

FORWARD

This report is dedicated to examining the factors that contribute to the substandard quality observed in
music generated by various AI models. The acknowledgment of this issue suggests that the quality of AI-
generated music currently falls short of established standards. The purpose of this report is to conduct a
thorough invesƟgaƟon into the underlying reasons behind this phenomenon, offering valuable insights
for readers interested in the intersecƟon of arƟficial intelligence and music composiƟon.

The focus of our analysis is on the music produced by a range of AI models, indicaƟng that the problem is
not confined to a specific system but extends across different implementaƟons of arƟficial intelligence.
By undertaking this examinaƟon, we aim to provide a comprehensive understanding of the factors
influencing the perceived substandard quality.

Our report will delve into the intricacies of AI-generated music, exploring elements such as the
algorithms uƟlized, the datasets employed during training, the complexity of the models, and potenƟal
shortcomings in capturing the nuanced aspects of musical expression. The term "phenomenon" is used
to highlight that the substandard quality is not a random occurrence but a complex and mulƟfaceted
issue that requires a deeper understanding.

By unraveling the contribuƟng factors, this report aims to equip readers with a nuanced perspecƟve on
the challenges associated with AI-generated music. The findings presented herein could have
implicaƟons not only for the developers and researchers in the field of arƟficial intelligence but also for
musicians, music enthusiasts, and anyone intrigued by the evolving landscape of creaƟve technologies.
UlƟmately, this examinaƟon seeks to contribute to the ongoing dialogue surrounding the integraƟon of
AI in music composiƟon and inspire potenƟal improvements in the quality of AI-generated musical
output.

GeneraƟve Adversarial Networks

GANs are a type of machine learning framework that can generate new data
from a given dataset. They consist of two neural networks: a generator and a
discriminator. The generator tries to create realisƟc data, while the
discriminator tries to disƟnguish between real and fake data. The two networks
compete with each other unƟl the generator can fool the discriminator. GANs
can be used for various applicaƟons, such as generaƟng images, music, text, or
3D models.

MUSEGAN
For our first generaƟve adversarial model we used the Musegan generaƟve model which uses three
models for symbolic mulƟ-track music generaƟon under the framework of generaƟve adversarial
networks (GANs). The three models, which differ in the underlying assumpƟons and accordingly the
network architectures, are referred to as the jamming model, the composer model and the hybrid
model. We trained the proposed models on a dataset of about 3000 bars of jazz midi.

The diminishing returns observed from this type of generaƟve model occur when the predicƟve results
are converted into midi, it is not clear what is the appropriate way to write the predicted results back
into midi as the paper menƟons using the `pypianoroll.MulƟtrack` module which requires both an array
of stacked Boolean values from the predicƟons and a dicƟonary containing the frequency sampling rate
(fs) which cannot be obtained from the model predicƟons. Another issue is when using the generaƟve
class of neural networks, we are dealing with converƟng random noise back into real world
images/audio. For our input we generate normalized random noise with the class `torch.randn` which
returns a tensor filled with random numbers from a normal distribuƟon with mean 0 and variance 1 (also
called the standard normal distribuƟon)

i.e., out𝑖 ∼ N(0,1)

This similar procedure is used in the generator training phase to generate/emulate real piano roll vectors
from random distributed noise. In the end we seƩled to use `mido`, which amalgamates all form of midi
music processing to write our predicƟons into music

InvesƟgaƟng diminishing returns from music generaƟon with MuseGan
In music theory each note or is generated within a digital audio workstaƟon (DAW) with a unique Ɵme
signature, and a specific frequency sampling rate. Each note represents a midi key from range 0 to 127
whereas a chord which is a fundamental concept in music theory and composiƟon refers to a group of
three or more notes played or heard simultaneously. Chords are the building blocks of harmony and
provide the harmonic framework for melodies and musical composiƟons. Each chord in the DAW
contains an octave which can be used to represent the type of instrument being played and each chord
can be broken down into mulƟple consƟtuent notes with their unique Ɵme signature and pitch. Musegan
has a proper representaƟon of this by using the package pypianoroll which breaks each midi note into

machine representaƟon of an array of Boolean: on/off, 1/0, True/False.

Where this break occurs is in the complexity of analyzing different octaves; instrument representaƟons
when generaƟng chord progressions. Chord progression within a DAW can represent musical
annotaƟons in their respecƟve octaves relaƟvely easily as shown below:

OCTAVE REPRESENTATION IN FL STUDIO

 In pypianoroll or any other midi processing uƟlity this octave representaƟon does not exist and
whatever octave used when parsing the predicƟons into midi is inherently an infinite value that cannot
be set. In jazz music, the most common octave for chord voicings and melodic lines typically ranges
between C3 and C5. Here's a breakdown of the common octave ranges used in jazz:

1. Bass (C2 - C3): The bass guitar or double bass oŌen plays in this range, providing the
foundaƟonal low end of the harmony.

2. Chords and Comping (C3 - C5): Piano, guitar, and other chordal instruments oŌen play in this
range. The mid-range is suitable for comping (accompanying) and playing chord voicings.

3. Melody (C4 - C6): Melodic instruments like saxophones, trumpets, and vocals usually perform in
this range. It allows for expressiveness and facilitates smooth melodic phrases.

4. Upper Extensions (C6 - C7): Jazz musicians might use this higher range for adding upper chord
extensions, such as the 9th, 11th, or 13th, when soloing or comping.

Although, these octave ranges are not strict rules, and jazz musicians oŌen explore different registers to
create unique sounds and effects. The choice of octave range may also depend on the specific
instrument, musical context, and personal style of the performer. If we observe the pypianoroll
representaƟon of notes into midi, we are only looking at 3 aspects of the tune generated from the
predicƟons being the; note, Ɵmestep, and harmonics. We do not look at the chord progression, octave
roots and DAW representaƟon between chords and notes. Chords are typically created by stacking
specific intervals (distances between notes) on top of each other. The most basic type of chord is a triad,
which consists of three notes: the root, the third, and the fiŌh.

Wave GAN-IMAGE
This representaƟon seeks to streamline the method of generaƟng the data from midi and then taking the
observed predicƟon directly back into midi. Midi files explicitly describe the pitch and Ɵme of every note
played:

We can use this Idelogy to graph a 2d image representaƟon of our midi file i.e.:

Where up and down represents higher and lower in pitch(note), and in semitone intervals as shown
below:

The right and leŌ of the midi 2d image represent forward and backward in Ɵme in 20th of a second
intervals:

A white pixel represents a note being played and a black pixel means no note being played. But therein
lies an issue; when looking at the image we can see the color scheme red blue and white. Musegan-
image works faster on smaller images of within 100X50 resoluƟon therefore we needed to resize the
images to fit a constant resoluƟon of 96x64 which corresponds to 3.2 seconds. Since this is too short, we
introduce a new layer where we encode more informaƟon per pixel by taking apart the red green and
blue channels of each pixel, treat each channel as a separate pixel placed horizontally. We can then turn
each of these Mini pixels on or off independently of the others. In short can encode 27 bits of pixel
informaƟon into just 9 bits of informaƟon using this method, conversely, we can extend;

64𝑅𝐺𝐵 𝑝𝑖𝑥𝑒𝑙𝑠 ∗
0.05𝑠𝑒𝑐𝑠

1𝑝𝑖𝑥𝑒𝑙
= 3.2𝑠𝑒𝑐𝑠

To;

192𝑜𝑛𝑜𝑓𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 ∗
0.05𝑠𝑒𝑐𝑠

1𝑝𝑖𝑥𝑒𝑙
= 9.2𝑠𝑒𝑐𝑠

The image version of this GAN can seamlessly encode, train and decode music back into midi files which
addresses the prior issue of how the predicƟons can be restored back into midi.

It also addresses the issue of octave/ instrument representaƟon whereby consƟtuent notes are
deciphered from their chord progression into pitches that are represented in a 2D RGB color format

Diminishing returns of musegan image
- The caveat of this method is that it fails to use the intuiƟve the spaƟal nature of convoluƟonal filters.

- All direcƟons are similar so there’s no sense of before and aŌer, therefore it is nearly impossible to
learn “if then” concepts like AŌer Note “C5” will move to “C1”, but not “C4”.

- Pixel color values exist on a spectrum of 0 to 1. This is not discrete and thus leads to blurry ideas of
where notes should be played.

- As compared to the piano roll version of musegan the mulƟtrack funcƟon has a key word argument that
allows us to turn of the drums which fail to follow the harmonics observed from chord progression. The
image method however fails to do this and thus leads to overall harmonic representaƟon when training
the model. Trying to turn off the drums in rgb format ends up chopping the training data and thus one is
restricted to only using midi files with no drum instruments

- GAN overshooƟng where the unpredictable nature of the discriminator does not always measure
quality well, allowing the generator to outsmart the discriminator quickly before any reasonable images
have been generated

TRANSFORMERS
GPT3-MUSIC
The GeneraƟve Pre-Trained Transformer or GPT model has achieved astonishing results when dealing
with Natural Language Processing (NLP) tasks. However, the model architecture is not exclusive to NLP
and has been uƟlized to solves other problem such as Ɵme-series predicƟon or music generaƟon. In this
approach we convert the MIDI into piano roll format with a sampling interval of every 16th note. As such
the piano roll is a 2D array of size (song_len, 128) where song_len is the total number of 16th notes in
the song and 128 is the number of possible pitches in a MIDI song.

This data encoding approach represents the music note for every constant Ɵme interval, thus, allowing
us to represent the whole song into a compact 2D array. From here, we can carry out a similar approach
to word encoding which is index-based encoding every combinaƟon of pitches then feed them into an
embedding layer. We decided to not include the velocity features as this will cause our pitch combinaƟon
vocabulary to explode. And the 16th note was the opƟmal interval as it can represent the music details
accurately enough while also keeping our piano roll array from geƫng too stretched out.

We used Python `preƩy-midi` and `music21` to aid the data parsing and processing steps. To extract the
piano part, we filter out the streams that contain the greatest number of notes (as this is oŌen the case
for piano streams).

For the architecture GPT uƟlizes solely the decoder block of the transformer architecture and it stacks
these decoder block on top of one another to increase the complexity of the network.

For the embedding of token and posiƟon, we use the sine and cosine funcƟon.

𝑃𝐸(௦,ଶ) = sin(
𝑝𝑜𝑠

10000
ଶ

ௗ

)

𝑃𝐸(௦,ଶାଵ) = cos(
𝑝𝑜𝑠

10000
ଶ

ௗ

)

As can be seen in the class below:

The final model consists of this tokenizer with 3 blocks of our transformer model with Self-aƩenƟon and
casual masking

The final model can be trained on random informaƟon and used to generate midis using the encoding
funcƟon used in the tokenizer block, which in our case uƟlizes the sci-kit learn mulƟ label binarizer.

Diminishing returns of gpt3-music
There are signs of overfiƫng during the evaluaƟon process although we tried to increase the dropout
rate, we believe this problem will subdue even when given a larger dataset.

Given the fact that we translated this model from TensorFlow to PyTorch it was observed each
framework methodology, including neuron acƟvaƟon and layer definiƟon i.e., `keras.Layers.Dense` and
`Pytorch.nn.SequenƟal` works inherently differently during the model generaƟon. There are also
differences when using the `keras.preprocessing` backend within the TensorFlow framework and classical
PyTorch training loop in terms of how each handles its gradient accumulaƟon, loss funcƟons and output
view comparisons with ground truth.

Finally, TensorFlow usage of the gradient tape does not implement L2 penalƟes which is a technique
used in machine learning and opƟmizaƟon to prevent overfiƫng and improve the generalizaƟon
performance of a model as observed with the PyTorch opƟmizers` framework.

It can be implemented on the Keras model compilaƟon stage but since we have token embedding and
fixed buffers for posiƟonal encoding this is not possible for our case as can be seen in the pytorch
implementaƟon: see below

pt posiƟonal encoding registry buffer not implemented in keras version

l2 penalty in present PyTorch trainer

L2 penalty absent in ƞ.keras trainer

Further steps
In the next AƩempt we will seek to resolve all these diminishing returns observed with prior
architectures through intuiƟve music representaƟon, the process of generaƟon will be starlight forward
and thus the backlogs observed from harmonic loss, Gan overshooƟng and chord progression with
consƟtuent octave implementaƟon

REFERENCES
MuseGAN: MulƟ-track SequenƟal GeneraƟve Adversarial Networks for Symbolic Music GeneraƟon
and Accompaniment. Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, Yi-Hsuan Yang. (2018). In Proceedings
of the Thirty-Second AAAI Conference on ArƟficial Intelligence (AAAI-18)arXiv:1709.062981.

Wave GAN: Frequency-aware GAN for High-Fidelity Few-shot Image GeneraƟon. Zhenyu Zhang,
Xiangyu He, Yifan Zhang, Bo Zhang, Jian Sun. (2021). In Proceedings of the 2021 IEEE/CVF InternaƟonal
Conference on Computer Vision (ICCV 2021)arXiv:2207.072882.

Towards the GeneraƟon of Musical ExplanaƟons with GPT-3. David R. Winer, Gil Weinberg. (2022). In
Proceedings of the 11th InternaƟonal Conference on ComputaƟonal CreaƟvity (ICCC 2020)Springer Link3.

GPT-2: Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are
unsupervised mulƟtask learners. OpenAI blog, 1(8), 91

Pypianoroll: Dong, H. W., Hsiao, W. Y., & Yang, Y. H. (2018). Pypianoroll: Open source python package for
handling mulƟtrack pianorolls. In Late-breaking demos of the 19th International Society for Music
Information Retrieval Conference (ISMIR)2

PreƩy MIDI: Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th International Society for Music Information Retrieval
Conference (ISMIR)3

Music21: Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th International Society for Music Information Retrieval
Conference (ISMIR)4

