An atypical case of round-off in Mathematica ${ }^{\circledR}$
 Marcello Colozzo

Abstract

A Mathematica round-off case generated by a real function of a real variable, not elementary expressible.

1 Introduction

In semiconductor physics, the calculation of the chemical potential $\mu(T)$ [1], as a function of the thermodynamic equilibrium temperature T, is fundamental. This quantity solves a transcendent functional equation

$$
\begin{equation*}
F(T, \mu)=0 \tag{1}
\end{equation*}
$$

which can be made algebraic with the change of variable $z=k_{B} T \ln \mu$, where k_{B} is the Boltzmann constant, and the new quantity z is the fugacity. So

$$
\begin{equation*}
G(T, z)=0 \tag{2}
\end{equation*}
$$

Despite its algebraic character, (2) cannot be solved in closed form; solving numerically with Mathematica [2] we obtain the graph in Figure 1. Violent oscillations can be rarefied but not damped, using the MaxRecursion instruction as shown in Figure 1, while in Figure 3 we have reduced the thermal range to $[0,10]$. From this last graph we see that the Mathematica kernel is unable to graph $\mu(T)$ for $T<2$. However, it seems to be

$$
\lim _{T \rightarrow 0} \mu(T)=0
$$

On the contrary, it is well known that the aforementioned limit is <0.

Figure 1: The curve in red is the solution obtained in a right neighborhood of $T=0$. The rapid swings are due to the Mathematica round-off.

Figure 2: Reduction of oscillations by placing MaxRecursion $->1$.

Figure 3: Trend for $T \in[0,10]$.

2 Change of variable. Setting the problem

Definendo $x=k_{B} T$ ed espressa in eV , dopo aver posto $f(x) \equiv z\left(\frac{x}{k_{B}}\right)$ con $k_{B}=8.62 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$, il nostro problema è:

Problem 1 Let $f(x)>0$ in $(0,+\infty)$ and such that

$$
\begin{equation*}
\alpha_{e} x^{3 / 2} f(x)+\frac{\lambda f(x)}{f(x)+e^{-\frac{a}{x}}}=\alpha_{h} x^{3 / 2} \frac{e^{-\frac{b}{x}}}{f(x)} \tag{3}
\end{equation*}
$$

where $b>a>0$, while $\lambda \geq 0$ is a free parameter. $\alpha_{e}, \alpha_{h}>0$ are expressed through Planck's reduced constant. Typical values: $\alpha_{e}=1096.24, \alpha_{h}=2013.92$.

Show:

1. For $x \rightarrow 0^{+}, f(x)$ is an infinitesimal of infinitely large order. Furthermore, $f \in C^{\infty}(0,+\infty), f \notin$ $C^{\omega}(0,+\infty)$, meaning that $f(x)$ is continuous together with the derivatives of high order, but is not analytic.
2. $\lim _{x \rightarrow 0^{+}} x \ln f(x)=-\frac{a+b}{2}$.
[Hint: for $0<x \ll 1$ neglect $x^{3 / 2} f(x)$]

Soluzione

Question 1
For $\lambda=0$ the (3) admits the only solution:

$$
\begin{equation*}
f(x)=\sqrt{\frac{\alpha_{h}}{\alpha_{e}}} e^{-\frac{b}{2 x}} \tag{4}
\end{equation*}
$$

which is manifestly an infinitesimal of infinitely large order for $x \rightarrow 0^{+}$:

$$
\lim _{x \rightarrow 0^{+}} x^{\alpha} f(x)=0, \quad \forall \alpha>0
$$

The same result is reached for the derivative $f^{(n)}(x)$. Extending these functions by continuity at the point $x=0$, we have that $f \in C^{\infty}$, however it is not analytic at $x=0$, since $f^{(n)}(0)=0, \forall n$. It follows that the Taylor expansion of $f(x)$ with initial point $\mathrm{x}=0$ returns the function identically zero, while in a right neighborhood of $x=0$ it is $f(x)=0$. Furthermore

$$
\begin{equation*}
g(x) \stackrel{\text { def }}{=} x \ln f(x)=-\frac{b}{2}+\frac{x}{2} \ln \left(\frac{\alpha_{h}}{\alpha_{e}}\right) \tag{5}
\end{equation*}
$$

which, unlike f, is class-based C^{ω}.
For $\lambda>0$ we observe that the (3) is a third degree equation in $f(x)$ that cannot be solved in closed form. For $0<x \ll 1$ its solutions behave like that of the quadratic equation in $f(x)$:

$$
\begin{equation*}
\frac{\lambda f(x)}{f(x)+e^{-\frac{a}{x}}}=\alpha_{h} x^{3 / 2} \frac{e^{-\frac{b}{x}}}{f(x)} \tag{6}
\end{equation*}
$$

Solving:

$$
\begin{equation*}
f_{ \pm}(x)=\frac{\alpha_{h}}{2 \lambda} x^{3 / 2} e^{-\frac{b}{x}}\left(1 \pm \sqrt{1+\frac{4 \lambda}{\alpha_{h}} \frac{e^{\frac{b-a}{x}}}{x^{3 / 2}}}\right) \tag{7}
\end{equation*}
$$

The problem (1) requires $f(x)>0$, so

$$
\begin{equation*}
f(x)=\frac{\alpha_{h}}{2 \lambda} x^{3 / 2} e^{-\frac{b}{x}}\left(1+\sqrt{1+\frac{4 \lambda}{\alpha_{h}} \frac{e^{\frac{b-a}{x}}}{x^{3 / 2}}}\right) \tag{8}
\end{equation*}
$$

For the calculation of $\lim _{x \rightarrow 0^{+}} f(x)$ we observe that

$$
\lim _{x \rightarrow 0^{+}} x^{3 / 2} e^{-\frac{b}{x}}=0, \quad \lim _{x \rightarrow 0^{+}} \frac{e^{\frac{b-a}{x}}}{x^{3 / 2}} \underset{b>a}{=}+\infty
$$

so that $\lim _{x \rightarrow 0^{+}} f(x)=0 \cdot \infty$. This indetermination can be removed by observing that in a right neighborhood of $x=0$ of arbitrarily small radius it succeeds $\frac{e^{\frac{b-a}{x}}}{x^{3 / 2}} \gg 1$ since this ratio diverges positively for $x \rightarrow 0^{+}$. From this it follows that in the radicand of (8) we can neglect 1 with respect to the other term:

$$
0<x \ll 1 \Longrightarrow f(x) \simeq \frac{\alpha_{h}}{2 \lambda} x^{3 / 2} e^{-\frac{b}{x}}\left(1+\frac{2 \lambda^{1 / 2}}{\alpha_{h}^{1 / 2}} \frac{e^{\frac{b-a}{2 x}}}{x^{3 / 4}}\right)
$$

In the same way $\frac{e^{\frac{b-a}{2 x}}}{x^{3 / 4}} \gg 1$ in the same right neighborhood as $x=0$. In this order of approximation we have:

$$
\begin{equation*}
0<x \ll 1 \Longrightarrow f(x) \simeq\left(\frac{\alpha_{h}}{\lambda}\right)^{1 / 2} x^{3 / 4} e^{-\frac{a+b}{2 x}} \tag{9}
\end{equation*}
$$

So

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} f(x)=\left(\frac{\alpha_{h}}{\lambda}\right)^{1 / 2} \lim _{x \rightarrow 0^{+}} x^{3 / 4} e^{-\frac{a+b}{2 x}}=0^{+} \tag{10}
\end{equation*}
$$

Since in a right neighborhood of $x=0$ with a small radius, the function $f(x)$ is expressed as the product of an infinitesimal of order $3 / 4$ by an infinitesimal of infinitely large order, we have that $f(x)$ is in turn an infinitesimal of infinitely large order. By calculating the derivatives of however high order, we arrive at the same result. We conclude that $f(x)$ is not analytic at $x=0$.

Question 2

From (9) it follows that in a right neighborhood of $x=0$ we have that $g(x)=x \ln f(x)$ is expressed as

$$
g(x) \simeq x \ln \left[\left(\frac{\alpha_{h}}{\lambda}\right)^{1 / 2} x^{3 / 4} e^{-\frac{a+b}{2 x}}\right]=\frac{3}{4}-\frac{a+b}{2}+\frac{x}{2} \ln \left(\frac{\alpha_{h}}{\lambda}\right)
$$

so

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} g(x)=-\frac{a+b}{2} \tag{11}
\end{equation*}
$$

To establish the possible presence of the round-off, we plot the graph of $g(x)$ in $\left[x_{\min }=k_{B} T_{\min }, x_{\max }=k_{B} T_{1}\right.$ where $T_{\min , \max }$ define the thermal range assigned in the section (1). It follows $x_{\min }=8.62$. $10^{-6} \mathrm{eV}, x_{\max }=0.086 \mathrm{eV}$.

In Figure 4 Let's plot the graph of the function $g(x)=x \ln f(x)$ with $f(x)$ obtained by numerically solving the equation (3) and compared with the solution for $x \ll 1$ i.e. $g(x)=x \ln f(x)$ with $f(x)$ given by (8). We see, therefore, that the change of variable $T \rightarrow x=k_{B} T$ dampened the round-off oscillations. However, the latter is still present because according to the Mathematica kernel is $\lim _{x \rightarrow 0^{+}} g(x)=0$ contrary to the (11).

3 Conclusions

The round-off is triggered by the parameter $\lambda>0$, since for $\lambda=0$ the solution $f(x)$ is elementary expressible. Values $\lambda>0$ destroy the possibility of analytically solving the (3) and the corresponding solution is not elementary expressible.

Figure 4: The curve in red is the graph of $g(x)=x \ln f(x)$ where the function $f(x)$ is given by (8). The curve in blue is the graph of $\mathrm{g}(\mathrm{x})=\mathrm{x} \ln \mathrm{f}(\mathrm{x})$ with $f(x)$ solution of the (3).

References

[1] Kittel C. Kroemer H. Termodinamica statistica.
[2] Wolfram S. An Elementary Introduction to the Wolfram Language.
[3] Wagon S. Mathematica in Action. Springer

