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Abstract. All classical systems must be Galilean invariant, but
Navier–Stokes equations are not. The solution is the correct deriva-
tion of Navier–Stokes equations.
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1. Main result

Let me divide the liquid into segments. A segment passes point A
during some seconds; with this, its velocity changes. The coordinates
of point A are x, y, and z. So, from Newton’s second law, in the limit
of small segment (so the velocity vector v⃗ is the same throughout the
segment’s value),

(1) ρ
∂v⃗(x, y, z, t)

∂t
= F⃗ .

Unlike Navier-Stokes equations, this is invariant under a Galilean coor-
dinate transformation (see Appendix). To remind you, classical Physics
is Galilean-invariant, as the Galilean-invariance follows from Lorentz
invariance. So, as the main result, Navier-Stokes equations are wrong.
And they are wrongly derived.

2. Problem with Navier-Stokes derivation

It should start with Newton’s second law. So,

(2) ρ
dv⃗(x(t), y(t), z(t), t)

dt
= ρ

∂v⃗

∂t
+ ρ v⃗

∂v⃗

∂r⃗
= F⃗ .

The ρ dv⃗(x(t),y(t),z(t),t)
dt

is Galilean-invariant. The ρ ∂v⃗
∂t

+ ρ v⃗ ∂v⃗
∂r⃗

is not.
Hence, I come to contradiction.
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3. Appendix

To cite Russian Wikipedia,
The correction factor, the value of which, according to Smeaton’s

calculations were 1.005, was used for more than 100 years, and only the
experiments of the Wright brothers, during which they discovered that
the lifting force acting on the gliders was weaker than the calculated
one allowed us to clarify Smeaton coefficient to a value of 1.0033. [2]

Perhaps, this mismatch 1.005 ̸= 1.0033 came from wrong equations.
Namely, Navier-Stokes ones.

To cite Wikipedia,
Galilean invariance or Galilean relativity states that the laws of mo-

tion are the same in all inertial frames of reference. Galileo Galilei first
described this principle in 1632 in his Dialogue Concerning the Two
Chief World Systems using the example of a ship traveling at constant
velocity, without rocking on a smooth sea; any observer below the deck
would not be able to tell whether the vessel was moving or stationary.

To cite an Encyclopedia of 2023 AD: “Since understanding the Navier–
Stokes equations [1] is considered the first step to understanding the
elusive phenomenon of turbulence, the Clay Mathematics Institute in
May 2000 made this problem one of its seven Millennium Prize prob-
lems in mathematics. It offered a prize to the first person providing
a solution for a specific statement of the problem: Prove or give a
counter-example of the following statement: In three space dimensions
and time, given an initial velocity field, there exists a vector velocity
and a scalar pressure field, which are both smooth and globally defined,
that solve the Navier–Stokes equations.”

The above formulation of Navier–Stokes problem has terms from
Physics: velocity (in the following, u⃗), space (in the following, coordi-
nate vector r⃗), time t, and pressure (in the following, the influence of

pressure is hidden within f⃗). The density field is ρ. Therefore, hav-
ing contradictions with the Physical picture, I have found countless
counter-examples against these equations

The Navier-Stokes equations are [1]

(3) ρ(r⃗, t)

(
∂u⃗(r⃗, t)

∂t
+ u⃗∇u⃗

)
= f⃗(r⃗, t) ,

where

(4) ∇u⃗ ≡ ∂u⃗(r⃗, t)

∂ r⃗
,

The second-order term is u⃗∇u⃗, since the u is written twice. But since
we need a first-order equation, this term has to be deleted. Moreover,
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this term causes the violation of the Galilean Relativity Principle: if
you replace velocity u⃗ with U⃗ + C⃗, where C⃗ is the transformation
constant velocity, then you have term C⃗∇U⃗ ̸= 0 left. It means that
transformed

(5) ρ(r⃗, t)

(
∂U⃗(r⃗, t)

∂t
+ U⃗ ∇U⃗ + C⃗∇U⃗

)
= f⃗(r⃗, t)

does not match Eq. (3) due to C⃗∇U⃗ ̸= 0.
This means that all solutions of Navier-Stokes equations with u⃗∇u⃗ ̸=

0 are counter-examples against the theory of the Navier-Stokes equa-
tions.
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