A PROOF OF THE KAKEYA MAXIMAL FUNCTION
CONJECTURE VIA BIG BUSH ARGUMENT

JOHAN ASPEGREN

ABSTRACT. In this paper we reduce the Kakeya maximal function conjecture
to the tube sets of unit measure. We show that the Kakeya maximal function
is essentially monotonic. So by adding tubes we can reduce the conjecture to
the case of unit measure tube set if we allow the technicality that there are
possibly two tubes on the same direction. Then we proof the Kakeya maximal
function conjecture from our lemma.
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1. INTRODUCTION
We define a line I; as
i ={yeR"Ja,x e R" andforall teR y=a+at}
We define the d-tubes as d-neighborhoods of lines on B(0, 1):
TP :={zcR"|Jz—y| <6, yel}

U W N =

The order of intersection is defined as the number of tubes intersecting in an in-
tersection. We define A < B to mean that there exists a constant C,, depending
only on n such that A < C,,B. We define A $ B to mean that for any ¢ > 0 there
exists a constant C. depending only on n and € such that A < C.0¢. We say that

tubes are J-separated if their angles are J-separated. Moreover, let f € L

(R").

For each tube in B(0, 1) define a as it‘s center of mass. Define the Kakeya maximal

function as
fr:8" 1 > Rvia

1
f*w=sup—/ f(y)ldy.
3 () ackn TS(a) N B(0,1) Tg(a)nB(o,n' )l
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In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.1) 1£31lp < Ced™PH=<) £,

for all ¢ > 0 and some n < p < oco. A very important reformulation of the
problem by Tao is the following. A bound of the form (|1.1)) follows from a bound
of the form

(1.2) I Z e, 11, @) llp/m-1) < Co~m/rHize
wEN

for all € > 0, and for any set of N < =" §-separated of d-tubes. See for
example [2] or [I]. It’s enough to consider the case p = n and the rest of the
cases will follow via interpolation [1L2]. In this paper any constant can depend on
dimension n. Our main lemma is the following:

Lemma 1.1. Let there be a N ~ §'~" §-tubes that are 6-separated. Then we have
1> 10017 (@) ln/m-1) S NS 10,117, (00) | ny -1
we w' e’
where Q' is almost §-separated with two tubes of the same direction and
(1.3) I 1|~
w'e
We will proof that then we have:

Theorem 1.2. Let there be a N ~ 6™ §-tubes that are 6-separated. Then we
have for n > 2 that

] Z 10,017 @) lln/(n-1) S (In N)(nil)/n.
weN

The case n = 2 of the Kakeya maximal function conjecture is well know to be
true [1]. The case n =1 is trivial.

2. THE PROOF OF THE LEMMA

We assume that N ~ 6!~ We also drop the d-upper index and the center points

a; so we have
N N
LN T = [ St
i=1 i=1

We define v
By :={z € R"2" < "1, (x) < 2V}
=1
So we have
N N
(2.1) / > lg ~ Z/ Ly, ~ Y 2% Byl.
Bok =1 i=1 " Fak k

However, we can also calculate
N N N N
CEID SN D SITES) 30 DY IEFESD 35 DILNHEAPS) S HPNEA Y
k JE By k i=1 1

2k =1 k i=1 i i=
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We also notice that the number of & is less than ~ In N. Now, we have from (2.1))
and from (2.2]) that

(2.3) SN~ 2 Byl
k

Next we use our big bush argument. We consider N J-tubes that are d-separated.
Moreover, all the center points of the tubes are in the origin. This set Ujvzl Tf(O)
is the so called big bush. It’s clear that

N
U 27 ©0) ~ 6" N,
j=1

because if N ~ §'~", the big bush covers the unit ball. However the number of
tubes N only doubles if take the union with the original tube set! So we take the

union
N

N
E = | T (a;) U U T;s(())7
i=1 j=1

and do another dyadic decomposition. We have then

(2.4) §"TIN ~ Y 2™ Bl

Now if & € Eyr then x € J,,,~,, Eom! This is the monotonicity condition. It follows

because if some point = belongs to ~ 2¥ tubes then after adding more tubes x
belongs to at least ~ 2Ftubes. So we have the key inequality

(2.5) 2k|E2k |(n71)/n < (Z gmn/(n—1) | B |)(n71)/n'
m>k
It’s clear via dyadic decomposition that
| Z Lo, 17, @) lln/m—1) ~ (Z 9kn/(n=1)| g, |)(n=1/n
we &

So we have from (3.1]) that
(2.6)

I Z 1e01) 17 (@) ln/(n-1) ~ (Z okn/(n=1)| 7, [)(n=1/m < (1n N)(=D/n ml?x2k|E2k|n/(n—l)
weN m

S ()= %y 7 @me/ (DB, )=/,

m>k

So we are done proving our main lemma because we can combine the above

(2.6) with
(Y 2/ By, YD S (3 2 D B NI S o0 Ly () I n-1)-
m>k m w'EN
3. THE PROOF OF THE THEOREM
Next we use the lemma to proof[[.2] We assume

1~ IN
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and that the big bush condition (1.3 is fulfilled. We also assume that n > 2.
Suppose we have

N
(3.1) 1D 180017

i=1

ln/tmn-1) S 1,

which is by Holder equivalent to

N N
(3.2) /C(Z 150, 70))” = IFInll D 10,017 @) ln/t-1) S I1F |,
=1 i=1

for F' linearly dependent of Zf\il 15(0,1)11;(a;)- Thus, F'is Zfil 15(0,1)17;(a,) times
a constant C. So the above (3.2) is equivalent with

(3.3) IFI S 11 F]ln-
We have via dyadic decomposition

IFN ~ > 27" | Bl

Because the set E’ contains the big bush we have
| | Ebnl 2 Ba(0,6) ~ 6™
m>N

So we have

IF|ln ~ ) 2" | Ef| 2 N™6™

So

1Flln 2 N& ~ 327,
However, it is well known that
(3.4) IFII3 5 67"

Two proofs of (3.4) can be found in [1]. So (3.3]) essentially holds. However, we
show a proof of

(3.5) IFII3 < 0%,

for n > 2 in the next section.

4. A PROOF OF THE WELL KNOWN INEQUALITY

We will use the following well known bound for the pairwise intersections of
d-tubes:

Lemma 4.1 (Corboda). For any pair of directions w;,w; € S"~1 and any pair of
points a,b € R N B(0,1), we have

T3 (a) N T2, () S —

. | S —.
|w; — wjl

A proof can be found for example in [1]. For any (spherical) cap Q C S"~1|Q| >
on=1 5 > 0, define its -entropy Nj(2) as the maximum possible cardinality for an
d-separated subset of €.
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Lemma 4.2. In the notation just defined

|€2]
5n—1
Again, a proof can essentially be found in [1].
We show that

Ns(2) ~

N
(4.1) || Z 13(071)1Ti(ai)||2 5 5(27@/2.
=1
We have
N
42 ||ZIB(01)1T(al)||2 ZZ/lB(Ol 1TJ1T7§NZ|T_70EQB(O71)‘
j=11:=1 J=1

We do a dyadic decomposition with respect to angle ¢(T;,T;) between T; and T;
and obtain
(4. 3)

NZ|T NT,NBO,D)[~NY > |I;NT;NB(0,1)
k (T T;)~2—k
< NZ Y ILNTinBO, )| SN Y 2 kmlgtongnok < NG <62,
k (T, Ti)<2-* k
where the third to last inequality follows from the lemmas - and [£.2] and second
to last from that n > 2. So the claim ) follows from and (| .
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