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ABSTRACT 
 

This article discusses known and additional solutions of Einstein's vacuum equations without a lambda term and with a 

lambda term, with signatures (+ – – –) and (– + + +). The possibility of averaging these solutions is investigated. It is 

shown that the averaging of metrics-solutions of Einstein's vacuum equations can be used as the basis for metric-dy-

namic models of stable vacuum formations of the corpuscular type. Ways to solve the problems that arose in this case 

related to spatial singularities and spherical voids are proposed. 
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INTRODUCTION 

 

This article considers well-known and additional spherically symmetric, stationary solutions of the Einstein vacuum 

equation without the lambda term 

 

𝑅𝑖𝑘 = 0,                                                                                                                                                                              (1) 

 

and with the lambda term 𝑅𝑖𝑘 ± Λ 𝑔𝑖𝑘 = 0,                                                                                                                                                                
 

where 

 

𝑅𝑖𝑘 =
𝜕Г𝑖𝑘

𝑙

𝜕𝑥𝑙 −
𝜕Г𝑖𝑙

𝑙

𝜕𝑥𝑘 + Г𝑖𝑘
𝑙 Г𝑙𝑚

𝑚 − Г𝑖𝑙
𝑚Г𝑚𝑘

𝑙   is the Ricci tensor;                                                                                                 (2) 

 

Г𝑖𝑘
𝜆 =

1

2
𝑔𝜆𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  is the Christoffel symbols;                                                                                           (3)          

 

𝑔ik and 𝑔𝜆𝜇 are covariant and contravariant components of the metric tensor of a curved 4-dimensional space with the metric 

 

ds2 = 𝑔ik dxidxk.                                                                                                                                                                   (4)  

 

Eq. (1) has been considered in many scientific publications on modern differential geometry and general relativity, for ex-

ample, in [1, 2, 3, 4, 5, 6, 7, 8]. However, none of the books and articles known to the author shows a complete set of solutions 

to this equation, and the relationship between these solutions is not discussed. Therefore, we repeat the solutions to Eq. (1) 

in detail. 

 

Solutions to the Einstein vacuum equation (1) for the stationary case are sought in a spherical coordinate system 

 

(х0, х1, х2, х3) = (ct, r,, ), where c is the speed of light in vacuum,                                                                                (5) 

 

in the form of metrics: 

 

ds(+)2 = ес2dt2 – еdr2 – r2(d 2 + sin2 d2)  with signature (+ – – –),                                                                             (6)          

or  

ds(–)2 = – ес2dt2+ еdr2+ r2(d 2 + sin2 d2) with signature (– + + +),                                                                           (7)    

 

where   and   are the required functions of time t and distance r;  
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In this article,“4-dimensional pseudo-metrics” will be called “metrics” for simplicity. 

         

In metric (6), the nonzero components of the metric tensor are equal to 

 

𝑔00 = е ,      𝑔11 = – е ,       𝑔22 = – r2,       𝑔33 = – r2 sin2,                                                                                             (8)            

 

and their contravariant components are equal 

 

𝑔00 = е – ,    𝑔11 = – е – ,    𝑔22 = – r – 2,    𝑔33 = – r – 2 sin– 2.                                                                                        (9)       

 

Substituting the components of metric tensors (8) and (9) into Eqs. (3), the Christoffel symbols are calculated (the prime 

means differentiation with respect to r, and the dot above the letter means differentiation with respect to сt) [1]: 

  

Г11
1 =

𝜆′

2
,                   Г10

0 =
𝜈′

2
,                      Г33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,                                                                                       (10) 

Г11
0 =

�̇�

2
𝑒𝜆−𝜈 ,            Г22

1 = −𝑟𝑒−𝜆,               Г00
1 =

𝜈′

2
𝑒𝜈−𝜆 ,   

Г12
2 = Г13

3 =
1

𝑟
 ,         Г23

3 = 𝑐𝑡𝑔𝜃,                Г00
0 =

�̇�

2
 , 

Г10
1 =

�̇�

2
 ,                    Г33

1 = −𝑟𝑒−𝜆𝑠𝑖𝑛2𝜃.  

 

The remaining Christoffel symbols Гkl
i (except for those that differ by permutation of the indices k and l) are equal to zero. 

 

It is widely known that when substituting the Christoffel symbols (10) into the vacuum equation (1) for the stationary case 

(i.e. for  = const and  = const), the following system of differential equations is obtained [1]: 

 

R00 = R11=  + 2 + 2/r = 0,                                                                                                                                        (11) 

 

R22 = е – (/r – 1/r2) + 1/r2 = 0,                                                                                                                                      (12)                                          

 

R33 = е – ( /r + 1/r2) – 1/r2 = 0,                                                                                                                                     (13) 

 

  = – .                                                                                                                                                                              

  

Eqs. (11), (12) and (13) each have three identical solutions: 

 

е –  = е = (1+ r0/r),      е –  = е = (1 – r0/r),       е –  = е = 1,                                                                                      (14) 

 

or   –  =   = ln (1+ r0/r),    –  =   = ln (1+ r0/r),     –  =   = ln 1,                                                                          (15) 

    

where r0 is the integration constant (in particular, the radius of the sphere, the meaning of which will be clarified below). 

 

It is easy to verify that each of the three Eqs. (14) is a solution to Eqs. (11), (12), and (13) by alternately substituting these 

solutions into these equations. 

 

Substituting three possible solutions (14) into metric (6), we obtain three metric-solutions to the vacuum equation (1) with 

the same signature (+ – – –): 

 

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟

)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (16)       

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜
𝑟

)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (17)      

𝑑𝑠3
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                                         (18)                   

 

Performing similar operations with the components of the metric tensor from metric (7)  

 

𝑔00 = – е,       𝑔11 = е ,        𝑔22 = r2,        𝑔33 =  r2sin2,                                                                                              (19)    
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and their contravariant components 

  

𝑔00 = – е – ,     𝑔11 = е – ,     𝑔22 = r – 2,     𝑔33 = r –2sin– 2,                                                                                          (20)                                                                                  

 

we obtain three more metrics-solutions of the vacuum equation (1) with the opposite signature (– + + +): 

                                                                             

𝑑𝑠1
(−)2 = − (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟

)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                             (21)       

𝑑𝑠2
(−)2 = − (1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1+ 
𝑟𝑜
𝑟

)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                             (22)       

𝑑𝑠3
(−)2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                                       (23)                    

 

Note that when r0 = 0, metrics (16) and (17) become metric (18), and metrics (21) and (22) become metric (23). 

 

It is generally accepted that identical metrics with opposite signatures (+ – – –) and (– + + +) are isomorphic. However, 

this is not always the case. This issue is studied in detail in a series of articles [12, 13, 14, 15]. In this article, we only note 

the following: if we conditionally accept that metrics with signatures (+ – – –) define metric-dynamic models of “convex” 

vacuum formations, then similar metrics with the opposite signature (– + + +) define metric-dynamic models of exactly the 

same, but “concave” vacuum formations. Identical “convex” and “concave” stable vacuum formations completely compen-

sate for each other’s manifestations, maintaining the vacuum balance (+ – – –) + (– + + +) = 0. 

 

All metrics (16) – (18) and (21) – (23) are solutions to the vacuum equation (1), but only the quadratic form (16) is called the 

Schwarzschild metric, provided 

 

r0 = rg = 2GМ/c4,                                                                                                                                                               (24)                    

 

where M is the mass of the celestial body, G is the gravitational constant (G ≈ 6.67430⋅10−11 m3 s−2 kg−1). 

 

According to Birkhoff’s direct theorem and Israel’s inverse theorem, there are no other exact spherically symmetric static 

solutions of the vacuum equation (1), except for metrics (16) – (18) and (21) – (23), which at infinity tend to the Minkowski 

metric (i.e. to the metric of flat pseudo-Euclidean space). 

 

However, in general relativity, due to the fact that Eq. (1) is generally covariant, there are many possibilities for choosing 

other coordinate systems. Of particular interest are the coordinate transformations: Kruskal-Szekeres coordinate; Eddington 

- Finkelstein coordinates; Lemaître coordinates; Gullstrand - Painlevé coordinates; Isotropic coordinates; Harmonic coordi-

nates, since these transformations make it possible to exclude or shift the spatial singularity to the center at 𝑟0 = 𝑟 in metrics 

(16) – (17) and (21) – (22). However, when 𝑟0 = 𝑟, the temporary singularity in these metrics cannot be excluded. 

 

 

MATERIALS AND METHOD 

 

1 Averaging metrics-solutions of the vacuum equation 

 

In the introduction, metrics-solutions to the vacuum equation (1) were given, which are well-known to specialists in the field 

of general relativity and Riemann differential geometry. New results will be presented in this section and below. 

 

Let's consider three metrics (16) – (18): 

 

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟

)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (16′)       

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜
𝑟

)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (17′)      

𝑑𝑠3
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                                         (18′)                   

 

Metric (18) is a special case of the first two metrics (16) and (17) for r0 = 0, and describes the state of the original (i.e., 
uncurved) Einsteinian vacuum. 
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Metrics (16) and (17) describe different curved states of the Einsteinian vacuum, but they are equivalent and one cannot give 

preference to any of them without losing information about the region of space under consideration. Therefore, we formulate 

the hypothesis that both metrics (16) and (17) jointly describe the metric-dynamic state of the same region of the Einsteinian 

vacuum (hereinafter vacuum), and consider the result of their averaging 

 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) = 𝑐2𝑑𝑡2 −

𝑟2

𝑟2−𝑟0
2 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                          (25)              

 

In general relativity, the distance between two events with different r, but with the same other coordinates, is determined by 

the integral [1] 

 

𝜉 = ∫ √−𝑔11
(+)𝑟2

𝑟1
𝑑𝑟.                                                                                                                                                           (26) 

 

If 𝑔11
(+)

= – (1– r0/r)–1 from metric (16) or 𝑔11
(+)

= – (1+ r0/r)–1 from metric (17) substitute into integral (26), then such an integral 

is not taken in elementary functions. 

 

If 𝑔11
(+)

= – (1– r0/r)–1  from metric (16) or 𝑔11
(+)

= – (1+ r0/r)–1 from metric (17) substitute into integral (26), then such an in-

tegral is not taken in elementary functions. 

                       

Whereas when substituting the component 𝑔(12)11
(+)

= −
𝑟2

𝑟2−𝑟0
2  from the averaged metric (25) into the integral (26), it is pos-

sible to find an analytical solution 

 

𝜉 = ∫
𝑟𝑑𝑟

√𝑟2−𝑟0
2

𝑟2

𝑟1
= √𝑟2 − 𝑟0

2 |
𝑟2

𝑟1
 .                                                                                                                                       (27)    

 

Let's first find the size of the segment between the points r1 = 0  and  r2 = r0: 

 

√𝑟2 − 𝑟0
2 |

𝑟0

0
= −√−𝑟0

2 = −√−1𝑟0 = −𝑖𝑟0.                                                                                                                  (28)     

 

The length of this segment is equal to the radius of the cavity r0, and the imaginary nature of this result suggests that the 

averaged metric (25) does not describe the properties of the vacuum inside a spherical cavity with radius r0. In other words, 

the domain of applicability of metric (25) starts from r0 and extends to r2 = . In this case we have 

 

√𝑟2 − 𝑟0
2 |

∞
𝑟0

= √∞2 − 𝑟0
2 .                                                                                                                                              (29)      

 

Here we present the symbol '' in an abuse of notation to indicate the corresponding calculations via limits.  

 

If the vacuum region under study were not deformed, then the distance between the points r2 =  and r1 = r0 would be equal 

to r2 – r1 =  – r0, and in our case it is equal to value (29), subtracting one from the other, we find 

                                                                 

√∞2 − 𝑟0
2 − (∞ − 𝑟0) = 𝑟0,    

                                                                                                                                                                                          (30)   

since the limit calculation leads to this result 

 

lim
𝑥→∞

√𝑥2 − 𝑟0
2 − (𝑥 − 𝑟0) = 𝑟0 .           

                                                                                                                                  

The result obtained shows that the vacuum is compressed by an amount  r0 in all radial directions, and the reason for such 

compression is due to the fact that it is “displaced” from a cavity with radius r0. This looks like an air bubble in a liquid (see 

Figure 1). 

 

The distortions of the vacuum region under study will be judged by its relative elongation [9] 
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𝑙(+) =
𝑑𝑠(+)−𝑑𝑠0

(+)

𝑑𝑠0
(+) =

𝑑𝑠(+)

𝑑𝑠0
(+) − 1.                                                                                                                                          (31)  

 

In this case, the relative elongation for each coordinate is determined by the equation [9] 

 

𝑙𝑖
(+)

= √1 +
𝑔

𝑖𝑖
(+)

−𝑔𝑖𝑖0
(+)

𝑔𝑖𝑖0
(+) − 1,                                                                                                                                               (32)       

where 

𝑔𝑖𝑖
(+)

 are the components of the metric tensor of the curved region of the 

vacuum; 

𝑔𝑖𝑖0
(+)

 are the components of the metric tensor of the same region of vac-

uum before curvature (i.e. in the absence of its curvature). 

 

Let’s substitute into Eqs. (32) the components 𝑔𝑖𝑖
(+)

 from the averaged 

metric (25), and the components 𝑔𝑖𝑖0
(+)

 from the original metric (18), as a 

result we obtain      

   

𝑙𝑟
(+)

=
Δ𝑟

𝑟
= √

𝑟2

𝑟2−𝑟0
2 − 1,       𝑙𝜃

(+)
= 0,      𝑙𝜙

(+)
= 0.                         (33)         

 

The graph of the function 𝑙𝑟
(+)

= Δr/r, with r0 = 1, is shown in Figure 1.               

At  r = r0, this function tends to infinity Δr/r = , and at r < r0 it  becomes 

imaginary, which once again confirms the “empty bubble in a liquid” 

model. We will call such an empty bubble a “spherical Schwarzschild 

cavity.” 

 

If we now average metrics (21) and (22) 

                                                                                                         

𝑑𝑠12
(−)2 =

1

2
(𝑑𝑠1

(−)2 +  𝑑𝑠2
(−)2) = −𝑐2𝑑𝑡2 +

𝑟2

𝑟2−𝑟0
2 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 with signature (– + + +),                     (34)             

 

and perform similar actions (26) – (33) taking into account the original metric (23), we obtain a metric-dynamic model of 

exactly the same (see Figure 1), but opposite, stable, conditionally “concave” vacuum formation of the type “spherical anti-

Schwarzschild cavity” with relative elongation 

 

𝑙𝑟
(−)

=
Δ𝑟

𝑟
= √

𝑟2

𝑟2−𝑟0
2 − 1,       𝑙𝜃

(−)
= 0,      𝑙𝜙

(−)
= 0.                                                                                                          (35)    

  

Thus, averaging metrics (16) and (17), as well as averaging metrics (21) and (22), leads to metric-dynamic models of mutually 

opposite stable vacuum formations such as “spherical Schwarzschild cavity” and “spherical anti-Schwarzschild cavity”. 

Whereas separately metrics (16), (17), (21) and (22) do not lead to such results. This confirms the validity of the hypothesis 

about the possibility of averaging different metrics-solutions of the same vacuum equation. 

     

The possibility of averaging metrics-solutions of the vacuum equation (1) is also supported by the fact that averaging all six 

metrics (16) – (18) and (21) – (23) leads to two more trivial (i.e. zero) pseudo-metrics-solutions of this equation 

 
1

6
(𝑑𝑠1

(+)2
+ 𝑑𝑠2

(+)2
+ 𝑑𝑠3

(+)2
+ 𝑑𝑠1

(−)2
+ 𝑑𝑠2

(−)2
+ 𝑑𝑠3

(−)2) = ±0 ∙ 𝑐2𝑑𝑡2 ∓ 0 ∙ 𝑑𝑟2 ∓ 0 ∙ 𝑟2𝑑𝜃2 ∓ 0 ∙ 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                 (36)      

.                                          

A significant advantage of the considered averaged metric-dynamic models of “cavity” and “anti-cavity” is the fact that the 

zero component of the metric tensor in the averaged metrics (25) and (34) is equal to one (𝑔00
(+)

= 1). This means that in these 

models the time t is global, so these stable vacuum formations can coexist in the same global space with a single time.                 

In addition, there is no temporal singularity in these averaged metrics. 

 

In this paragraph, all known solutions of Einstein’s vacuum equation (1) were used and this led to averaged metric-dynamic 

models of a mutually opposite pair of vacuum formations “cavity” – “anti-cavity”. However, this raised three problems: 

         

 
 

Fig. 1: Graph of a function (35) 𝑙𝑟
(+)

=
Δ𝑟

𝑟
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1] The averaged metrics (25) and (34) turned out to be not the Schwarzschild metric, which, according to the entire scientific 

community, has been reliably tested and experimentally confirmed in the lower orders of approximation of general rela-

tivity to Newtonian theory (i.e. for the case of weak gravitational fields). 

2] Relative vacuum elongations (33) and (35) at r = r0 tend to infinity (Δr/r → ). The presence of such a singularity is a 

clear indicator of the incompleteness of the mathematical model under consideration. 

3] If the vacuum is displaced from a spherical region with radius r0, then it is not clear what is inside such an empty cavity. 

 

Possible solutions to these problems are suggested below. 

 

 

2 Qualitative discussion of the singularity problem 

 

At r = r0, both functions of the relative vacuum elongation (33) and (35) tend to infinity (Δr/r → , see Figure 2). It is obvious 

that within the framework of Riemann differential geometry, the problem of the presence of singularities in solutions of the 

vacuum equation (1) using the above metrics is in principle unsolvable. Perhaps this problem will be solved as a result of 

increasing the capabilities of differential geometry, for example, by taking into account not only curvature, but also torsions, 

displacements and other distortions of space.  

 

In this article we note only one circumstance that can 

help solve this problem. 

 

Let’s recall the property of the “Koch curve” fractal. 

 

This fractal has two extraordinary properties: 1) any 

iteration of the Koch curve is an example of a contin-

uous line to which it is impossible to draw a tangent 

at any point (i.e., these lines are not differentiable);  

2) if the length of the initial Koch segment is 1, then 

the length of the n-th iteration of this fractal is equal 

to (4/3)n–1. Therefore, when n =  the length of the 

Koch curve tends to infinity. 

 

Let’s return to the problem of singularities in aver-

aged metrics (25) and (35). It should be expected that 

in the region of a sphere with radius r0, an increase in 

the length of radial segments occurs due to a decrease 

in the scale of their brokenness (Figure 2), similar to 

a decrease in the scale of brokenness of the “Koch 

curve” as the number increases iterations. This is sim-

ilar to how when the Reynolds number is exceeded, 

fluid flow changes from laminar to turbulent. More-

over, as we approach r0, the elongation of such bro-

ken, or bent, or wound, etc., segments can tend to in-

finity.  

 

3 Schwarzschild-like averaged metric 

 

Let‘s consider the case when in the region surrounding a spherical cavity, there is not one boundary sphere, but two (as shown 

in Figure 2) with radii r01 and r02 such that 

 

 r01 ≈ r02 ≈ r0   and   r01 ≥ r02.                                                                                                                                             (37) 

 

In this case, metrics (16) and (17) take the form 
 

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜1

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜1

𝑟
)

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                              (38)       

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜2

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜2

𝑟
)

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                              (39)      

 
 

Fig. 2: Increase in brokenness of lines as they approach the central                       

cavity (Prokhorov-Lebedev drawing) 
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Let’s average metrics (54) and (55) taking into account conditions (53) (i.e., small differences between r01 and r02) 

 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) ≈ (1 +

𝑟𝑜2−𝑟𝑜1

2𝑟
) 𝑐2𝑑𝑡2 −

𝑟2

𝑟2−𝑟0
2 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                     (40) 

 

The zero component of the metric tensor in the averaged metric (56) is equal to 

 

𝑔00 = (1 +
𝑟𝑜2−𝑟𝑜1

2𝑟
) = (1 −

𝑟𝑔

𝑟
),                                                                                                                                      (41) 

 

where  𝑟𝑔 =
𝑟𝑜1−𝑟𝑜2

2
  is a value that can be interpreted as the average Schwarzschild radius of a stable corpuscular vacuum 

formation. 

 

Taking into account Eq. (41), metric (40) can be represented in a Schwarzschild-like form 

 

𝑑𝑠(12)
(+)2 ≈ (1 −

𝑟𝑔

𝑟
) 𝑐2𝑑𝑡2 −

1

1− 
𝑟0

2

𝑟2

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                   (42) 

 

For example, it is known that the planet Earth has 𝑟𝑔𝐸≈ 0.9 cm. Then, according to Eq. (41), if our assumptions are correct, 

then inside our planet there are two boundary spheres with a difference in radii 

 

𝑟𝑜1𝐸 − 𝑟𝑜2𝐸 = 2𝑟𝑔𝐸 = 1,8 cm. 

 

Then all experimentally confirmed weak gravitational effects in the vicinity of our planet remain in force. 

 

It can also be assumed that the average radius of the Earth’s spherical cavity r0 corresponds to the radius of its solid inner 

core r0E ≈ 1220 km. 

 

Thus, within the framework of the considered averaged models of stable vacuum formations, the problem of the Schwarz-

schild-like gravitational potential is easily solved. 

 

 

4 Checking the possibility of finding other solutions to Einstein’s vacuum equation 

 

To understand the question: “What is inside the spherical cavity and anti-cavity (see Figure 1)?” we made an 

attempt to look for solutions to the vacuum equation (1) in the form of metrics 

 

ds*
(+)2 =  е –с2dt2 – е – dr2 – r2(d 2 + sin2 d2)  with signature (+ – – –),                                                                   (43)      

and 

ds*
(–)2 = – е –с2dt2+ е – dr2+ r2(d 2 + sin2 d2) with signature (– + + +).                                                                  (44)          

 

These metrics are in some sense antisymmetric with respect to metrics (6) and (7), so we will call them “inverted”.  

 

In the “inverted” metric (43), the nonzero components of the metric tensor are equal 
 

𝑔00 = е – ,      𝑔11 = – е – ,       𝑔22 = – r2,       𝑔33 = – r2 sin2,                                                                                       (45)            

 

and their contravariant components are equal 

 

𝑔00 = е ,    𝑔11 = – е ,    𝑔22 = – r – 2,    𝑔33 = – r – 2 sin– 2.                                                                                           (46)       

  

Substituting the components of the metric tensors (45) and (46) into Eq. (3), we calculate the Christoffel symbols (the cal-

culations were performed by Cruz Perez Julian Arturo, the calculation is presented in Appendix 1), the prime means differ-

entiation with respect to r, and the dot above the letter means differentiation with respect to сt: 
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Г11
1 = −

𝜆′

2
 ,               Г10

0 = −
𝜈′

2
,                      Г33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,                                                                                  (47) 

Г11
0 = −

�̇�

2
𝑒𝜈−𝜆,         Г22

1 = −𝑟𝑒𝜆,                      Г00
1 = −

𝜈′

2
𝑒𝜆−𝜈 ,   

Г12
2 = Г13

3 =
1

𝑟
 ,          Г23

3 = 𝑐𝑡𝑔𝜃,                    Г00
0 = −

�̇�

2
 , 

Г10
1 = −

�̇�

2
 ,                 Г33

1 = −𝑟𝑒𝜆𝑠𝑖𝑛2𝜃.  

 

The remaining Christoffel symbols Г𝑘𝑙
𝑖  (except for those that differ by permutation of the indices k and l) are equal to zero. 

 

Exactly the same Christoffel symbols Г𝑘𝑙
𝑖  are obtained by using the components of the metric tensor from metric (44). 

 

Thus, in the case when metrics (43) with signature (+ – – –) or (44) with signature (– + + +) are taken as initial ones, instead 

of the system of Eqs. (11) – (13) we obtain a system of equations (see Appendix 2) 

 

R00
 = R11

 =  – 2 + 2/r = 0,                                                                                                                                          (48) 

 

R22
 = е  (/r + 1/r2) – 1/r2 = 0,                                                                                                                                         (49) 

 

R33 = е  ( /r –1/r2) +1/r2 = 0,                                                                                                                                          (50)                                          

  

 = – . 

 

Eqs. (48), (49) and (50) each have three identical solutions: 

 

е  = е – = (1+ r0/r),      е   = е –  = (1 – r0/r),       е = е –  = 1,                                                                                      (51) 

 

or   = –   = ln (1+ r0/r),     = –   = ln (1+ r0/r),      = –  = ln 1.                                                                             (52) 

    

When substituting solutions (51) into metrics (43) and (44), we obtain metrics-solutions to the vacuum equation (1), which 

completely coincide with metrics-solutions (16) – (18) and (21) – (23). 

 

Thus, we are convinced that when using the “inverted” initial metrics (43) and (44), exactly the same metrics-solutions                   

(16) – (18) and (21) – (23) are obtained (the result is quite expected), and the problem of filling spherical cavities and anti-

cavities remains unresolved. 

 

Note that not only metrics (6) and (7) or “inverted” metrics (43) and (44), but also metrics with complex components of the 

metric tensor can be taken as initial ones   

 

ds**
 (+)2 =   е iс2dt2 – е idr2 – r2(d 2 + sin2 d2)   with signature (+ – – –),                                                                  (53)                                         

and 

ds**
 (–)2 = – е  iс2dt2+ е  idr2+ r2(d 2 + sin2 d2)  with signature (– + + +).                                                                 (54)                                                     

 

In the case of the initial metric (53), we have 

 

Г11
1 =

𝑖𝜆′

2
 ,                  Г10

0 =
𝑖𝜈′

2
,                        Г33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,                                                                                   

Г11
0 = 𝑖

�̇�

2
𝑒𝑖(𝜆−𝜈),       Г22

1 = −𝑟𝑒−𝑖𝜆 ,                  Г00
1 =

𝜈′

2
𝑒𝑖(𝜆−𝜈),   

Г12
2 = Г13

3 =
1

𝑟
 ,          Г23

3 = 𝑐𝑡𝑔𝜃,                   Г00
0 =

𝑖�̇�

2
 , 

Г10
1 =

𝑖�̇�

2
 ,                   Г33

1 = −𝑟𝑒−𝑖𝜆𝑠𝑖𝑛2𝜃.  

 

Then for the stationary case (i.e., for   = const and  = const), the vacuum equation (1) is represented as a system of complex 

equations 
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R00 = R11=  + i2 + 2/r = 0,                                                                                                                                         

 

R22 = е – i (i/r – 1/r2) + 1/r2 = 0,                                                                                                                                      

 

R33 = е – i (i /r + 1/r2) – 1/r2 = 0,                                                                                                                                    

 

  = – .                                                                                                                                                                              

 

Solutions to this system of equations are 

 

е – i = еi = (1+ r0/r),      е – i = еi = (1 – r0/r),       е – i = еi = = 1,                                                                                       

 

or    = –  = i ln (1+ r0/r),     = –   = i ln (1+ r0/r),      = –  = i ln 1.                                                                           

 

Consistently substituting these solutions into the original metric (53), we again obtain three metrics-solutions (16) – (18). 

Similar actions with the original metric (54) lead to metrics-solutions (21) – (23). 

 

Thus, all attempts to find other solutions to the vacuum equation (1) were unsuccessful.                                                                                                                                                       

 

 

5 The Schwarzschild - de Sitter world and anti-world  

 

Above, an attempt was made to find additional solutions to the Einstein vacuum equation (1) in order to solve the problem 

of filling spherical cavities. However, these studies only strengthened the confidence that such solutions are not contained in 

Eq. (1). 

 

Therefore, let’s consider solutions to the vacuum Einstein equation with the Λ-term 

 

𝑅𝑖𝑘 ± Λ 𝑔𝑖𝑘 = 0,                                                                                                                                                               (55)   

 

where Λ = 3 𝑟𝑎
2⁄ , the physical meaning of the radius ra will be clarified later. 

 

There are five metric solutions to equation (55) with signature (+ – – –) 

 

I     𝑑𝑠1
(+)2

= (1 −
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1 − 
𝑟𝑏
𝑟

 + 
𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                    (56)   

H    𝑑𝑠2
(+)2

= (1 +
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1 + 
𝑟𝑏 

𝑟
 − 

𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                  (57)    

V    𝑑𝑠3
(+)2

= (1 −
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1 − 
𝑟𝑏
𝑟

 − 
𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                  (58)   

H′   𝑑𝑠4
(+)2

= (1 +
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1 + 
𝑟𝑏4

𝑟
 + 

𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                 (59)   

i      𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                                                                                                   (60)    

 

and five metric solutions of the same equation with signature (– + + +) 

 

H′     𝑑𝑠1
(−)2

= − (1 −
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 +

𝑑𝑟2

(1 − 
𝑟𝑏
𝑟

 + 
𝑟2

𝑟𝑎
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                             (61)   

V     𝑑𝑠2
(−)2

= − (1 +
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 +

𝑑𝑟2

(1 + 
𝑟𝑏
𝑟

 − 
𝑟2

𝑟𝑎
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                              (62)    

H      𝑑𝑠3
(−)2

= − (1 −
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 +

𝑑𝑟2

(1 − 
𝑟𝑏
𝑟

 − 
𝑟2

𝑟𝑎
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                             (63)    

 I      𝑑𝑠4
(−)2

= − (1 +
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 +

𝑑𝑟2

(1 + 
𝑟𝑏
𝑟

 + 
𝑟2

𝑟𝑎
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                              (64)   

i        𝑑𝑠5
(−)2

= − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                              (65)    
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Friedrich Kottler first wrote down the Kottler metric of the form (58) 

 

𝑑𝑠𝐾𝑜𝑡𝑡𝑙𝑒𝑟
2 = (1 −

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1− 
𝑟𝑏 

𝑟
 − 

𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                     (58′)     

 

 in article [10], which was published in March 1918, almost immediately after the publication of Einstein’s general relativ-

ity. In the case: ra =   and  rb ≠ 0, the Kottler metric (58) becomes the Schwarzschild metric 

 

𝑑𝑠Schwarzschild
2 = (1 −

𝑟𝑏

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1−
𝑟𝑏
𝑟

)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                

                                           

In another limiting case: ra ≠  and rb = 0, the Kottler metric (58) becomes the de Sitter metric 

 

 𝑑𝑠de Sitter
2 = (1 −

𝑟2

𝑟𝑎
2) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1−
𝑟2

𝑟𝑎
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).            

                            

In the third case: ra =   and  rb = 0, the Kottler metric (143) takes the form of the Minkowski metric  

 

𝑑𝑠Minkowski
2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).         

                                                                                  

Therefore, the metrics-solution (56) – (60) and (61) – (65) of the second Einstein vacuum equation (140) will be called the 

Kottler - de Sitter- Schwarzschild metrics or, in short, KdSSh-metrics. 

 

Let’s average metrics (56) – (60) with signature (+ – – –) and metrics (61) – (65) with signature (– + + +) 

 

ds1-4
(+)2 = 1

4
 (ds1

(+)2+ ds2
(+)2 +ds3

(+)2+ ds4
(+)2).                                                                                                              

 

ds1-4
(–)2 = 1

4
 (ds1

(–)2+ ds2
(–)2 +ds3

(–)2+ ds4
(–)2).                                                                                                              

 

As a result, we obtain averaged metrics 

  

𝑑𝑠1−4
(+)2

=   𝑐2𝑑𝑡2 − 𝑔11
(+)

(𝑟)𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                             (66)  

 

𝑑𝑠1−4
(−)2

= − 𝑐2𝑑𝑡2 + 𝑔11
(−)(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                           (67)  

 

where   

                    

𝑔11
(+)(𝑟) = 𝑔11

(−)(𝑟) =
1

4
[

1

(1− 
𝑟𝑏
𝑟

 + 
𝑟2

𝑟𝑎
2 )

+
1

(1+ 
𝑟𝑏 

𝑟
 − 

𝑟2

𝑟𝑎
2 )

+
1

(1− 
𝑟𝑏
𝑟

 − 
𝑟2

𝑟𝑎
2 )

+
1

(1+ 
𝑟𝑏
𝑟

 + 
𝑟2

 𝑟𝑎
2 )

].                                                               (68) 

 

We substitute the components 𝑔𝑖𝑖
(+)

 of the averaged metric (67) or the components 𝑔𝑖𝑖
(−)

 of the averaged metric (67) into the 

expressions for the relative elongation (32) 

 

𝑙𝑖
(+)

= √1 +
𝑔

𝑖𝑖
(+)

−𝑔𝑖𝑖0
(+)

𝑔𝑖𝑖0
(+) − 1,        𝑙𝑖

(−)
= √1 +

𝑔
𝑖𝑖
(−)

−𝑔𝑖𝑖0
(−)

𝑔𝑖𝑖0
(−) − 1,                                                   

 

where the components 𝑔𝑖𝑖0
(+)

 are taken from the non-curved metric (60), and the components 𝑔𝑖𝑖0
(−)

 are taken from the non-

curved metric (65). 
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As a result, we get                                

                                                                                                  (69)          

𝑙𝑟
(±)

=
Δ𝑟

𝑟
= √𝑔11

(±)(𝑟) − 1 = 

=  √
1

4
[

1

(1− 
𝑟𝑏
𝑟

 + 
𝑟2

𝑟𝑎
2 )

+
1

(1+ 
𝑟𝑏 

𝑟
 − 

𝑟2

𝑟𝑎
2 )

+
1

(1− 
𝑟𝑏
𝑟

 − 
𝑟2

𝑟𝑎
2 )

+
1

(1+ 
𝑟𝑏
𝑟

 + 
𝑟2

 𝑟𝑎
2 )

]  − 1,                                    

 

𝑙𝑡
(±)

= 0,        𝑙𝜃
(±)

= 0,      𝑙𝜙
(±)

= 0.                                                             

 

The graph, for example, of the function 𝑙𝑟
(+)

 (69) with 𝑟𝑎 = 60 and    

𝑟𝑏 = 1.5, which determines the relative elongation of vacuum in the 

radial direction, is shown in Figure 3. From this graph it is clear that 

the result is an almost hollow ball (i.e., de Sitter space) with com-

pacted edges, inside of which there is a spherical Schwarzschild 

cavity, which is described by metrics (16) – (18), more precisely, 

by the averaged metric (25). 

 

Indeed, if in metrics (56) – (58) we direct ra to infinity (ra → ), 

i.e., for example, assume that ra is the radius of the Universe, then 

in the vicinity of a small cavity with radius rb,= r0, which is com-

mensurate, for example, with the gravitational radius of the “black 

hole”, the deformed state of the vacuum will be described by the 

averaged metric (25). 

 

Shown in Figure 3, the vacuum formation resembles a biological cell with an outer shell and an internal nucleolus, so we will 

call it a Schwarzschild-de Sitter cell. 

 

Performing similar operations with metrics - solutions (61) – (65) with the opposite signature (– + + +), we obtain exactly 

the same, but opposite Schwarzschild - de Sitter anti-cell. 

 

Averaging all ten metrics-solutions (56) – (65) of the second vacuum equation (55) leads to two more trivial (i.e. zero) 

pseudo-metric-solutions of this equation 

 

1

10
(∑ 𝑑𝑠𝑘

(+)2 +

5

𝑘=1

∑ 𝑑𝑠𝑘
(−)2

5

𝑘=1

) = ±0 ∙ 𝑐2𝑑𝑡2 ∓ 0 ∙ 𝑑𝑟2 ∓ 0 ∙ 𝑟2𝑑𝜃2 ∓ 0 ∙ 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2. 

 

It is obvious that Einstein’s vacuum equation with the Λ-term (55) also does not allow us to solve the problem of filling the 

“spherical Schwarzschild cavity” and the “spherical anti-Schwarzschild cavity”, which in this case find themselves inside of 

the de Sitter space or of the anti-de Sitter space, respectively. 

 

     

6 Einstein's third vacuum equation 

 

As shown above, solutions to the first and second Einstein vacuum equations (1) and (55) make it possible to construct metric-

dynamic models of a mutually opposite pair of single stable vacuum formations, but do not allow solving the problem of 

filling spherical cavities and anti-cavities inside these formations. In addition, these equations lack the potential to describe 

many stable spherical objects. In this regard, it is proposed to consider the possibility of expanding the vacuum equation (55). 

 

Let’s recall that in order to write down Eq. (55), Einstein used the following property of the metric tensor and the Einstein  

tensor: 

 

Λ∇𝑗𝑔𝑖𝑘 = ∇𝑗Λ𝑔𝑖𝑘 = 0,        ∇𝑗(𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘) = 0.                                                                                                           (70)   

 

However, it is obvious that the covariant derivative of the infinite series is also equal to zero 

 

 

 

Fig. 3: Graph of the relative elongation function 𝑙𝑟
(+)

 

(69), which determines the relative elongation of the 

vacuum in the radial direction 
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∇𝑗(Λ1 𝑔𝑖𝑘 + Λ2𝑔𝑖𝑘 + Λ3𝑔𝑖𝑘+. . . +Λ∞𝑔𝑖𝑘) = Λ1 ∇𝑗𝑔𝑖𝑘 + Λ2∇𝑗𝑔𝑖𝑘+. . . +Λ∞∇𝑗𝑔𝑖𝑘 = 0,
 
                                                 (71)           

                                                                                                                                                                                                                                                                                 

where 1, 2, … , ∞ – are constants that can take both positive (i > 0) and negative (j< 0) values. 

 

We use the same method that Einstein used to introduce the -term into Eq. (55), and write the extended vacuum equation 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 + Λ1𝑔𝑖𝑘 + Λ2𝑔𝑖𝑘 + Λ3𝑔𝑖𝑘+. . . +Λ∞𝑔𝑖𝑘 = 𝑅𝑖𝑘 −

1

2
𝑅𝑔𝑖𝑘 + 𝑔𝑖𝑘 ∑ ±Λ𝑘 = 0∞

𝑘=1 ,                                           (72)   

                                                                                

where according to the expression k = 3/rаj
2  or  – 3/rаj

2, here raj is the radius of the j-th spherical formation. 

 

The covariant and ordinary partial derivatives of the tensor on the left side of Eq. (72) are equal to zero:  

 

 ∇𝑗(𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 + 𝑔𝑖𝑘 ∑ Λ𝑘

∞
𝑘=1 ) =

𝜕(𝑅𝑖𝑘−
1

2
𝑅𝑔𝑖𝑘+𝑔𝑖𝑘 ∑ Λ𝑘

∞
𝑘=1 )

𝜕𝑥𝑗 = 0,                                                                                     (73)       

 

therefore, this equation is an expression of conservation laws, just like vacuum equations (1) and (55). 

 

The extended equation (72) will be called Einstein's third vacuum equations. 

 

Possible solutions to Eq. (72) are proposed in article [11]. 

 

In the following articles it is intended to show that Einstein's third vacuum equations (72) allows for the description of a set 

of interacting stable vacuum formations of different sizes. It is possible that this will make it possible to solve the problems 

formulated in this article and develop the vacuum theory of elementary particles and propose a corpuscular cosmological 

model. 

 

 
CONCLUSION 

 

This article is based on the author’s conviction that there is nothing superfluous in mathematics, especially in Einstein’s vacuum equations 

(1) and (55) 

 
𝑅𝑖𝑘 = 0,                                                                                                                                                                              (1′)    

 

𝑅𝑖𝑘 ± Λ 𝑔𝑖𝑘 = 0.                                                                                                                                                               (55′)   
 

Almost all the fundamental epistemological principles of modern science are concentrated in this equations: 

1] The principle of general covariance (i.e., the independence of the form of the equation and invariants from the choice of coordinate 

system or reference system; in essence, the tensor nature of the equations); 

2] The principle of coordinate invariance (i.e., the independence of the laws of physics from the choice of coordinate system); 

3] The principle of equivalence (i.e. local distortions, movements and accelerations are put into correspondence with local curved reference 

systems). The concept of “influence of force” is replaced by inertial motion in curved space-time; 

4] The principle of independence of the speed of light from the reference system (i.e., the unification of space and time into a single space-

time continuum with a metric of the form ds2 = – с2dt2 + dx2 +dy2+ dz2 = 0); 

5] The principle of causality (i.e. any event can have a cause-and-effect impact only on those events that occur later than it, i.e. inside a 

circle with a radius of no more than l = сdt, where dt is the time interval between events); 

6] The principle of extremum of action (i.e. the geodesic lines of a curved 4-dimensional space are extremal); 

7] The principle of symmetry (i.e., the conditions of non-variability, from which conservation laws follow); 

8] The principle of relativity (i.e., the equations include only relative quantities, including time). 

 

Therefore, each solution to vacuum equations (1) and (55) is important. In addition, it is obvious that since all these solutions 

determine the metric-dynamic state of the same volume of space, they must be combined into a single system. 

 

This article attempts to show that averaging (i.e., the arithmetic mean) of the metrics-solutions of vacuum equations (1) and 

(55) is not meaningless, and leads to metric-dynamic models of mutually opposite stable corpuscular vacuum formations of 

the “spherical Schwarzschild cavity” (25) and "spherical anti-Schwarzschild cavity" (34), as well as "Schwarzschild-de Sitter 

cell" (66) and "Schwarzschild-de Sitter anti-cell" (67). 

 

However, as noted by mathematician David Reid, it is possible that useful information may be contained in other types of 

averaging of metrics-solutions of the vacuum equation (1), for example, in their: the geometric mean, or the harmonic mean, 
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or the quadratic mean, or the cubic mean. 

 

Averaged metrics (25), (34), (66) and (67) have clear advantages, because in them the zero component of the metric tensor 

is equal to one (𝑔00
(±)

= 1). This means that in these models time t is global and there are no time singularities. In addition, 

within the framework of averaged models (25) and (34), the problem of weak Schwarzschild-like gravitational potential is 

easily solved (see §3). 

 

However, spatial singularities in the averaged metrics (25), (34), (66) and (67) are preserved. The article proposes to associate 

the limitless stretching of the Einstein vacuum, near a spherical cavity with a radius rb,= r0 (Figure 2 and 5), with the fact that 

in this region the vacuum begins to “boil”, i.e. strongly branches, twists, curls, etc. (see §2). 

 

At the same time, in all “convex” and “concave” stable metric-dynamic models, which are described by averaged metrics 

(25), (34), (66) and (67), there is a spherical cavity from which the Einstein vacuum is displaced. Therefore, it is completely 

unclear what this cavity is filled with? In addition, it is not clear what is beyond the upper boundary of the Schwarzschild - 

de Sitter cell with radius 𝑟𝑎 (see Figure 3)? 

 

It is obvious that metric-dynamic models of stable vacuum formations based on averaged solutions of Einstein’s vacuum 

equations (1) and (55) are not complete. Therefore, it is proposed to consider the possibility of using the extended Einstein 

third vacuum equation (72) 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 + 𝑔𝑖𝑘 ∑ Λ𝑘 = ∞

𝑘=1 0. 

 

The solution to this equation has already been partially proposed in [11] and will be refined in subsequent articles. 

 

Today, the metric (42) can be verified experimentally 

 

𝑑𝑠(12)
(+)2 ≈ (1 −

𝑟𝑔

𝑟
) 𝑐2𝑑𝑡2 −

1

1− 
𝑟0

2

𝑟2

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                   (42′)  

 

whose zero component 𝑔(12)00
(+)

= (1 −
𝑟𝑔

𝑟
)  coincides with the zero component of the Schwarzschild metric (16) 

 

𝑑𝑠(1)
(+)2 = (1 −

𝑟𝑔

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑔

𝑟
)

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃𝑟𝑡 𝑑𝜙2.                                                                            (16′)       

 

Therefore, metric (42) is suitable for describing all known weak gravitational effects. 

 

However, the component 𝑔(12)11
(+)

= (1 − 
𝑟0

2

𝑟2)
−1

of metric (42) and the component 𝑔(1)11
(+)

= (1 −  
𝑟𝑔

𝑟
)

−1

 of metric (16) are  

different. If we assume that planet Earth has 𝑟𝑔 = (𝑟𝑜1 − 𝑟𝑜2)/2 ≈  0,9 cm  and  r0 ≈ 1220 km  (see §3), then the difference 

between metrics (42) and (16) should be so significant, which may well be discovered experimentally. 

 

However, observables in the case of the averaged metric (42) should be geodesic lines, which are determined by the equation 

(see § 1.1 in [15]) 

 
𝑑2𝑥𝑙

𝑑𝑠2 +
1

√2
(Г𝑖𝑗

𝑙(+)
+ 𝑖Г𝑖𝑗

𝑙(−)
)

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,                                                                                                                               

 

where 

Г𝑖𝑗
𝑙(+)

=
1

2
𝑔𝑙𝜇(+) (

𝜕𝑔𝜇𝑖
(+)

𝜕𝑥𝑗 +
𝜕𝑔𝜇𝑗

(+)

𝜕𝑥𝑖 −
𝜕𝑔𝑖𝑗

(+)

𝜕𝑥𝜇 )   is Christoffel symbols corresponding to metric (38),                                                              

Г𝑖𝑗
𝑙(−)

=
1

2
𝑔𝑙𝜇(−) (

𝜕𝑔𝜇𝑖
(−)

𝜕𝑥𝑗 +
𝜕𝑔𝜇𝑗

(−)

𝜕𝑥𝑖 −
𝜕𝑔𝑖𝑗

(−)

𝜕𝑥𝜇 )   is Christoffel symbols corresponding to metric (39). 

 

Even if it is confirmed that the radius of the spherical cavity r0 of our planet is about 1000 km, then this will be significant 

evidence of the validity of the hypothesis proposed in this article about the possibility of averaging metrics-solutions of 

Einstein’s vacuum equations. 
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A.1 Calculation of Christoffel symbols in the case of an inverted metric 

 

Consider the inverted original metric (43) 

 

ds*
 (–)2 = е –с2dt2 – е – dr2 – r2(d 2 + sin2 d2)  with signature (+ – – –),                                                                    (43′)     

 

to this metric the non-zero components of the metric tensor are equal to 

 

𝑔00 = е – ,      𝑔11 = – е – ,       𝑔22 = – r2,       𝑔33 = – r2 sin2,                    

                                                                     

and their contravariant components are equal 

 

𝑔00 = е ,    𝑔11 = – е ,    𝑔22 = – r – 2,    𝑔33 = – r – 2 sin– 2.                                                                                           

 

Let's calculate non-zero Christoffel symbols (3) 
 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )                                                                                                                                (A.1.1)             

   

---------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  

Г11
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г11
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔11

𝜕𝑥1 +
𝜕𝑔11

𝜕𝑥1 −
𝜕𝑔11

𝜕𝑥1 )      

Г11
1 =

1

2
𝑔11 (

𝜕𝑔11

𝜕𝑥1 ) = −
𝑒𝜆

2
(

𝜕−𝑒𝜆

𝜕𝑟
) = −

𝜆′

2
                               

Г11
1 = −

𝜆′

2
 .                            

----------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  

Г10
0 =

1

2
𝑔00(… ) +

1

2
𝑔01(… ) +

1

2
𝑔02(… ) +

1

2
𝑔03(… )           

Г10
0 =

1

2
𝑔00(… ) =

1

2
𝑔00 (

𝜕𝑔00

𝜕𝑥1 +
𝜕𝑔10

𝜕𝑥0 −
𝜕𝑔10

𝜕𝑥0 )      

Г10
0 =

1

2
𝑔00 (

𝜕𝑔00

𝜕𝑥1 ) =
𝑒

2
(

𝜕𝑒−

𝜕𝑟
) =

𝑒𝑒−

2
(

𝜕−

𝜕𝑟
) = −

′

2
                               

Г10
0 = −

′

2
 .       

----------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝜇
) 

Г33
2 =

1

2
𝑔20(… ) +

1

2
𝑔21(… ) +

1

2
𝑔22(… ) +

1

2
𝑔23(… )         

Г33
2 =

1

2
𝑔22(… ) =

1

2
𝑔22 (

𝜕𝑔23

𝜕𝑥3 +
𝜕𝑔32

𝜕𝑥3 −
𝜕𝑔33

𝜕𝑥2 )      

Г33
2 =

1

2
𝑔22 (−

𝜕𝑔33

𝜕𝑥2 ) =
1

2
𝑔22 (−

𝜕𝑔33

𝜕
) =

−𝑟−2

2
(−

𝜕−𝑟2𝑠𝑖𝑛2

𝜕
) = −𝑠𝑖𝑛 𝑐𝑜𝑠  

Г33
2 = −𝑠𝑖𝑛 𝑐𝑜𝑠 . 

--------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  

Г11
0 =

1

2
𝑔00(… ) +

1

2
𝑔01(… ) +

1

2
𝑔02(… ) +

1

2
𝑔03(… )         

Г11
0 =

1

2
𝑔00(… ) =

1

2
𝑔00 (

𝜕𝑔01

𝜕𝑥1 +
𝜕𝑔10

𝜕𝑥1 −
𝜕𝑔11

𝜕𝑥0 )      

Г11
0 =

1

2
𝑔00 (−

𝜕𝑔11

𝜕𝑥0 ) =
𝑒

2
(−

𝜕−𝑒−𝜆

𝜕𝑐𝑡
) =

𝑒−𝜆

2
(

𝜕−𝜆

𝜕𝑐𝑡
) = −

�̇�

2
 𝑒−𝜆  

Г11
0 = −

�̇�

2
 𝑒−𝜆 .  

---------------------------------------------------------------- 
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---------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝜇
)  

Г22
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г22
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔12

𝜕𝑥2 +
𝜕𝑔21

𝜕𝑥2 −
𝜕𝑔22

𝜕𝑥1 )      

Г22
1 =

1

2
𝑔11 (−

𝜕𝑔22

𝜕𝑥1 ) =
−𝑒𝜆

2
(−

𝜕−𝑟2

𝜕𝑟
) = −𝑟 𝑒𝜆  

Г22
1 = −𝑟 𝑒𝜆.  

 

-------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )   

Г00
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г00
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔10

𝜕𝑥0 +
𝜕𝑔01

𝜕𝑥0 −
𝜕𝑔00

𝜕𝑥1 )      

Г00
1 =

1

2
𝑔11 (−

𝜕𝑔00

𝜕𝑥1 ) =
−𝑒𝜆

2
(−

𝜕𝑒−

𝜕𝑟
) = −

𝑒𝜆−

2
(

𝜕−

𝜕𝑟
) = −

′

2
 𝑒𝜆−                               

Г00
1 = −

′

2
 𝑒𝜆−. 

 ------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  

Г12
2 =

1

2
𝑔20(… ) +

1

2
𝑔21(… ) +

1

2
𝑔22(… ) +

1

2
𝑔23(… )         

Г12
2 =

1

2
𝑔22(… ) =

1

2
𝑔22 (

𝜕𝑔22

𝜕𝑥1 +
𝜕𝑔12

𝜕𝑥2 −
𝜕𝑔12

𝜕𝑥2 )      

Г12
2 =

1

2
𝑔22 (

𝜕𝑔22

𝜕𝑥1 ) =
−𝑟−2

2
(

𝜕−𝑟2

𝜕𝑟
) =

1

𝑟
  

Г12
2 =

1

𝑟
 .  

------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г13
3 =

1

2
𝑔30(… ) +

1

2
𝑔31(… ) +

1

2
𝑔32(… ) +

1

2
𝑔33(… )         

Г13
3 =

1

2
𝑔33(… ) =

1

2
𝑔33 (

𝜕𝑔33

𝜕𝑥1 +
𝜕𝑔13

𝜕𝑥3 −
𝜕𝑔13

𝜕𝑥3 )      

Г13
3 =

1

2
𝑔33 (

𝜕𝑔33

𝜕𝑥1 ) =
−𝑟−2𝑠𝑖𝑛−2

2
(−

𝜕−𝑟2𝑠𝑖𝑛2

𝜕𝑟
) =

1

𝑟
  

Г13
3 =

1

𝑟
 .  

-------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г23
3 =

1

2
𝑔30(… ) +

1

2
𝑔31(… ) +

1

2
𝑔32(… ) +

1

2
𝑔33(… )         

Г23
3 =

1

2
𝑔33(… ) =

1

2
𝑔33 (

𝜕𝑔33

𝜕𝑥2 +
𝜕𝑔23

𝜕𝑥3 −
𝜕𝑔23

𝜕𝑥3 )      

Г23
3 =

1

2
𝑔33 (

𝜕𝑔33

𝜕𝑥2 ) = −
1

2
𝑟−2𝑠𝑖𝑛−2 (

𝜕−𝑟2𝑠𝑖𝑛2

𝜕
) =

1

2
𝑠𝑖𝑛−2 2𝑠𝑖𝑛 cos =

cos

𝑠𝑖𝑛
= 𝑡𝑔  

Г23
3 = 𝑡𝑔 . 

---------------------------------------------------------------- 

 

 Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г00
0 =

1

2
𝑔00(… ) +

1

2
𝑔01(… ) +

1

2
𝑔02(… ) +

1

2
𝑔03(… )         

Г00
0 =

1

2
𝑔00(… ) =

1

2
𝑔00 (

𝜕𝑔00

𝜕𝑥0 +
𝜕𝑔00

𝜕𝑥0 −
𝜕𝑔00

𝜕𝑥0 )      

Г00
0 =

1

2
𝑔00 (

𝜕𝑔00

𝜕𝑥0
) =

1

2
𝑒  (

𝜕𝑒−

𝜕𝑐𝑡
) = −

�̇�

2
 

Г00
0 = −

�̇�

2
 . 

---------------------------------------------------------------- 
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---------------------------------------------------------------- 
 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г10
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г10
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔10

𝜕𝑥1 +
𝜕𝑔11

𝜕𝑥0 −
𝜕𝑔00

𝜕𝑥1 )      

Г10
1 =

1

2
𝑔11 (

𝜕𝑔11

𝜕𝑥0
) =

1

2
− 𝑒𝜆  (

𝜕 − 𝑒−𝜆

𝜕𝑐𝑡
) = −

�̇�

2
 

Г10
1 = −

�̇�

2
 . 

---------------------------------------------------------------- 

 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г33
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г33
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔13

𝜕𝑥3 +
𝜕𝑔31

𝜕𝑥3 −
𝜕𝑔33

𝜕𝑥1 )      

Г33
1 =

1

2
𝑔11 (−

𝜕𝑔33

𝜕𝑥1
) =

1

2
− 𝑒𝜆  (−

𝜕 − 𝑟2𝑠𝑖𝑛2

𝜕𝑟
) = −𝑟𝑒𝜆𝑠𝑖𝑛2 

Г33
1 = −𝑟𝑒𝜆𝑠𝑖𝑛2. 

 

--------------------------------------------------------------- 

 

 

Let's collect the calculation results: 

 

Г11
1 = −

𝜆′

2
,                Г10

0 = −
𝜈′

2
,                      Г33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,                                                                             (A.1.2)           

Г11
0 = −

�̇�

2
𝑒𝜈−𝜆,         Г22

1 = −𝑟𝑒𝜆,                      Г00
1 = −

𝜈′

2
𝑒𝜆−𝜈 ,   

Г12
2 = Г13

3 =
1

𝑟
 ,          Г23

3 = 𝑐𝑡𝑔𝜃,                    Г00
0 = −

�̇�

2
 , 

Г10
1 = −

�̇�

2
 ,                 Г33

1 = −𝑟𝑒𝜆𝑠𝑖𝑛2.  

 

 

Similar Christoffel symbols are obtained by using the metric tensor components from the original inverted metric (44) with 

the opposite signature 

 

ds*
(+)2 = – е –с2dt2+ е – dr2+ r2(d 2 + sin2 d2) with signature (– + + +).                                                                   

 

Let's check with several examples that the remaining Christoffel symbols are equal to zero: 

 

 

------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г31
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г31
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔13

𝜕𝑥3 +
𝜕𝑔31

𝜕𝑥3 −
𝜕𝑔31

𝜕𝑥1 ) = 0      

Г31
1 = 0. 

------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝜇
) 

Г32
1 =

1

2
𝑔10(… ) +

1

2
𝑔11(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г32
1 =

1

2
𝑔11(… ) =

1

2
𝑔11 (

𝜕𝑔12

𝜕𝑥3 +
𝜕𝑔31

𝜕𝑥2 −
𝜕𝑔33

𝜕𝑥1 ) = 0      

Г32
1 = 0. 

------------------------------------------------------------- 
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---------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖 +
𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 )  

Г32
0 =

1

2
𝑔00(… ) +

1

2
𝑔01(… ) +

1

2
𝑔12(… ) +

1

2
𝑔13(… )         

Г32
1 =

1

2
𝑔00(… ) =

1

2
𝑔00 (

𝜕𝑔02

𝜕𝑥3 +
𝜕𝑔30

𝜕𝑥3 −
𝜕𝑔32

𝜕𝑥0 ) = 0      

Г32
1 = 0. 

-------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г31
3 =

1

2
𝑔30(… ) +

1

2
𝑔31(… ) +

1

2
𝑔32(… ) +

1

2
𝑔33(… )         

Г31
3 =

1

2
𝑔33(… ) =

1

2
𝑔33 (

𝜕𝑔31

𝜕𝑥3 +
𝜕𝑔33

𝜕𝑥1 −
𝜕𝑔31

𝜕𝑥3 ) = 0      

Г32
1 = 0. 

-------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г31
2 =

1

2
𝑔20(… ) +

1

2
𝑔21(… ) +

1

2
𝑔22(… ) +

1

2
𝑔23(… )         

Г31
2 =

1

2
𝑔22(… ) =

1

2
𝑔22 (

𝜕𝑔21

𝜕𝑥3 +
𝜕𝑔32

𝜕𝑥1 −
𝜕𝑔31

𝜕𝑥2 ) = 0      

Г31
2 = 0. 

--------------------------------------------------------------- 

Г𝑖𝑘
𝑝

=
1

2
𝑔𝑝𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝜇 ) 

Г20
3 =

1

2
𝑔30(… ) +

1

2
𝑔31(… ) +

1

2
𝑔32(… ) +

1

2
𝑔33(… )         

Г20
3 =

1

2
𝑔33(… ) =

1

2
𝑔33 (

𝜕𝑔30

𝜕𝑥3 +
𝜕𝑔23

𝜕𝑥0 −
𝜕𝑔20

𝜕𝑥3 ) = 0      

Г20
3 = 0. 

---------------------------------------------------------------- 

… 

 

Appendix 2 

A.2 Einstein’s system of vacuum equations without the -term  

       in the case of an inverted metric 

 

Let’s write the right-hand sides of Einstein’s first vacuum equation (1) 

 

𝑅𝑖𝑘 =
𝜕Г𝑖𝑘

𝑙

𝜕𝑥𝑙 −
𝜕Г𝑖𝑙

𝑙

𝜕𝑥𝑘 + Г𝑖𝑘
𝑙 Г𝑙𝑚

𝑚 − Г𝑖𝑙
𝑚Г𝑚𝑘

𝑙 = 0,                                                                                                                 (A.2.1)     

 

for the stationary case, i.e. when all components of the inverted metric tensor (43) do not depend on time t. 

In this case, ν and λ do not depend on time, therefore from the Christoffel symbols (A.1.2) remain 
 

Г11
1 = −

𝜆′

2
 ,         Г10

0 = −
𝜈′

2
 ,      Г33

2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,      Г22
1 = −𝑟𝑒𝜆,     Г00

1 = −
𝜈′

2
𝑒𝜆−𝜈,                                        (A.2.2)     

Г12
2 = Г13

3 =
1

𝑟
 ,    Г23

3 = 𝑐𝑡𝑔𝜃,     Г33
1 = −𝑟𝑒𝜆𝑠𝑖𝑛2 .  

 

Substituting the Christoffel symbols (A.2.2) into equations (A.2.1), as a result for the stationary case we obtain 
 

𝑅11 = 𝑅00 =
𝜕Г00

1

𝜕𝑥1 + Г00
1 Г11

1 + Г00
1 Г12

2 + Г00
1 Г13

3 − Г01
0 Г00

1 = 0,  

 

𝑅11 = 𝑅00 =
𝜕

𝜕𝑥1 (−
𝑣′

2
𝑒𝜆−𝑣) + (−

𝑣′

2
𝑒𝜆−𝑣) [−

𝜆′

2
+

1

𝑟
+

1

𝑟
+

𝑣′

2
] = 0,  

 

𝑅11 = 𝑅00 = −
𝑣′′

2
𝑒𝜆−𝑣 −

𝑣′

2
𝑒𝜆−𝑣(𝜆′ − 𝑣′) + (−

𝑣′

2
𝑒𝜆−𝑣) [𝑣′ +

2

𝑟
] = 0,  
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𝑅11 = 𝑅00 = −𝑒𝜆−𝑣 [
𝑣′′

2
+

𝑣′

2
(𝜆′ − 𝑣′) +

𝑣′2

2
+

𝑣′

𝑟
] = 0,  

 

𝑅11 = 𝑅00 = 𝑣′′ − 2𝑣′2 + 𝑣′2 +
2𝑣′

𝑟
= 0,  

 

𝑅11 = 𝑅00 = 𝑣′′ − 𝑣′2 +
2𝑣′

𝑟
= 0.                                                                                                                                 (A.2.3)     

 

-----------------------------------------------------------------------------------------------------------  

 

𝑅22 =
𝜕Γ22

1

𝜕𝑥1 −
𝜕Γ23

3

𝜕𝑥2 + Γ22
1 Γ10

0 + Γ22
1 Γ11

1 + Γ22
1 Γ12

2 + Γ22
1 Γ13

3 − Γ21
2 Γ22

1 − Γ22
1 Γ12

2 − Γ23
3 Γ32

3 = 0,  

 

𝑅22 =
𝜕

𝜕𝑥1 (−𝑟𝑒𝜆) −
𝜕

𝜕𝑥2
(cot 𝜃) + (−𝑟𝑒𝜆) [−

𝑣′

2
−

𝜆′

2
+

1

𝑟
+

1

𝑟
−

1

𝑟
−

1

𝑟
] − cot2 𝜃 = 0,  

 

𝑅22 = −𝑒𝜆 − 𝑟𝑒𝜆𝜆′ + csc2 𝜃 − cot2 𝜃 = 0,    
 

𝑅22 = −𝑒𝜆(1 + 𝑟𝜆′) + 1 = 0,             
 

𝑅22 = 𝑒𝜆 (
𝜆′

𝑟
+

1

𝑟2) −
1

𝑟2 = 0.                                                                                                                                      (A.2.4)      

 

-----------------------------------------------------------------------------------------------------------  

𝑅33 =
𝜕Γ33

1

𝜕𝑥1
+

𝜕Γ33
2

𝜕𝑥2
+ Γ33

1 Γ10
0 + Γ33

1 Γ11
1 + Γ33

1 Γ12
2 − Γ33

1 Γ13
3 − Γ32

3 Γ33
2 = 0, 

 

𝑅33 =
𝜕

𝜕𝑥1 (−𝑟 sin2 𝜃 𝑒𝜆) +
𝜕

𝜕𝑥2
(− sin 𝜃 cos 𝜃) + (−𝑟 sin2 𝜃 𝑒𝜆) [−

𝑣′

2
−

𝜆′

2
+

1

𝑟
−

1

𝑟
]  − cot 𝜃 (− sin 𝜃 cos 𝜃) = 0,  

 

𝑅33 = − sin2 𝜃 𝑒𝜆 − 𝑟 sin2 𝜃 𝑒𝜆𝜆′ − cos2 𝜃 + sin2 𝜃 + cos2 𝜃 = 0, 
 

𝑅33 = sin2 𝜃 [𝑒𝜆(−1 − 𝑟𝜆′) + 1] = 0,  

 

𝑅33 = 𝑒𝜆(𝑣′𝑟 − 1) + 1, 
 

𝑅33 = 𝑒𝜆 (
𝑣′

𝑟
−

1

𝑟2) +
1

𝑟2 = 0.                                                                                                                                     (A.2.5)     

 


