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ABSTRACT

Edge machine learning (Edge ML) offers solutions for deploying ML models di-
rectly on resource-constrained edge devices. However, ensuring adversarial ro-
bustness remains a challenge. This paper presents an accessible approach for ad-
versarial robust distillation (ARD) based in the limited confines of Google Colab.
Our goal is enabling fast yet robust knowledge transfer to student models suited
for edge devices. Extensive experiments are conducted distilling from a WideRes-
Net34 teacher to MobileNetV2 student using limited computational resources.
The efficacy of ARD is evaluated under settings with only 1 GPU (T4 GPU) and
13GB RAM for up to 6 hours a day.
Notably, competitive adversarial robustness is attained using very few gradient at-
tack steps. This improves training efficiency crucial for edge ML. Appropriately
balancing hyperparameters also allows robust accuracy over 50% using just 1 at-
tack step. Overall, the presented approach advances the feasibility of performing
robust distillation effectively even with accessibility constraints.
The democratized and reproducible method on Google Colab serves as a launch-
pad for those aiming to reap the advantages of edge intelligence. By sharing mod-
els protected against adversarial threats, this work propels broader adoption of
trustworthy ML at society’s technological edges.

1 INTRODUCTION

Key Words Adversarial Robustness, Edge AI, Edge Learning, Robust Distillation, Adversarial Ro-
bust Distillation, Trustworthy Machine Learning, Distillation on IOT devices

Edge Machine Learning (Edge ML) has emerged as a transformative paradigm in the field of ma-
chine learning, offering solutions tailored for scenarios where computational resources are con-
strained, and (near) real-time processing is crucial. Unlike traditional cloud-centric approaches,
Edge ML involves deploying machine learning models directly on edge devices, bringing intelli-
gence closer to the data source. This paradigm shift is driven by the growing demand for efficient
and decentralized processing in applications ranging from Internet of Things (IoT) devices to edge
servers.

The main research question is whether can we reduce the attack steps and get same results as more
steps. When we are talking about small companies, daily usages of AI and so on, we should notice
that there is not a huge amount of resources. The computational resources, and time, are limited, so
it’s important to use AI/ML models on Edge devices. In this workshop paper, we introduce a setup
in which we can perform adversarial robust distillation under very limited GPU, RAM and Memory
resources, and to ensure doing that, we use Google Colab as the running environment.

1.1 KEY CHARACTERISTICS OF EDGE MACHINE LEARNING

The key characteristics of an edge machine learning protocol are as follows:
∗Mohammad Javad Maheronnaghsh
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• Limited Computational Resources
Edge devices often possess constrained computational resources, including processing
power, memory, and energy. Edge ML algorithms are designed to operate efficiently within
these limitations, enabling on-device model inference without heavy reliance on cloud ser-
vices. 4

• Real-time Processing
Edge ML emphasizes low-latency and (near) real-time processing, making it suitable for
applications where immediate decision-making is critical 5. This is particularly beneficial
in scenarios such as autonomous vehicles, smart surveillance, and healthcare monitoring.

• Privacy and Security
Processing data locally on edge devices enhances privacy by reducing the need for trans-
mitting sensitive information to centralized servers. Edge ML models are developed with
a focus on maintaining data security and privacy 6, aligning with regulatory requirements
and user expectations.

• Diversity of Edge Devices
Edge ML caters to a diverse range of devices, including IoT sensors, smartphones, and
edge servers. Adaptable algorithms and model architectures are essential to address the
heterogeneity of edge computing environments 7.

2 RELATED WORKS

The advent of machine learning applications at the edge, particularly in resource-constrained en-
vironments, has spurred research into techniques to enhance the performance and robustness of
models deployed in such settings. In ”Generative Adversarial Super-Resolution at the edge with
knowledge distillation” by the Engineering Applications of Artificial Intelligence, a novel approach
called EdgeSRGAN is introduced. This method leverages Generative Adversarial Networks (GANs)
to achieve real-time super-resolution, essential for tasks like robotic monitoring and teleoperation.
By optimizing model architecture and employing knowledge distillation, EdgeSRGAN achieves im-
pressive execution speeds on edge devices without compromising image quality. ?

In a similar vein, ”Boosting Accuracy and Robustness of Student Models via Adaptive Adversarial
Distillation” presented at CVPR 2023 addresses the vulnerability of student models to adversarial
attacks at the edge. Traditional methods like adversarial training struggle with compressed networks.
To tackle this challenge, Adaptive Adversarial Distillation (AdaAD) is proposed. AdaAD involves
the teacher model in the distillation process, adaptively guiding the student model towards improved
accuracy and robustness. Remarkably, AdaAD outperforms existing methods, as demonstrated by
the ResNet-18 model achieving top-tier performance in robustness benchmarks. 11

Furthermore, ”Improving Adversarial Robustness via Information Bottleneck Distillation” from the
37th Conference on Neural Information Processing Systems (NeurIPS 2023) delves into the infor-
mation bottleneck principle to enhance model robustness. This study introduces Information Bot-
tleneck Distillation (IBD), a novel distillation technique that capitalizes on insights from robust pre-
trained models. By optimizing information bottlenecks through soft-label distillation and adaptive
feature transfer, IBD significantly bolsters adversarial robustness. Extensive experiments showcase
the effectiveness of IBD against state-of-the-art attacks like PGD and AutoAttack, underlining its
potential for strengthening model defenses in real-world scenarios. 12

These three papers collectively highlight the importance of advancing machine learning techniques
tailored for edge deployment, emphasizing the need for efficient, robust, and lightweight models
capable of withstanding adversarial pressures.

We gain information from other 4 papers: 13; 1; 2; 3. The landscape of Edge Machine Learning
has seen significant advancements, with researchers addressing challenges and proposing innovative
solutions. The following references highlight key contributions in the realm of Edge ML, covering
aspects such as model optimization, federated learning, and adversarial robustness:
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2.1 MODEL OPTIMIZATION FOR EDGE DEVICES

Efforts in model optimization aim to create lightweight architectures suitable for deployment on
resource-constrained edge devices. Techniques such as quantization, pruning, and knowledge dis-
tillation are explored to achieve a balance between model accuracy and computational efficiency
8.

2.2 FEDERATED LEARNING IN EDGE ENVIRONMENTS

Federated Learning has gained traction as a decentralized training approach, where models are
trained collaboratively across edge devices without exchanging raw data. This mitigates privacy
concerns and aligns with the distributed nature of edge computing 9.

2.3 ADVERSARIAL ROBUSTNESS IN EDGE ML

As edge devices are susceptible to adversarial attacks, ensuring the robustness of machine learning
models is crucial. Techniques like Adversarial Training and Robust Distillation aim to enhance the
resilience of models against adversarial perturbations, making them well-suited for deployment in
security-critical edge applications.

3 METHODOLOGY

3.1 PROBLEM SETUP

LKD(θ) = EX∼D

[
αKL

(
St
θ(X), T t(X)

)
+ (1− α)ℓ

(
Sθ(X), y

)]
(1)

Adversarial robust distillation aims to train a student neural network Sθ with parameters θ that is
robust to adversarial attacks by distilling knowledge from a teacher network T that has been made
robust through adversarial training. The goal is to minimize the loss function LKD(θ) which is a
weighted combination of the knowledge distillation loss KL(Sθt(X), T t(X)) between the student
and teacher outputs and the standard cross-entropy loss ℓ(Sθ(X), y) between the student output and
true label y. Here, X is an input sampled from data distribution D, t is a temperature parameter, and
α balances the two loss terms. The knowledge distillation loss encourages the student to mimic the
teacher output while the cross-entropy loss trains the student to predict the correct labels.

Adversarial training minimizes the loss Lθ(X + δ, y) where δ is a small adversarial perturbation
constrained by norm |δ|∞ < ϵ. It encourages the model to be robust within an ϵ-ball around data
points. Combining distillation and adversarial training loss functions allows transferring robustness
from a teacher to student network.

3.2 EXPERIMENTAL SETUP

Our experiments involve the distillation process from a WideResNet34 (WR34) teacher model to a
MobileNetV2 (MN2) student model. The key parameters include the number of epochs, learning
rate, adversarial attack settings (e.g., attack steps), and the architecture of the models involved.

4 ALGORITHM

Adversarial Robust Distillation (ARD) is a clever technique for training machine learning models
to be both smart and resilient. In a nutshell, it pairs a less savvy student model with a smart and
robust teacher. During training, the student learns not only by mimicking the teacher’s predictions
but also by toughening up against tricky inputs, known as adversarial examples. These tricky inputs
are designed to deceive the model, but ARD helps the student become more resistant to such at-
tempts. The algorithm cleverly combines two learning aspects: distillation, where the student gains
knowledge from the teacher, and adversarial training, where it builds a defense mechanism against
tricky inputs. In the end, the student model becomes not just intelligent like the teacher but also
street-smart, able to handle attempts to confuse or mislead it with deceptive inputs.
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Adversarial Robust Distillation (ARD) employs a combination of carefully designed loss functions
and optimization strategies to refine the student model. In the distillation process, the algorithm
calculates the distillation loss by comparing the student’s predictions to those of the teacher, essen-
tially encouraging the student to replicate the teacher’s reasoning. Simultaneously, the adversarial
training phase introduces an adversarial loss by evaluating how well the student handles deceptive
inputs, emphasizing robustness. The total loss, a weighted sum of both distillation and adversarial
losses, serves as the optimization objective. Through iterations, the algorithm fine-tunes the student
model’s parameters to minimize this total loss, striking a balance between accurate predictions and
resilience to adversarial challenges. The careful interplay of distillation and adversarial training,
coupled with meticulous optimization, results in a student model that not only mirrors the teacher’s
proficiency but also exhibits enhanced resistance to potential manipulations, making it a more reli-
able and secure predictor in real-world scenarios.

Here you can see the training algorithm:

Algorithm 1 Adversarial Robust Distillation
1: Input: Training dataset D = {(xi, yi)}Ni=1, teacher model T , student model S, hyperparameters

λ, ϵ
2: Initialize: S with random parameters
3: for each iteration do
4: Sample a mini-batch {(xi, yi)}Bi=1 from D
5: Compute the logits T (xi) from T
6: x̃i = xi + FGSM(xi, T )
7: Compute logits S(xi) from S
8: Ldistill = CrossEntropy(S(xi), T (xi))
9: Compute logits S(x̃i) from S

10: Ladv = CrossEntropy(S(x̃i), yi)
11: Ltotal = Ldistill + λ · Ladv
12: Update the S parameters (by minimizing Ltotal)
13: end for

5 EXPERIMENTS & RESULTS

5.1 ABBREVIATIONS

Here are the abbreviations used in the rest of this part:

Abbreviation Main Term
Epo epoch number

MTL Mean Train Loss after epoch 1
Nat Natural Accuracy after epoch 1
R Robust Accuracy after epoch 1

MTL’ Mean Train Loss after final epoch
Nat’ Natural Accuracy after final epoch
R’ Robust Accuracy after final epoch
AS Attack Step
LR Learning Rate

Table 1: Abbreviations

5.2 RESULTS

Table 2 summarizes the experimental results, showcasing variations in Mean Train Loss (MTL),
Natural Accuracy (Nat), and Robust Accuracy under different configurations. The experiments ex-
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Table 2: Experiment Results: You can find more about the experiment results here. α and ϵ are
1.0 and 8.0/255 respectively. The teacher and student model are WideResNet34 and MobileNetV2
respectively.

Epo AS StepSize LR MTL Nat R MTL’ Nat’ R’
10 10 2.0 / 255 0.05 0.181076 33.56 17.41 0.080974 55.79 29.94
10 10 2.0 / 255 0.25 0.146695 41.3 24.86 0.061529 67.02 38.23
10 10 2.0 / 255 0.45 0.146934 43.64 23.95 0.068444 63.5 34.38
10 10 2.0 / 255 0.65 0.144871 41.3 24.8 0.074837 60.4 30.76
10 10 2.0 / 255 0.85 0.143052 43.43 24.23 0.082100 56.52 31.29
20 5 2.0 / 255 0.05 0.134497 44.12 28.17 0.035455 74.67 46.92
20 5 2.0 / 255 0.25 0.128324 47.52 27.74 0.037097 74.36 46.26
20 5 2.0 / 255 0.45 0.128422 45.65 27.73 0.044314 70.5 44.77
20 5 2.0 / 255 0.65 0.131341 44.85 27.16 0.050490 66.99 41.47
20 5 2.0 / 255 0.85 0.148691 38.22 25.41 0.055780 67.57 41.42
10 10 8.0 / 255 0.05 0.143248 42.72 24.37 0.057875 66.28 37.05
10 10 8.0 / 255 0.25 0.133477 45.38 27.21 0.052860 69.86 39.3
10 10 8.0 / 255 0.45 0.136056 45.13 26.14 0.057719 67.37 38.48
10 10 8.0 / 255 0.65 0.137116 44.78 25.61 0.062608 65.59 37.85
10 10 8.0 / 255 0.85 0.151821 41.04 23.91 0.067955 64.07 34.03
10 10 10.0 / 255 0.05 0.138305 43.5 25.49 0.057344 66.75 36.92
10 10 10.0 / 255 0.25 0.131707 48.04 27.24 0.051897 69.43 39.76
10 10 10.0 / 255 0.45 0.132291 46.98 25.0 0.058111 67.81 39.13
10 10 10.0 / 255 0.65 0.139062 43.18 24.81 0.063288 64.58 36.03
10 10 10.0 / 255 0.85 0.146160 41.47 23.39 0.068344 61.31 35.03
70 1 8.0 / 255 0.05 0.124786 46.72 29.2 0.015586 81.16 58.17
60 1 8.0 / 255 0.25 0.118177 50.22 30.91 0.026345 78.19 54.09
70 1 8.0 / 255 0.45 0.123382 47.0 30.21 0.034833 75.4 49.63
65 1 8.0 / 255 0.65 0.123316 47.36 29.43 0.041720 70.23 46.54
70 1 8.0 / 255 0.85 0.127801 43.9 27.67 0.047669 67.89 44.7
30 1 10.0 / 255 0.05 0.128903 45.13 26.41 0.026308 77.0 51.39
30 1 10.0 / 255 0.25 0.121239 48.07 28.53 0.031888 75.85 49.13
30 1 10.0 / 255 0.45 0.124347 48.33 29.57 0.039394 69.62 44.6
30 1 10.0 / 255 0.65 0.124840 47.27 28.43 0.046567 69.87 43.78
30 1 10.0 / 255 0.85 0.137199 44.36 27.67 0.051715 68.12 42.79
25 2 4.0 / 255 0.05 0.127732 45.67 29.62 0.027432 76.52 51.09
25 2 4.0 / 255 0.25 0.121206 47.25 28.85 0.031048 76.22 52.44
40 2 4.0 / 255 0.45 0.125599 47.23 29.58 0.036818 72.8 49.96
20 2 4.0 / 255 0.65 0.123027 46.14 28.81 0.045312 71.74 45.26
25 2 4.0 / 255 0.85 0.124504 42.1 27.37 0.050439 68.81 45.02

plore the impact of varying parameters such as epochs, learning rates, and attack settings. Notably,
configurations achieving better Robust Accuracy are highlighted for each experimental setup. 1

5.3 PERFORMANCE METRICS

To evaluate the effectiveness of our Adversarial Robust Distillation (ARD) process, we employ
two crucial metrics: Natural Accuracy and Robust Accuracy. The variations in these metrics across
different experimental setups provide insights into the trade-offs and benefits associated with specific
configurations.

5.4 APPLICATIONS

Our proposed methodology, executed within the accessible resources of Google Colab, opens av-
enues for widespread adoption. Users globally can reproduce our results, benefiting from fast and
free distillation in machine learning. This democratization of distillation processes enables broader
accessibility to advanced machine learning techniques.

1The checkpoint of WRN34 trained by TRADES on CIFAR10 could be found HERE.
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5.5 EFFICACY OF LOW ATTACK STEPS

Several experimental configurations in Table 2 explore adversarial robust distillation using just 1
attack step. These low step settings aim to improve training efficiency for resource-constrained
edge devices.

Notable low attack step outcomes include:

• With 1 step, 70 epochs, α=1.0, ϵ=8/255, step size=8/255 and LR=0.05, robust accuracy
reaches 58.17%. This is the overall best robust accuracy achieved.

• Using 1 step, 65 epochs, α=1.0, ϵ=8/255, step size=8/255 and LR=0.65, robust accuracy of
46.54% is obtained.

• Settings of 30 epochs, 1 step, α=1.0, ϵ=8/255, step size=10/255 and LR=0.05 attain 51.39%
robust accuracy. This significantly outperforms the 38.23% robustness scored using 10
steps and 25 epochs.

The above examples demonstrate that with appropriate tuning of epochs and learning rates, the
low 1-step attack configurations can achieve adversarial robustness on par or even better than the
longer 10-step attack settings.

Crucially, the low attack step models require fewer gradient computations per epoch. This directly
translates to faster training times, aligning with the goals of efficient edge ML deployment.

In summary, the results indicate that by balancing hyperparameters, competitive adversarial robust-
ness can be realized using very few attack steps. This finding opens avenues for performing robust
distillation efficiently even on resource-constrained edge devices.

To comprehensively assess the performance of our Adversarial Robust Distillation (ARD) process,
we rely on two key metrics: Natural Accuracy and Robust Accuracy. These metrics serve as critical
indicators of the model’s proficiency under standard and adversarial conditions, respectively.

• Natural Accuracy Changes
Natural Accuracy refers to the model’s accuracy on clean, unaltered data. In our experi-
ments, we observe variations in Natural Accuracy across different configurations. Note-
worthy trends include improvements or trade-offs in Natural Accuracy based on the chosen
parameters, such as learning rates and attack settings.

• Robust Accuracy Changes
Robust Accuracy, on the other hand, measures the model’s resilience against adversarial
attacks. The variations in Robust Accuracy provide insights into the model’s ability to
maintain performance in the presence of perturbations. We specifically highlight config-
urations that exhibit superior Robust Accuracy, showcasing the effectiveness of our ARD
approach in enhancing the model’s adversarial robustness.

6 APPLICATIONS

As we introduced before, everyone all around the world, has free access to Google Colab resources
that we used for approximately 4-6 hours a day, so anyone can use these settings to reproduce our
results and take advantage of Fast and Free Distillation in Machine Learning.

The evaluation metrics have direct implications for practical applications of machine learning mod-
els, especially in edge computing scenarios. The observed changes in Natural and Robust Accuracy
offer valuable information for selecting configurations that strike a balance between standard per-
formance and robustness against adversarial threats.

As demonstrated by our experiments, the ARD process enables the deployment of models with
enhanced robustness on resource-constrained edge devices. This has significant implications for
real-world applications where the availability of computational resources is limited.
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7 CONCLUSION

In conclusion, by adopting the settings outlined in Table 2, similar results to state-of-the-art bench-
marks can be achieved. The presented methodology offers a practical solution for performing adver-
sarial robust distillation under resource constraints. As the experiments demonstrate, the approach
balances computational efficiency and model performance, making it suitable for edge AI applica-
tions.

8 FUTURE WORKS AND DISCUSSION

The potential for further exploration lies in varying parameters more extensively, conducting ex-
periments on different datasets, and expanding the scope of applications. Future research endeavors
could delve into optimizing the ARD process for diverse scenarios, thereby contributing to the evo-
lution of edge machine learning.

9 CODE ACCESS

For access to the experiments and results, please refer to our GitHub repository:
https://github.com/mjmaher987/Robustness—CISPA Any inquiries or discussions are welcomed by
contacting the authors.
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