attractive in the ΛCDM model.  This might disturb a vendor watching his balloons implode.  It’s 

repulsive in the GCDM model; the balloon vendor feels better.  At last scatter, baryon mass was 100% elastically 

colliding atoms, i.e. a repulsive atomic gas:  Helium and monatomic hydrogen.12  Presently, the repulsive : attractive 

ratio of baryon mass in the Universe is about 5:1. 

The ΛCDM term 𝑤𝑏𝜖𝑏 is expressed as: 

𝑤𝑏𝜖𝑏 ≈ (
𝑘𝑇

𝜇𝑐2) 𝜖𝑏 ≈ (
𝑘𝑇

𝜇𝑐2) (𝜌𝑏𝑐2) =
𝑘𝑇𝜌𝑏

𝜇
   (25) 

Where μ is the mean atomic mass (kg), ρb is the mean baryon density (kg/m3), and k is Boltzmann’s constant, 1.38 x 

10-23 (m2kg)/(s2K).  Without ado, (25) gives 1.088 x 10-11 Pa at z = 1089, the same value obtained from the GCDM 

model’s equation of state (31).  They are, for slow neutral atoms, equivalent expressions.  Equation (25), however, 

treats baryon rest mass as part of the internal energy density ϵ.  The baryons in the IGM are considered a perfect 

fluid or “dust” with almost all of ϵ contained in their rest mass.  Thermal energy Ui is relegated to the status of a 

rounding error (shown in (25) as ≈), and -ΔUi = E is unaddressed.  In the GCDM model, E is the source of repulsion, 

and the Einsteinian energy density of rest mass is irrelevant (45). 

 

 

 

 
11 Cosmologists include electrons when they refer to baryonic matter. 
12 This does discount any formation of helium hydride HeH, a highly unstable diatomic species.  He-H collisions were effectively 100% elastic 

for the temperature and density found at last scattering.  Monatomic hydrogen scatters elastically even though it’s thermodynamically unstable 

with respect to its diatomic form.  A catalyst is required for H2 formation, for example, an aggregate mass, or a lithium atom. 

http://doi.org/10.1086/304018
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Relativistic Mass; Entropy of a Photon  

Relativistic mass, expressed as 𝑤𝑟𝑒𝑙𝜖𝑟𝑒𝑙 in the ΛCDM model, is attractive in both models and arises from photon and 

neutrino energy (37)-(38).13  We digress briefly into photon energy.  An expanding sphere of CMB light has an r-4 

dependence of energy density (Ryden 2017).  Volume increases as r3, so there appears to be a 1/r loss of CMB 

energy upon expansion.  During the “dark age” from last scattering until reionization began (Miralda-Escude 2003; 

Natatajan and Yoshida 2014), there was no coupling of the CMB with free electrons or stripped protons because 

there weren’t any.  There was no mechanism through which that lost energy could perform work.  It vanished and 

the energy budget became unbalanced.  We get inconsistency with (1).  I see no escape from this conundrum except 

to apply (3):  CMB light yields entropic energy gain 𝐸𝑆𝛥𝜆
 through wavelength stretch Δλ.  Any one CMB photon’s 

wavelength increases with time and their combined lost energy is the entropic gain at scale: 

𝐸𝑆𝛥𝜆
= 𝐸𝐶𝑀𝐵1

− 𝐸𝐶𝑀𝐵2
= ∑ 𝑛𝜆ℎ𝑐∞

𝜆1≈0 (
1

𝜆1
−

1

𝜆2
)    (26) 

where 𝐸𝐶𝑀𝐵1
 and 𝐸𝐶𝑀𝐵2

 are the before and after CMB energies, h is Planck’s constant (6.6 x 10-34 J/Hz), λ1 and λ2 are 

the before and after wavelengths of the stretched photon (m), and 𝑛𝜆 is the number of photons at a wavelength λ1.  

The distribution 𝑛𝜆 vs. λ for any z in the dark age is given by the Boltzmann curve at last scatter, T = 2971K.  The 

ratio λ2/λ1 between two CMB states is akin to the scale factor a (34). 

The above analysis of the CMB gives an individual photon’s entropy 𝑆𝜆 as equal to Planck’s constant:14 

𝑆𝜆 = ℎ       (27) 

Its entropic energy 𝐸𝑆𝜆
 is the photon energy: 

𝐸𝑆𝜆
= ℎʄ =

ℎ𝑐

𝜆
      (28) 

Where ʄ is the frequency of the photon (Hz).  Entropy is expressed as J/Hz rather than the more conventional J/K. 

Photon energy is 100% entropic.  This makes sense, given that entropic energy gain is linked to Ek (9), hence 

volume increase (12).  The rate of volume increase of radial light 𝑑𝑉𝜆/𝑑𝑡 in an unbound model sphere is: 

𝑑𝑉𝜆

𝑑𝑡
=

4𝜋𝑐3

3
      (29) 

which far outpaces other kinetic energy in the sphere. 

Current treatment of CMB energy is isoentropic, also begins with (18), and concludes that radiation expands more 

slowly than baryonic matter (Liddle 2015).  A balanced budget may give a different result, if 𝐸𝑆𝛥𝜆
 is included in an 

ab initio derivation.  In the observable Universe, 𝐸𝑆𝛥𝜆
 may affect Ek and H at z ≈ 1089, as free electrons were still 

present at z > 1089, and photons were more strongly coupled to baryon movement. 

Electrons are wavelike so their entropic energy is also a function of wavelength (28). 

 

 

 
13 Neutrinos are believed to have been relativistic at last scattering but became nonrelativistic in the dark age.  This affects their temporal mass 

density dependence, which is untreated in the present paper. 
14 An alternate treatment of photon entropy is given by Kirwan (Kirwan 2003). 

https://doi.org/10.1126/science.1085325
https://doi.org/10.1093/ptep/ptu067
https://doi.org/10.1016/j.ijengsci.2003.09.005
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Dark Energy 

The remaining term, 𝑤𝛬𝜖𝛬, describes repulsion.  In the ΛCDM model, Einstein’s time-invariant Λ is used to account 

for the behavior of distant stars (Perlmutter et al. 1999).  The term wΛ = -1 arises because (23) treats P as attractive, 

so wΛϵΛ has to have negative pressure.  In the GCDM model the behavior described by wΛϵΛ arises from 

suprathermal electrons, whose pressure P is repulsive.  These electrons do create a scalar field, but unlike Λ its value 

changes with time.  A time-invariant Λ field has a constant ϵ.  This creates more and more energy at comoving scale, 

which is inconsistent with (1).  If (1) is obeyed, Λ must change with time.15 

CONSTRUCTION OF THE GCDM MODEL 

Parameters 

The GCDM model follows a balanced energy budget.  Energy is conserved through inclusion of Ek and 𝐸𝜆𝑆
 in the 

budget.  We construct the model with a finite element method using the radius r of a sphere as the finite variable.  A 

spreadsheet is used for the calculations.  This is less 

satisfactory than an analytic derivation, but it does give 

solace in that the equilibrium expressions (30), (31), 

(49), and (50) are exact, as they describe changes in Ui 

which has a precise instant value (7).  It is only in the 

partition of -ΔUi between gain (44) and work (43) where 

error accrues.  We must find a time period when the 

Universe was 100% gaseous and as homogenous as 

possible.  That happened at z = 1089, the time of last 

scattering.  Baryonic matter was all unaccreted atoms.  

We use the BBN estimate for baryons (Weinberg, 1988) 

as a mixture of about 75% hydrogen (H1) : 25% helium 

(He) by weight, giving a mean atomic weight Ж = 1.24 x 10-3 kg/mol.  Hydrogen was monatomic and 

nonrecombinant to diatomic form, absent catalysis through aggregation.  The isotropy in the CMB appears to 

indicate that the Universe at z = 1089 had a constant density, only minimally perturbed by the observed nascent 

Jeans resonance wiggles in the power spectra (Planck 2020).  There is a metric not fully understood by this author, 

ηslip, found from the wiggles.  It describes the  accord between Einsteinian and Newtonian physics in a 

presumptively homogenous and isotropic Universe, and may be conversely used to estimate variation in mass 

density.  At z = 1089, if ηslip = 1, then there was no variance, and this atomic Universe would have been homogenous 

and isotropic.  The value of ηslip was found to be 1.004 ± 0.007.  How exactly this translates to spatial density 

variation is unclear to me, but the text in Planck proclaims agreement between Einstein’s and Newton’s models for 

the presumed uniform gravitational potential.  We proceed as follows:  There was no accreted matter at z = 1089, 

and gas density variations from e.g. Jeans resonance were either averaged out or insignificant relative to the volumes 

used in the GCDM model, on the order of a sphere with r ≈ 1017 meters, or V ≈ 140 cubic parsecs.  The wiggles tell 

us the atoms were dense enough to support the Jeans resonance, which is sonic pressure transmission vs. 

gravitational free fall.  Since these atoms could transmit sound, they behaved like a gas back then so we can safely 

assume they had all the same properties we associate with gases today.  The baryon density ρb(z=1089) was 

(Ωbρcrit)(1+z)3 = 5.46 x 10-19 kg/m3.  This is very low and we can say the gas behaved ideally in a thermodynamic 

sense.  The critical density ρcrit and the Ω values are given in Table 1 and are derived from table 6 of Planck.  The 

CMB had decoupled right around then so the baryon temperature T at z = 1089 will be set to the extrapolated value 

(TCMB, z=0)(1 + z) = (2.726K)(1090) = 2971K. 

 

 
15 This author is firmly wedded to x,y,z, and t.  There’s no room here for extra dimensions as a Λ source. 

https://doi.org/10.1086/307221
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833880
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The Dark Model at z = 1089 

The dark model, described immediately below, is constructed using equilibrium monatomic gas thermodynamic 

expressions, found in many introductory engineering textbooks and Wikipedia.  Its z range, 1089→10, includes the 

entire “dark age” of the universe, hence the name.  Its expression (58) is valid at z = 1089 as there was no high-

energy light to perturb the model. 

The light model, discussed later, has a range z = 10→0.  Equation (58) is still used but one of its terms is adjusted to 

include suprathermal energy from cosmic and ß rays.  The ß energy dominates and comes from impact of light upon 

electrons.  One additional adjustment is made, to ρcrit.  This is constant (61), and precise in result. 

Adiabatic Energy Release 

Consider a comoving sphere of initial radius r1 around a single atom of H1, at 2971K and ρ = 5.46 x 10-19 kg/m3.  

There are similar spheres around all the other atoms.  Nonequilibrium conditions besides expansion, e.g. turbulence, 

Jeans resonance, etc. will be set aside so that the underlying transformation of conserved energy is clearly described.  

There are two competing forces acting on the sphere:  Repulsive entropic push, and attractive gravity pull.  We are 

using a finite element method, so we define an increment:  
(𝑟2−𝑟1)

𝑟1
=

Δ𝑟𝑖

𝑟
, which must be kept below 10-4 for most 

purposes to minimize the partition error.  I will use 10-9, as low as the spreadsheet will tolerate.  When the gas in the 

sphere expands, it must do so adiabatically, and there’s no void outside the sphere into which free expansion can 

occur.  Under classic bound conditions, the comoving sphere would then have to lose Ui through work.  We 

postulate that those rules apply in a cosmic setting as well.  For monatomic gases this is: 

𝑈𝑖1
− 𝑈𝑖2

= −𝛥𝑈𝑖 = 𝐸 = 𝑈𝑖1
((

𝑉2

𝑉1
)

−
2

3
− 1) =

3

2
𝑃1𝑉1 ((

𝑉2

𝑉1
)

−
2

3
− 1)  (30) 

Where the numeric subscripts refer to the before and after Ui and V values.  Volumes V1 and V2 are readily found 

(4πr3/3).  The starting pressure P1 is found from the equation of state for ideal gases: 

𝑃 =
𝜌𝑅𝑇

Ж
=

𝑀𝑅𝑇

Ж𝑉
=

3𝑀𝑅𝑇

4Ж𝜋𝑟3    `  (31) 

If work against gravity is negligible, there is no alternative to free expansion within the sphere that I can find, so the 

released energy E from (30) is 100% entropic Ek.  From (11), the finite differential Ek gives the entropic energy gain 

ES: 

𝐸𝑆 = 𝐸𝑘 = ∫ 𝐸𝑘
′𝑉2

𝑉1
= ∫

𝑑(𝑇𝑆)

𝑑𝑉

𝑉2

𝑉1
= ∫ (𝑇

𝑑𝑆

𝑑𝑉
+ 𝑆

𝑑𝑇

𝑑𝑉
)

𝑉2

𝑉1
≈ (𝑆2 − 𝑆1) (𝑇2 +

1

2
(𝑇1 − 𝑇2)) (32) 

Where the subscripts refer to the before and after values on a T-S diagram.  Volume increase is strictly local to the 

sphere.  At scale, it all just gets less dense. 

An exception to the low-increment rule is that any size increment gives zero error in the calculation of -ΔUi.  You 

can get the temperature at any dark redshift just from the increment.  This is discussed later (62)-(63). 

Gravitational Attraction 

The sphere has to get quite large before gravity begins to play any kind of role.  To find out just how large, we now 

look at the gravitational potential energy U of the sphere: 

𝑈 = −3𝐺𝑀′2

5𝑟
      (33) 
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The potential energy U must take into account the total mass 𝑀′, not just the thermodynamic mass M of the baryons.  

In addition to baryon mass there’s cold dark matter (CDM) which is about five times as abundant as baryon mass.  

Its only interaction with baryons, electrons, or light, is through gravity.  CDM does move relative to accreted 

baryons like stars, but all that occurs within the cosmic web, and at scale, does not affect H.  A consistent 

description of CDM’s composition and origin remains to be found (Bertone and Hooper 2018).  There’s widespread 

belief that CDM’s mass density evolution over time is inverse third-order in r, like baryons.  We use this 

convention.  Due to ηslip ≈ 1, its density at z = 1089 can be kept constant with respect to baryon density.  Both follow 

1/r3, as expressed by the scale factor a: 

𝑎 =
𝑟

𝑟0
=

1

(1+𝑧)
      (34) 

 where r0 is the comoving radius of a sphere today, and z is the cosmic redshift used throughout this paper: 

𝑧 =
𝜆𝑜𝑏−𝜆𝑒𝑚

𝜆𝑒𝑚
       (35) 

Where λob is the observed wavelength of light of known laboratory value, λem.  There’s also relativistic mass from 

the CMB, whose comoving density follows 1/r4.  This is addressed by the minimum flat-universe ΛCDM model: 

𝐻𝛬
2(𝑎) = 𝐻0

2[𝛺𝜆𝑎−4 + 𝛺𝑏𝑎−3 + 𝛺𝑐𝑎−3 + 𝛺𝛬]   (36) 

Where HΛ is the ΛCDM Hubble parameter, H0 is today’s Hubble constant (z = 0), and the Ω values are energy 

density ratios at z = 0.  These are listed in Table 1.  The Ω values are dimensionless and always add up to one at any 

given z.  They share a common denominator ϵcrit, and have identical values when expressed as mass density ratios 

using the common denominator ρcrit.  To get the relative density, and therefore mass 𝑀′ for a given volume, we 

divide them by each other; the denominators cancel.  This gives an Einsteinian density multiplier ɱE: 

ɱ𝐸 =
𝛺𝜆𝑎−4+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3      (37) 

which we use to get the total Einstein mass: 

𝑀𝐸
′ = 𝑀ɱ𝐸 = 𝑀 (

𝛺𝜆𝑎−4+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3 )    (38) 

In an Einsteinian Universe, 𝑀𝐸
′  = 6.313M at z = 0 and increases to 𝑀′

𝐸= 8.336M at z = 1089.  The reader may be 

curious as to why ΩΛ wasn’t included in the calculation of 𝑀𝐸
′ .  It’s a repulsive energy term generated by the ΛCDM 

model and unrelated to the gravitational effect of mass. 

In a Newtonian Universe, the mass equivalent of Ωrel doesn’t exist.  This gives a Newtonian density multiplier ɱN: 

ɱ𝑁 =
𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3       (39) 

which we use to get the total Newton mass: 

𝑀𝑁
′ = 𝑀ɱ𝑁 = 𝑀 (

𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3 )      (40) 

Which is 𝑀𝑁
′  = 6.3111M for all z. 

Throughout this paper, we assume that the ΛCDM model is an empirically perfect description of H vs. z.  Neither 

ɱ𝑁 nor ɱ𝐸  matches HΛ at z = 1089.  The Einstein mass 𝑀𝐸
′  overshoots and the Newton mass 𝑀𝑁

′  undershoots.  I 

http://doi.org/10.1103/RevModPhys.90.045002
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will add a third multiplier, the J density multiplier ɱ𝐽, whose relativistic contribution 𝛺𝑟𝑒𝑙  is treated as an inverse j 

power: 

ɱ𝐽 =
𝛺𝜆𝑎−𝑗+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3      (41) 

giving the total J mass: 

𝑀𝐽
′ = 𝑀ɱ𝐽 = 𝑀 (

𝛺𝜆𝑎−𝑗+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3 )    (42) 

Unlike ɱ𝐸  and ɱ𝑁 which derive from known theory, ɱ𝐽 is ad hoc.  We proceed using a single term 𝑀′ which may 

be any of 𝑀𝐸
′ , 𝑀𝑁

′ , or 𝑀𝐽
′, depending on context.  The energy lost to gravity upon expansion of the sphere is: 

𝑈𝑟 = 𝑈1 − 𝑈2 = −3𝐺𝑀′2

5
(

1

𝑟1
−

1

𝑟2
)      (43) 

Where U1 and U2 are the before and after gravitational potential energies, respectively. 

We’ve seen that atoms can freely expand without colliding.  Less obvious to the engineer reader is the fact that they 

can also perform work against gravity without colliding.  How is this possible?  Well, the Friedmann equation (16) 

does the same thing, but with stars instead of atoms.  Any volume of space containing evenly dispersed atoms, 

however dilute, has a uniform gravitational potential energy at scale.  This is expressed within general relativity as 

an attractive stress tensor having net value only in time (t) and not space (x,y,z).  When the atoms all move away 

from the central atom of a comoving sphere, they are climbing out of a gravity well caused by the reduced density 

resulting from their movement, and Ek diminishes accordingly.  It is this loss of radial kinetic energy to gravity, not 

PV work, which is responsible for the “isoentropic” portion of -ΔUi. 

Energy Release and Gravity Combined: The Adiabatic Sphere 

Combining (30) and (43) gives a finite differential Ek value which includes loss to gravity: 

𝐸𝑘 = 𝐸 + 𝑈𝑟 = (
3

2
) 𝑃1𝑉1 ((

𝑉2

𝑉1
)

−
2

3
− 1) − 3𝐺𝑀′2

5
(

1

𝑟1
−

1

𝑟2
)     (44) 

 An expression of conserved Einsteinian energy upon expansion is given by (45): 

𝐸1 − 𝐸2 = [
(𝑀𝑏𝑐2 + 𝑀𝑒𝑐2 + 𝑀𝑐𝑐2 + 𝐸𝐶𝑀𝐵1

+ 𝑈𝑖1
+ 𝑈1) −

(𝑀𝑏𝑐2  + 𝑀𝑒𝑐2 + 𝑀𝑐𝑐2 + 𝐸𝐶𝑀𝐵2
+ 𝐸𝑆𝛥𝜆

+  𝑈𝑖2
+ 𝑈2 +  𝐸𝑘  )

] = 𝐸 + 𝑈𝑟 − 𝐸𝑘 = 0   (45) 

Where E1 and E2 are the total Einsteinian energies of the before and after sphere.  The CMB gain 𝐸𝑆𝛥𝜆
 is decoupled 

from Ek at z < 1089 and separately expressed.  Energy for nonrelativistic mass is given by (15).  This is accurate:  

Relativistic mass increase [(m’/m) -1)] for an atom of H1 at 2971K is only around 10-9.  Furthermore, the baryon rest 

mass Mb, electron mass Me, and CDM mass Mc are unchanged so their rest mass energies Mc2 cancel.  It is only their 

Newtonian mass which is relevant for (44). 

At any instant, as the radius r increases isotemporally, the mass density ρ remains constant and the subsumed mass 

in the sphere increases as r3.  The loss and gain terms in (44) shift toward loss.  When r reaches the adiabatic radius 

or endpoint re, they cancel, giving an adiabatic sphere:  Ek = 0.  The adiabatic sphere is a principal construct of the 

GCDM model.  Energy is conserved within any one such sphere, indeed all of them, as they expand over time.  The 

comoving imaginary boundary of a sphere with r = re is the adiabatic surface.  This isn’t adiabatic in the classical 
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sense.  Energy can flow freely in both directions across the boundary, but any such net transfer between many 

spheres would always be zero.  The term “adiabatic” is apt and so repurposed.  In today’s Universe, the adiabatic 

surface around a central atom isn’t always spherical due to anisotropic stress from accreted baryons, e.g. stars.  This 

happens near the cosmic web.  Density variation also occurs locally in the IGM.  These are inconsequential at scale.  

The cosmic web’s mass in this context is addressed later (60)-(61).  At z = 1089, there’s no anisotropy, let alone a 

web, so it’s all spheres.  The endpoint re is found from (44) by convergence of r around -Ur/E = 1.  If we use the 

Einsteinian ɱ𝐸 , we get re = 9.69 x 1016 meters, about 20 ly in diameter.  If we use the Newtonian ɱ𝑁, a bigger 

sphere results: re = 1.28 x 1017 m.  Either way we get an adiabatic sphere about 20 ly across. 

For an adiabatic sphere, the postulate connecting classic to cosmic gas behavior in (30) is clearly seen.  The thermal 

loss in the sphere just balances gravity, like a piston’s expansion just holding up a weight.  The postulate holds for 

lesser, medium spheres, as differential work and Ek combined. 

Spheres larger than adiabatic result in gravitational contraction.  Although quite interesting, treatment of these large 

spheres as a description of gravitational collapse lies outside the scope of the present paper. 

The Expanding Adiabatic Sphere and GCDM Equation, 𝑯𝑮 = 𝑲𝒗𝒊 𝒓𝒆⁄  

One might suppose that because Ek = 0 at re, the adiabatic sphere isn’t comoving: d(re)/dt = v = 0.  That’s not true.  It 

is, just very slowly: v > 0.16  The adiabatic sphere contains medium spheres:  For r < re, Ek > 0.  To find v, we have 

to figure out how fast these are expanding (46)-(55), and add up their combined radial speeds (56). 

The finite differential Ek gives the increment radial velocity 𝑣𝑠
′: 

𝑣𝑠
′ = √

2𝐸𝑘

𝑀
      (46) 

This is best visualized as each and every atom in the sphere moving away from the center at 𝑣𝑠
′.  The true picture is 

messier (6).  Note that 𝑣𝑠
′ is increment-dependent: A larger 

Δ𝑟𝑖

𝑟
 gives more 𝑣𝑠

′.  This state of affairs can be sorted by 

following 𝑣𝑠
′ as a function of r.  The cutoff radius rc = 0.003re is important.  Below rc, loss to gravity is negligible 

and all these small spheres have the same Ek/M value to within 5 ppm (Figure 2): 

 
16 There’s another sphere, the static sphere, where v = 0 and Ek < 0.  It’s nonconservative. 
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𝐸𝑘

𝑀
=

𝐸

𝑀
=

𝑑𝐸

𝑑𝑀
=

𝑑𝑉

𝑑𝑀

𝑑𝐸

𝑑𝑉
= (

𝑅𝑇

Ж𝑃
)

𝑑𝐸

𝑑𝑉
=

𝑅𝑇

Ж
(

𝑑𝐸

𝑃𝑑𝑉
) =

𝑅𝑇

Ж
    (47) 

For an adiabatic system with an imaginary boundary, dE =-PdV at the instant isoentropic limit.  The minus sign is 

omitted.  Combining (46) and (47) gives the initial radial velocity vi: 

𝑣𝑖 = √
2𝐸𝑘

𝑀
= √

2𝐸

𝑀
= √

2𝑅𝑇

Ж
     (48) 

 We can compare this with E and see if energy is conserved (51).  We expand a small sphere (r = r1 = 1 x 1012 m) by 
Δ𝑟𝑖

𝑟
 =10-9, giving P2 and T2.  The pressure drop of an adiabatically expanding bound monatomic gas is given by: 

𝑃2 = 𝑃1 (
𝑉2

𝑉1
)

−
5

3
      (49) 

And the temperature drop by: 

𝑇2 = 𝑇1 (
𝑃2

𝑃1
)

2/5

        (50) 

 We examine the partition error: 

1

2
𝑀[(𝑣𝑖(𝑇1)

)

2

−(𝑣𝑖(𝑇2)
)

2

]−𝐸

𝐸
       (51) 

Development in (47) gets dV/dM from the ideal gas law (31) and not from the thermal energy (4).  By use of (51) we 

find that vi is better expressed by rearranging (4): 

𝑈𝑖

𝑀
=

3𝑅𝑇

2Ж
      (52) 

Which gives: 

𝑣𝑖 = √
2𝑈𝑖

𝑀
= √

3𝑅𝑇

Ж
= √

3(8.3145)(2971)

(0.00123988)
 = 7731 m/s    (53) 

By use of (53) instead of (48), the partition error (51) is at its minimum (2 x 10-8).  Note that vi is the fastest rate at 

which any sphere can expand.  Small spheres are all expanding this fast, so an increment should not affect vi.  Again 

using (53), the partition error of vi for our small sphere is: 

(𝑣𝑖(𝑇2)
+𝑣𝑠

′)−𝑣𝑖(𝑇1)

𝑣𝑖(𝑇1)

= 4.5 x 10-5    (54) 

Which is about as good as we are going to get with an increment, and sphere, this large.  Now that we have a proper 

value of 𝑣𝑖, I propose that the radial velocity 𝑣𝑠 of any one medium sphere is given as: 

𝑣𝑠 =
𝑣𝑠

′

𝑣𝑠
′

0

𝑣𝑖       (55) 
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Where 𝑣𝑠
′
0
 is the constant value of 𝑣𝑠

′ at r < rc.  Equation (55) gives a zero value at the endpoint, and gives vi at low 

r.  My guess is 𝑣𝑠/𝑣𝑠
′ remains constant.  The radial velocity v of the adiabatic sphere is the sum of the radial speeds 

of the contained medium shells, plus the small core: 

𝑣 = (𝑣𝑖) (
𝑟𝑐

𝑟𝑒
) + ∑ (

𝑟

𝑟𝑒
𝑣𝑠)

𝑟𝑒
𝑟𝑐

    (56) 

 At our chosen T, ρ, and Ж, for all r < rc, v = 23.2 m/s.  That leaves the remaining 99.7% of v to be found.  

Numerical integration of the sigma portion of (56) (Figure 3)17 gives 6103 m/s. Adding 23.2 to this gives 6126 m/s, 

or 0.7925 vi.  If rc/re is kept constant, the fraction K of vi not lost to gravity shows little change with any of 𝑀′, ρ, T, 

or Ж; K is constant to the 4th decimal place.  About 63%, (v/vi)2 = K2, of E is converted to entropic Ek.  Only 37% is 

stored by gravity.  The term K2 is the conversion ratio.  In the special case of atoms separated by 2re, their adiabatic 

spheres are joined at a tangent point and they are moving apart at 2v.  A line of adiabatic spheres, connected at their 

tangent points, can be constructed in the instant Euclidean space.  Anywhere along this line, for any two atoms 

separated by a distance r, their recession rate 𝑣𝑟  is: 

𝑣𝑟 = 𝐾
𝑟

𝑟𝑒
𝑣𝑖      (57) 

Rearrangement of (57) gives the fundamental equation: 

𝐻𝐺 = 𝐾
𝑣𝑖

𝑟𝑒
      (58) 

Where 𝐻𝐺 = 𝑣𝑟 𝑟⁄  is the Hubble parameter of the GCDM model. 

HG vs. HΛ at z = 1089.  Newtonian, Einsteinian, and J Mass 

We compare HG (58) with HΛ (36) at z = 1089, using the different density multipliers ɱ𝑁, ɱ𝐸  and ɱ𝐽.  We start with 

the Newtonian ɱ𝑁 (39).  Equation (58) gives 𝐻𝐺  = 4.79 x 10-14/s, or 21,817H0.  This is 0.949 or 95% of the HΛ value 

found from (36).  When the Einsteinian ɱ𝐸  (37) is used, (58) gives 𝐻𝐺  = 6.32 x 10-14 s-1.  This is 28,817H0 or 125% 

of the HΛ value found from (36).  We have an undershoot and an overshoot of HG/HΛ.  If we use ɱ𝐽 we can get an 

exact match.  We modify the exponent j in (41) to j = 3.745225, which gives HG = HΛ.  The exponential dependence 

j is 4 in the Einsteinian model for all z, and turns out to be ≈ 3.75 in the J model at z = 1089.  Whether or not this has 

any physical interpretation is left to the reader. 

I believe that at z = 1089, H1089 = 28,800H0 is accurate, j = 4, and the ΛCDM H1089 = 23,000H0 is an underestimate. 

Sole Dependence of the Dark Model on Mass Density 

For any given 𝑀′, deployment of (58) at varying T from 10K to 50,000K at z = 1089, or any other dark z value, 

gives the same HG to five decimal places every time.  The dark model is zero-order in temperature.  It’s also zero-

order in Ж.  A universe made of xenon atoms (0.131 Kg/mole) at the same ρ and T returns 100% of our primordial 

mix.  The mass density ρ is the only remaining independent variable in the dark model.  This fact is hidden inside of 

(58) and not obvious from cursory inspection. 

 

 
17Numerical integration of (56) used 997-998 steps of linearly increasing r/re, beginning at rc/re and ending at r/re = 0.999 or 1.  The integrals 

were calculated with the plotting program, Dplot, giving third-order correlation > 0.9999 in all cases. Replacement of the integral constant with 
rc/re = 0.003 gave the reported K = v/vi, 0.7925.  All measured curves gave 0.79245 ≤ K ≤ 0.79258.  The step separation is many times larger than 

the incremental increase. 



The GCDM Model 

20 

 

 VARIANCE BETWEEN THE ΛCDM AND GCDM MODELS AT Z < 1089 

 Divergence between the models can be parsed into two ranges, associated with separate physical events. 

1) The first event is the partitioning of mass into gravitationally bound and unbound domains, today known as the 

cosmic web of galaxies and the IGM respectively.  This evolves over the range z = 1089 to 10. 

2) The second event is the introduction of suprathermal energy.  This is noticeable around z = 5, significant by z = 

3, and dominant after z = 0.3.  The vi term in (58) is modified to fit the light model into the dark framework. 

z = 1089 to 10: Partition of Mass and Repulsive Mass Density 

 The differences between the models arising from the partition of mass into gravitationally bound and unbound 

domains evolves over the range z = 1089 to 10, and is unchanged from z = 10 to 0.  “Dark energy” interferes with 

accurate visualization of this process at low z values.  We remove the ΩΛ term in (36), giving: 

(𝐻𝛬
′ )2 = (𝐻0)2[𝛺𝑟𝑎𝑑𝑎−4 + 𝛺𝑏𝑎−3 + 𝛺𝑐𝑎−3]    (59) 

 Where 𝐻𝛬
′  is the ΛCDM H parameter, without dark energy.  Both HG (58) and 𝐻𝛬

′  (59) are purely density-dependent 

functions and we can look at their evolution without interference from extraneous repulsive effects.  Figure 4 is a 

plot of HG/HΛ and HG/𝐻𝛬
′  vs. (z + 1) using data derived from each of the three density multipliers ɱ𝑁, ɱ𝐸  and ɱ𝐽.  

There’s a total of six curves, but it looks like just two or three due to overlap.  There are two separate ranges of 

overlap:  z > 10, where HG/HΛ = HG/𝐻𝛬
′  for each of the three ɱ’s, giving three sets of two curves, and z < 10, where 

the six curves converge to two sets, each set having the same HG/HΛ or HG/𝐻𝛬
′ .  Maximum convergence between all 

six curves occurs at z = 10, where the values are within 0.2% of each other. 

We now focus on HG/𝐻𝛬
′  in the z ≤ 10 range (Figure 5).  Relativistic mass from the CMB had largely disappeared by 

then.  The ratio HG/𝐻𝛬
′  converged to a constant value 1.09 and remains so all the way to z = 0.  The transformation of 

HG/𝐻𝛬
′  from 1.09 to 1 is achieved through a single precise adjustment, to ρcrit.  We multiply ρcrit by a best-fitting 

mass partition ratio 𝜌′: 
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  𝜌′ = 𝜌/𝜌𝑐𝑟𝑖𝑡 =  0.840      (60) 

giving the repulsive mass density 𝜌: 

 𝜌 =  𝜌′𝜌𝑐𝑟𝑖𝑡 =  0.84 𝜌𝑐𝑟𝑖𝑡        (61) 

The two models HG and 𝐻𝛬
′  now give nearly identical results from z = 

10 to 0 for any of the three 𝑀′.  The substitution 𝜌 = 0.84𝜌𝑐𝑟𝑖𝑡  is 

shown in Figure 5, using 𝑀𝐸
′  for total mass.  It gives a result of -

0.05% of the ΛCDM 𝐻𝛬
′  values at z = 0, increasing to +0.1% at z = 

10.  Its variance is positive with z.  The J mass 𝑀𝐽
′ gives the most 

uniform variance, -0.045% ± 0.004%, not shown.  The Newton mass 

𝑀𝑁
′  gives negative variance, decreasing from -0.08% at z = 0 to -

0.22% at z = 10, not shown. 

 There is a physical event which underlies 𝜌𝑐𝑟𝑖𝑡  → 𝜌, namely the 

partition of mass into the cosmic web of galaxies and the IGM.  The 

repulsive mass density 𝜌 is defined as the IGM mass alone divided 

by the total volume, web included.  There’s a reason for this:  It’s the 

IGM that’s fed by Ui.  Web mass isn’t repulsive like a gas and can be 

seen as having Friedmann behavior (16).  Since 𝜌 = 0.84𝜌𝑐𝑟𝑖𝑡, we 

can conclude there’s five times as much mass in the IGM which separates the tendrils of the cosmic web as there is 

in the tendrils themselves.  The IGM is estimated to occupy up to nine times as much volume as the web at z = 0.  

Any given tendril or node within the web isn’t expanding as much as the IGM surrounding it.  That is different from 

two tendrils separated by an intervening IGM volume; they are separating at a rate comparable to the IGM’s rate of 

expansion.  Density and distribution of mass within the cosmic web changes over time along with its structure, but 

any reduction in web density at z ≈ 0 is far exceeded by the reduction in density of the IGM over the same time 

period.  A scalar 𝜌′ is an oversimplification of any local IGM variance which might better describe the development 

of partitioned domains, but 𝜌′ gives an astonishingly good fit with 𝐻𝛬
′  at scale, and it tells us roughly when the mass 

partition into IGM and web was complete.  Introduction of an ad hoc partition ratio does raise questions about its 

accuracy as a physical interpretation.  For one thing, the cosmic web’s mass isn’t included in 𝜌′.  The entropic 

energy gain arising from expansion of accreted matter in the web is treated as negligible this way, and if its rest 

mass doesn’t change a constant partition ratio 𝜌′ may result.  I see no way at present to quantify the effect of 

accreted matter on entropic pressure except through 𝜌′.  Other questions might arise, but the fit of 𝜌′ with 𝐻𝛬
′  is good 

and we’ll use these terms as dark baselines later. 

 Two new issues emerge. 

Issue 1:  How did 𝜌′ evolve during what is now the dark age?  Was it complete by z = 10, or was it earlier than that?  

An analytical dark expression (75) of H can be derived via (58) and used to estimate 𝜌′, by examining very old stars. 

The redshift z2 can be obtained from any starting value z1 by changing the increment 
𝛥𝑟𝑖

𝑟
: 

𝑧2 =
𝑧1+1
𝛥𝑟𝑖

𝑟
+1

− 1      (62) 
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The dark temperature change 𝑇𝑧 can be found via (62) from (49) and (50).   We let 𝑧′ =  𝑧 + 1 =  1/𝑎.  Given 

T(z’=1090) = 2971K, we find via spreadsheet that 𝑇𝑧′  is an exact function:18 

𝑇𝑧′ = 𝑇′(𝑧′)2      (63) 

Where 𝑇′ = 0.002500631 is expressed as degrees K.  At z = 60, T = 10K; at z = 10, T = 0.3K.  The Universe was a 

very cold place just before stars appeared.19   

The value of vi in (58) is found by inserting (63) into (53): 

𝑣𝑖 = √
3𝑅𝑇

Ж
= √3𝑅𝑇′𝑧′2

Ж
     (64) 

The value of re in (58) must now be adjusted for both T and ρ. 

For the T adjustment, the dark radius change 𝑟𝑒2
/𝑟𝑒1

 vs. T at constant ρ and Ж is found exactly: 

𝑟𝑒2
= 𝑟𝑒1√

𝑇2

𝑇1
      (65) 

We use (63) to get: 

𝑟𝑒2
= 𝑟𝑒1

𝑧2
′

𝑧1
′      (66) 

For the ρ adjustment, the dark radius change 𝑟𝑒2
/𝑟𝑒1

 vs. ρ at constant T and Ж is found exactly: 

𝑟𝑒2
= 𝑟𝑒1√

𝜌1

𝜌2
      (67) 

For nonrelativistic mass,  

𝜌1

𝜌2
=

(𝑧1
′ )

3

(𝑧2
′ )

3      (68) 

Combining (66), (67), and (68) gives: 

𝑟𝑒2
= 𝑟𝑒1

√
𝑧1

′

𝑧2
′      (69) 

Inserting (64) and (69) into the dark model (58) gives: 

𝐻 = 𝐾
𝑣𝑖2

𝑟𝑒2

=
𝐾

𝑟𝑒2

√
3𝑅𝑇2

Ж
=

𝐾

𝑟𝑒2

√3𝑅𝑇′(𝑧2
′ )

2

Ж
=

𝐾

𝑟𝑒1

√3𝑅𝑇′(𝑧2
′ )

2

Ж

𝑧2
′

𝑧1
′ =

𝐾

𝑟𝑒1

√3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′    (70) 

We adjust for relativistic mass using: 

 
18 170 points from z’ = 1090 to 10.8; median z’ = 320.  Found:  T = 8 x 10-9 + 9 x 10-9(z’/100) + 25.006312599(z’/100)2; correlation = 1; standard 

error 2 x 10-7. 
19 Calculated temperatures ≤ 12K sidestep the issue of energy dissipation from exothermic diatomic hydrogen formation inside the “snowballs” 

that should form in this extreme cold through Van der Waals aggregation at a sonic antinode.  These snowballs could get big enough to be 
gravitationally bound, acting as seeds for further accretion at higher temperatures.  This unexplored hypothesis lies outside the scope of the 

present paper. 
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(
𝛺𝜆+𝛺𝑏+𝛺𝑐

𝛺𝑏+𝛺𝑐
)

𝑧
= (1 +

𝛺𝜆

(𝛺𝑏+𝛺𝑐)
)

𝑧
= 𝛺𝑧

′     (71) 

Where: 

𝛺𝜆 = 𝛺𝜆0
(𝑧′)4      (72) 

And: 

𝛺(𝑏,𝑐) = 𝛺(𝑏,𝑐)0
(𝑧′)3     (73) 

A linear dependence on 𝛺2
′ 𝛺1

′⁄  is found: 

𝐻 = 𝐾
𝑣𝑖2

𝑟𝑒2

𝛺2
′

𝛺1
′ =

𝐾

𝑟𝑒1

𝛺2
′

𝛺1
′

√3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′      (74) 

When 𝜌′ is set to 1, equation (74) matches the manually calculated values of HG from (58) to within 0.0004% for all 

z = 1089 to 0.  In this ideal case, one only needs to calculate 𝑟𝑒 , T and 𝑧′ at last scatter to get dark H values at lower 

z.  However, mass accretion is untreated in (74) so a term 𝜌𝑧
′  must be inserted, from (67) as the square root: 

𝐻 = 𝐾
𝑣𝑖2

𝑟𝑒2

=
𝐾

𝑟𝑒1

𝛺2
′

𝛺1
′

√3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′ 𝜌𝑧

′      (75) 

In (75), the constant 𝜌′ = 0.84 for z < 10 is now a variable 𝜌𝑧
′  for z > 10.  Rearrangement of (75) gives: 

𝜌𝑧
′ = 𝐻2 (𝑟𝑒1)

2
(𝛺1

′ )
2

(𝐾)2(𝛺2
′ )

2

Ж

3𝑅𝑇′

𝑧1
′

(𝑧2
′ )

3     (76) 

To estimate 𝜌𝑧
′  from (76), stars or galaxies with a known emission profile are required, along with an estimate of 

their distance via their luminosity.  These earliest stars’ light energy won’t perturb the dark model (figure 5).  To the 

extent we get better at seeing them, use of (76) to estimate 𝜌𝑧
′  will allow us to better understand the progress of 

accretion in the dimly lit Universe. 

Issue 2:  How did the volume fraction of gravitationally bound mass evolve?  It was 0% at last scatter and now it’s 

about 10%.  Is this simply connected to issue 1)? 

The variance of HG/HΛ due to added repulsive energy remains, as shown by the circles in Figure 5. 

z = 10 to 0:  The Light Model and Suprathermal Energy 

 

None of the above expressions come any closer to explaining the source of the repulsive “dark energy” term ΩΛ in 

the ΛCDM model.  I found a candidate for most of this: suprathermal electrons in the IGM, whose kinetic energy 

arises from photoionization and Compton scattering, reliant in turn on photon flux.  There are partial flux estimates 

available (Yüksel et al. 2008; Wandermann and Piran, 2010) but the process of connecting these and other sources 

of suprathermal energy to produce a definitive light model is an undertaking of considerable magnitude.  This paper 

is merely an introduction. 

The dark model (58) has three terms: vi, K, and re.  If we want to express the light model within the dark framework, 

we need to increase vi or K, decrease re, or some combination.  We can express vi (53) as a sum: 

http://doi.org/10.1086/591449
http://doi.org/10.1111/j.1365-2966.2010.16787.x
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𝑣𝑖 = √
2𝑈𝑖

𝑀
= √

2(𝑈𝑖𝑡
+𝑈𝑖𝑠)

𝑀
     (77) 

where 𝑈𝑖𝑡
 and 𝑈𝑖𝑠

 are thermal and suprathermal kinetic energies in the adiabatic sphere.  In the dark model, there’s 

no 𝑈𝑖𝑠
, so 𝑈𝑖𝑡

= 𝑈𝑖 and (77) ≡ (53).  In the light model, the total baryon kinetic energy is: 

 

𝑈𝑏 = 𝑈𝑏𝑡
+ 𝑈𝑏𝑠

      (78) 

 

Where 𝑈𝑏𝑡
 is the dark value of Ub, and 𝑈𝑏𝑠

 is cosmic radiation.  The total electron kinetic energy in the light model 

is: 

 

𝑈ß = 𝑈ß𝑏
+ 𝑈ß𝑡

+ 𝑈ß𝑠
     (79) 

 

Where 𝑈ß𝑏
 is the thermal energy of atomically bound electrons, ≤ 0.0005𝑈𝑏𝑡

.  The term 𝑈ß𝑡
 is the thermal energy of 

free electrons in equilibrium with Ub, and the term 𝑈ß𝑠
 is the suprathermal energy of the free electrons.  Any one 

suprathermal particle’s energy has a thermal component which fractionally decreases as the particle energy 

increases, and fractionally increases as the IGM gets hotter. 

 

Inserting (78) and (79) into (77) gives: 

 

𝑣𝑖 = √
2𝑈𝑖

𝑀
= √

2(𝑈𝑖𝑡
+𝑈𝑖𝑠)

𝑀
= √2[(𝑈𝑏𝑡

+𝑈ß𝑏
+𝑈ß𝑡

)+(𝑈𝑏𝑠+𝑈ß𝑠)]

𝑀
   (80) 

We neglect 𝑈𝑏𝑠
 for now as its omission doesn’t substantially affect the logic of the following expressions.  Cosmic 

rays can be included in a more rigorous treatment later.  This means 𝑈𝑏𝑡
= 𝑈𝑏, so: 

𝑣𝑖 = √
2𝑈𝑖

𝑀
= √2(𝑈𝑏+𝑈ß𝑏

+𝑈ß𝑡
+𝑈ß𝑠)

𝑀
    (81) 

We examine the thermal energies 𝑈ß𝑏
 (bound) and 𝑈ß𝑡

 (free).  Thermal free electrons behave at very low densities 

as a monatomic gas.  Treatment as such reduces the mean atomic weight Ж from its dark value.  The dark model is 

independent of both Ж and T and dependent only on the mass density.  The result of thermal ionization is thus an 

increase in both vi and re without affecting H or K.  If vi is doubled, so is re, as is the case with pure hydrogen plasma 

which will serve as our example.  In a thermal system with no ionized H1: 

 

𝑈𝑖 = 𝑈𝑏 + 𝑈ß𝑏
= 1.0005𝑈𝑏      (82) 

 

so 𝑈𝑖 = 𝑈𝑏 is reasonably accurate.  When H1 is 100% ionized at e.g. 4000K, the number of gas particles is doubled, 

the atomic weight halved, and the energy equipartitioned: 𝑈ß𝑏
= 0, 𝑈ß𝑡

= 𝑈𝑏 , 𝑈′
𝑖 = 2𝑈𝑏, and Ж′ = Ж 2⁄ , where 

𝑈′
𝑖 and  Ж′ are the thermal energy and the mean atomic weight of the 100% ionized plasma respectively.  Making 

these plasma substitutions into (81) and (53) with no 𝑈ß𝑠
 gives: 

 

𝑣𝑖 = √
2𝑈′

𝑖

𝑀
= √2(𝑈𝑏+𝑈ß𝑡

)

𝑀
= √

2(2𝑈𝑏)

𝑀
≈ √

4𝑈𝑖

𝑀
= √

6𝑅𝑇

Ж′ = √
6𝑅𝑇
Ж

2⁄
= √

12𝑅𝑇

Ж
= 2√

3𝑅𝑇

Ж
  (83) 
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The added 𝑈ß𝑡
= 𝑈𝑏 gives twice the old value of vi from (53); more generally, added 𝑈ß𝑡

 gives a linear increase in vi 

and we can expect the same for re.  This all means that for thermal plasmas, the dark model (58) is better expressed 

using the baryon kinetic energy alone: 

 

𝐻𝐺 = 𝐾
(

(𝑈𝑏+𝑈ß𝑡
)

𝑈𝑏
)𝑣𝑖

(
(𝑈𝑏+𝑈ß𝑡

)

𝑈𝑏
)𝑟𝑒

= 𝐾
𝑣𝑖

𝑟𝑒
= 𝐾

√
2𝑈𝑏

𝑀

𝑟𝑒
     (84) 

 The denominator term associated with re in (84) is inserted to comply with the dark model’s zero-order 

dependencies.  Equation (84) gets more accurate with increasing ionization and is exact for completely stripped 

baryons.  In (84), vi remains close to (58): Ub = 0.9995Ui, so the effect of thermal ionization on H is at most a tiny 

reduction in its value. 

 

We proceed by assuming that suprathermal energy 𝑈ß𝑠
 has no effect on either K or re.  It may have some effect but 

we will say it doesn’t.  Kinetic energy may then be added to the adiabatic sphere without increasing its size.  We 

keep re unchanged in (84) and modify vi: 

 

𝑣𝑖(𝑏+𝛽)
= √

2(𝑈𝑏+𝑈ß𝑠)

𝑀
= 𝑣𝑖√(1 +

𝑈ß𝑠

𝑈𝑏
)    (85) 

Where 𝑣𝑖
′ is the initial radial velocity of the light adiabatic sphere, and 𝑈ß𝑠

𝑈𝑏⁄  is the suprathermal ratio.  This gives: 

𝐻𝐺 = 𝐾
𝑣𝑖(𝑏+𝛽)

𝑟𝑒
= 𝐾

𝑣𝑖√(1+
𝑈ß𝑠
𝑈𝑏

)

𝑟𝑒
     (86) 

  Use of (84)-(85) to get (86) presupposes thermal plasma, a safe 

bet for a reionized Universe.  We fit the light model to the 

ΛCDM model by manual convergence of 𝑈ß𝑠
𝑈𝑏⁄  around HG/HΛ 

= 1 for each data point.20  Since 𝜌′ = 0.84𝜌𝑐𝑟𝑖𝑡 gives a best fit 

with 𝐻𝛬
′  over the range z = 0 to 10, we use 𝜌′ and 𝐻𝛬

′  as dark 

baselines to calculate HG/HΛ.  We use the same temperature, 

4000K, for all calculations.  The convergence of 𝑈ß𝑠
𝑈𝑏⁄  around 

HG/HΛ = 1 for z = 2→0 is shown as a ln-ln plot in Figure 6.  A 

line is found, giving (87): 

 

𝑈ß𝑠

𝑈𝑏
= 𝑒

(0.8048−2.998𝑙𝑛(𝑧′))
≈

2.236

(𝑧′)
3   (87) 

   

At z = 0, 𝑈ß𝑠
𝑈𝑏⁄  = 2.237 gives HG/HΛ = 1.21  This is close to the 

ratio  𝛺𝛬/(𝛺𝑏 + 𝛺𝑐) in the ΛCDM model, 2.235, and a simple 

restatement of the source of “dark energy” repulsion.  At higher z, 𝑈ß𝑠
𝑈𝑏⁄  drops steadily to 0.0056 at z = 6.  

Deviance from linearity in the ln-ln plot occurs above z = 2; these are shown in figure 6 but not included in the 

regression.  A negative 𝑈ß𝑠
 is found at z = 10.   The crossover to 𝑈ß𝑠

dominance is found from (87) at z = 0.308.  

 
20 For the regression from z = 0 to 2, 101 data points were used with 3+ significant figures for all calculated 𝑈ß𝑠

𝑈𝑏⁄ . Found: y  = 

0.804791041595-2.99822613611x; Correlation  0.99999998; std. error 0.0001.  The y intercept gives z = 0.3077.  
21 T = 4,000-50,000K gave the same results for all z. 
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Equation (87) derives from ΛCDM and accordingly shows the amount of Λ-like repulsive energy in an adiabatic 

sphere as proportional to its volume.  Equation (87) is only found as empirically true and not ab initio proven, a 

significant leap of faith presently unaddressed.  

  

From the same data, a ln-ln plot of re vs. z’ gives (88x):22 

 

𝑟𝑒 = 𝑟0𝑒[0.00009−1.5006𝑙𝑛(𝑧′)] ≈ 𝑟0(𝑧′)−
3

2    (88) 

 

Where r0 = re at z = 0.  From (86) - (88x) we arrive at an expression of H for z = 0 to 2: 

 

𝐻𝐺 = 𝐻0𝑧′
3

2√1 +
2.237

𝑧′3       (89) 

 

Equation (89x) gives 100.00%→99.92% of the ΛCDM value (36) for z = 0 to 2.  The exponents in (87) - (89) are 

shown both exactly and rounded to the nearest fraction.  The rounding excises CMB relativistic mass 𝛺𝑧
′  (71), 

resulting in -0.08% deviance of (89) from (36) at z = 2.   Equation (89), like its dark progenitor (58), is temperature-

independent and any constant T may be used to calculate the dark H0 value. 

 

Expression Connecting the Models 

 

At z = 0, the ΛCDM and light GCDM models are connected by their Ω terms: 

 

𝛺ß𝑠
=

𝑈ß𝑠

(𝑈𝑏+𝑈ß𝑠)
= 𝛺𝛬 = 0.6908     (90) 

 

Plasma kinetic energy in the IGM today is proposed as predominantly suprathermal, and (90) gives the same result 

as Table 1.  If we include thermal electrons 𝑈ß𝑡
= 𝑈𝑏 in the denominator of (92), we get 𝛺ß𝑠

 = 0.528, still more than 

half of all kinetic energy in the IGM.  The GCDM 𝛺ß𝑠
varies with time.  The ΛCDM 𝛺𝛬 is time-invariant.  They give 

the same value only at z = 0. 

 

Suprathermal Effects on re and K 

 

Suprathermal electrons do not obey the gas laws (30), (31), (49), and (50) which underpin the dark model.  The light 

model’s 𝛺ß𝑠
(92), however, fits well with ΛCDM’s 𝛺𝛬 at z = 0, leading us to conclude that suprathermal effects do 

not arise from highly relativistic particles.  The dark model’s re dependence follows (67).  A sphere four times as 

dense has its re decrease by half, and so forth.  Any large relativistic mass effect on re would be reflected in (86)-(87) 

giving deviance from the calculated Λ values.  The conversion ratio K2 may change with introduction of 

suprathermal energy.  Again, however, (86)-(87) tend to indicate otherwise.  Even if K and re do change, the light 

model still allows us to use known and conserved energy sources, in compliance with (1), to account for H. 

 

CONCLUSION 

 

This paper proposes a fundamental change in the way the Universe is viewed:  As a thermodynamic system, first 

and foremost.  Obedience to (1) and (2) is thus an essential prerequisite for an accurate model.  The ΛCDM model 

excises (2) and the GCDM model includes it.  At last scattering, gas expansion under the homogenous, unbound 

conditions then found yields an obedient quantitative description of Universal behavior.  These two conditions 

 
22 Found: y =  0.0000746 - 1.50054923914x; correlation 0.99999999. 



The GCDM Model 

27 

 

remain abundant today.  The Universe contains a repulsive scalar field, kinetic energy, arising from both primeval 

and contemporary sources.  Entropic pressure accounts for most of the field’s differential energy loss.  The field’s 

scalar value changes with time, and has both thermal and suprathermal components.  The suprathermal component 

causes “dark energy” Λ.  Entropic pressure is undefined by general relativity and has independent existence.  These 

two sets of rules operate concurrently within their mutual constraints.  Energy other than rest mass M and gravity U 

is entropic at scale.  Photons have no rest mass and photon energy is 100% entropic. 

DATA AVAILABILITY 

An .XLSX workbook containing the model and its output is available from the author on request. 
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