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I. INTRODUCTION

It is commonly believed that there exists no nonlinear-
ity in Newton’s theory of gravitation (Newtonian field
equation, Newton’s second law of gravitation)1–6. It is
because explicitly Newton’s theory of gravitation is writ-
ten in a linear equation. Related to the general theory
of relativity, Newton’s theory of gravitation is the weak-
field limit of Einstein’s non-linear theory of gravitation.
On the other side, sound is a branch of mechanics (i.e.
fluid mechanics), and so it is to be understood in terms
of Newton’s law7, especially Newton’s second law. If we
interpret the acceleration in Newton’s second law as the
gravitational field then we obtain Newton’s second law of
gravitation, a linear equation. So, how could there exist
a nonlinearity in a sound wave?

Inspired by the works of Ranada8,9, we assume that
the curvature tensor (the set of the solutions of Einstein
field equation) in an empty space-time consists of sub-
set fields, scalar fields. We call these subset fields subset
curvature. In the case of empty space-time or weak field,
the curvature tensor satisfies a linear subset curvature
equation, but subset curvature satisfy linear and non-
linear subset curvature equations. It means that, in the
case of empty space-time or weak field, a non-linear sub-
set curvature theory reduces to a linear subset curvature
theory, in this case, it can be Newton’s linear theory of
gravitation.

Subset curvature are locally equal to the curvature ten-
sor i.e. the curvature tensor can be obtained by patch-
ing together subset curvature (except in a zero-measure
set) but globally different. The difference between the
subset curvature and the curvature tensor in an empty
space-time or weak field is global instead of local since the
subset curvature obey the topological quantum condition
but the curvature tensor does not.

In this article, we propose that the weak field sound
wave derived from Newton’s second law of gravitation
in (2+1)-dimensional empty space-time could have hid-
den nonlinearity. What we mean by the weak field in
sound wave is the weak pressure. This nonlinearity could
exist because Newton’s theory of gravitation in (2+1)-
dimensional empty space-time is the weak-field limit of a
non-linear subset curvature theory in (2+1)-dimensional

space-time. To the best of our knowledge7,10,11, the for-
mulation of hidden nonlinearity in the weak field sound
wave in (2+1)-dimensional space-time has not been done
yet.

The writing structure of this article is as follows. In
Sect. II, we discuss in brief the sound wave and its rela-
tion with Newton’s second law. In Sect. III, we discuss
the Newtonian limit. In Sect. IV, the weak-field limit of
gravitation is discussed and a time-time component of the
Ricci curvature tensor is derived. In Sect. V, we discuss
subset fields property and maps S3 → S2. In Sect. VI,
in analogy to Hopf map, we define a subset curvature. In
Sect. VII, we formulate non-linear and linearized Ricci
theories using subset curvature. In Sect.VIII, we discuss
potential and Clebsch variables. In Sect. IX, hidden
nonlinearity in Newton’s second law of gravitation is for-
mulated. In Sect. X, we formulate hidden nonlinearity
in weak field sound wave. Discussion and conclusion are
given in Sect. XI.

II. SOUND WAVE AND NEWTON’S SECOND LAW

Sound is a form of energy produced by vibrations of
medium molecules12. The vibrational energy from a
sound source causes pressure disturbances from the equi-
librium state of the medium. This perturbance causes
the small changes to the density and the pressure. Sound
wave (the propagation of a sound) is a longitudinal me-
chanical wave11. A wave could be defined roughly as
the physical disturbance produced at one point of space,
propagated through space, and felt later on at another
point10. In the case of sound wave, the disturbance could
be pressure variations in the gas10,11. So, the propagat-
ing disturbance in sound wave is the propagating pressure
variations. Pressure can be related to the force and the
acceleration where the acceleration can be replaced by
the gravitational acceleration (the gravitational field).

Let us consider the sound wave resulting from the pres-
sure variations in the gas10,11. Imagine a piston at one
end of a long tube filled with a compressible medium
(fluid). Assume that the fluid is a continuous medium
and ignore for the time being the fact that it is made
up of molecules that are in continual random motion.



Also, assume that we have a uniform fluid pressure and
uniform density in its interior. If the piston oscillates
back and forth, a continuous train of compressions and
rarefactions will travel along the tube11. We call this lon-
gitudinal wave as a pulse, compressional zone, traveling
at speed v along the tube11.

Under the static condition or the equilibrium state of
the medium, the particle velocity, ~v, constant density,
ρ, and the pressure, p(~x, t), is ~v = 0, ρ = ρ0, p = p0,
where ρ0 is the static air density and p0 is the static air
pressure. The vibrational energy from a source of sound
causes pressure disturbances from the equilibrium state
of the medium. This perturbance causes small changes
to the density and the pressure, ρ = ρ0+∆ρ, p = p0+∆p,
where ∆ρ� ρ and ∆p� p.

Let us apply Newton’s second law to the fluid ele-
ment while the perturbation is entering the compres-
sional zone. The resultant force has magnitude11

~F = (p0 + ∆p) ~A− p0 ~A = ∆p ~A (1)

where ∆p is a different of pressure, ~A is the cross-
sectional area of the tube.

In the case of a small difference of pressure, we can
replace ∆p with dp then eq.(1) can be written as

~F = ~A dp (2)

The relation between this resultant force and the equa-
tion of motion of the volume element can be written as10

~A dp = −(ρ0 ~A dx)
∂2ξ

∂t2
(3)

where ξ(~x, t) is the displacement. The physical meaning
of eq.(3) is that the gas at the left of our volume element
pushes to the right with a force pA and the gas at the
right pushes to the left with a force p0A. By rearranging
terms, eq.(3) can be written as

∂p

∂x
= −ρ0

∂2ξ

∂t2
(4)

Without derivation, we write the wave equation for de-
scribing the propagation of a sound in (2+1)-dimensional
space-time as10

∂2p

∂t2
= c2s

(
∂2p

∂x2
+
∂2p

∂y2

)
(5)

where cs is the speed of sound in the medium.

III. THE NEWTONIAN LIMIT

In the general theory of relativity, the motion of test
bodies in (3+1)-dimensional curved space-time is gov-
erned by the geodesic equation which can be written as1,2

d2xα

dτ2
+
∑
µ,ν

Γαµν
dxµ

dτ

dxν

dτ
= 0 (6)

where xα(τ) is the world line (representing the tra-
jectory) of the particle in global inertial coordinates,
α, µ, ν = 0, 1, 2, 3, Γαµν is the Christoffel symbols, and τ
is the proper time. We consider inertial coordinates here
to refer to frames of reference that are not accelerating.
They are subject to a weak gravitational field only, allow-
ing for a flat space-time approximation. Global means
that these inertial coordinates cover the entire space-
time.

In the Newtonian limit, we treat that the motion of a
body is much slower than the speed of light. It has the
consequence that the proper time may be approximated
by the coordinate time, t. So, for the time-time compo-
nents, µ, ν = t, we may approximate dxµ/dτ , dxν/dτ , in
the second term of eq.(6) as (1, 0, 0, 0). It means that
the space-space components are vanish. Thus, eq.(6)
becomes2

d2xα

dt2
= −Γαtt (7)

We have for the space components, α = 1, 2, 31,2

Γαtt =
∂φ

∂xα
(8)

i.e. the Christoffel symbol, Γαtt, is related to the gradient
of the gravitational (scalar) potential, φ. Here, again, due
to the motion of a body being much slower than the speed
of light, the time derivatives of φ have been neglected.

In the case of (1+1)-dimensional space-time, by sub-
stituting eq.(8) into (7), the motion of a body is governed
by the equation2

~a = −~∇φ (9)

where ~∇ is the gradient operator for 1-dimensional space
and

~a =
d2~x

dt2
(10)

is the acceleration of a body relative to global inertial
coordinates of flat metric2, the gravitational field (grav-
itational acceleration).

We see from eq.(9), in Newton’s point of view, test
bodies are in motion with acceleration or gravitational
field. It means that there exists the gravitational forces
act upon test bodies. The gravitational forces cause test
bodies to orbit on ”a curved line” in a flat space-time.
On the other side, roughly speaking, we could say that
eq.(6) shows the trajectories of test bodies following the
geodesic ”straight line” in the curved space-time. These
points of view are the important difference between Ein-
stein’s general theory of relativity (6) and its Newtonian
limit (9).

By using eq.(9), we can write Newton’s second law of
gravitation in (1+1)-dimensional space-time as

~F = m ~a = −m~∇φ (11)

where ~F is the gravitational force, and m is mass. We
see from eq.(11) that the difference in the gravitational
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potential shows the existence of acceleration or gravita-
tional field. The existence of the gravitational force af-
fects the test bodies to move with the acceleration. In
analogy to the relation between the electromagnetic po-
tential and the electromagnetic fields as shown e.g. in
the Aharonov-Bohm effect13, we might interpret that the
gravitational potential is a more fundamental concept
than the gravitational field.

IV. WEAK-FIELD LIMIT OF GRAVITATION

In the limit of weak gravitational fields, low velocities
or static6 (of gravitational sources), and small pressure,
the general theory of relativity reduces to Newton’s the-
ory of gravitation1. In the case of the weak field, the met-
ric tensor in (3+1)-dimensional space-time can be written
as

gµν = ηµν + hµν (12)

where ηµν is the Minkowski metric, hµν is small pertur-
bation, |hµν | << 1. Small perturbation have values3

htt = −2φ, htµ = hµt = 0, hµν = −2 δµν φ (13)

so the related metric can be written as

ds2 = (1− 2φ) dx2 − (1 + 2φ) dt2 (14)

Linearization (by ignoring the non-linear terms of
connection6) of the Ricci curvature tensor, due to the
weak field, yields1

Rµν = ∂αΓαµν − ∂νΓαµα (15)

This equation is identical to Abelian field strength tensor
in electrodynamics where the curvature (the Ricci ten-
sor), Rµν , is identical to the field strength tensor, Fµν ,
and the connection (Christoffel symbol), Γαµα, is identical
to the gauge potential, Aµ.

The time-time component of Ricci curvature tensor
(15) can be written as1

Rtt = ∂αΓαtt − ∂tΓαtα (16)

where the second term in the right-hand side of (16) is
assumed zero, ∂tΓ

α
tα = 0 (due to the test body of the

gravitational source moving very slowly or static). We
consider that the choice of the time-time component of
the Ricci curvature tensor is the simplest choice which
relates to the Ricci curvature tensor in the case of the
weak field and the Newtonian limit. Eq.(16) becomes

Rtt = ∂αΓαtt (17)

where α, as we see in eq.(8), denotes the components of
(3-dimensional) space.

By substituting (8) into (17) we obtain Newton’s the-
ory of gravitation written below1,4,5

Rtt = ∇2φ (18)

where ∇2 = ~∇ · ~∇ (div of grad) denotes the Laplace
operator or Laplacian of (3-dimensional) space2, and

∇2φ = 4πρ (19)

is Poisson’s equation1,2, ρ is the mass density.

By substituting eq.(19) into eq.(18) we obtain New-
ton’s theory of gravitation expressed as Newtonian field
equation below1

Rtt = 4πρ (20)

Eq.(20) shows us that by choosing time-time components
of the Ricci curvature tensor, we can recover Poisson’s
equation (19).

V. SUBSET FIELDS AND HOPF MAP S3 → S2

Let us consider maps of subset fields (consisting of
complex scalar fields) from a finite radius r to an infi-
nite radius implying from the strong field to the weak
field. A subset field has properties that, by definition,
its value for a finite r depends on the magnitude and the
direction of the position vector, ~r, but for an infinite r it
is well-defined9 (it depends on the magnitude only). In
other words, for an infinite r, a subset field is isotropic.
The property of such subset fields can be interpreted as
maps S3 → S28 where S3 and S2 are 3-dimensional and
2-dimensional spheres, respectively.

Let us discuss the maps above more formally. Assume
that we have a subset field as a function of the position
vector, ea(~r), with a property that can be interpreted
using the non-trivial Hopf map written below8,9

ea(~r) : S3 → S2 (21)

This map S3 → S2 can be classified in homotopy class
labeled by the value of the corresponding Hopf index,
integer number, and the topological invariant8,9. The
other names of the topological invariant are the topo-
logical charge, and the winding number (the degree of
a continuous mapping)14. The topological charge is in-
dependent of the metric tensor, it could be interpreted
as energy15. The map (21) is a time-independent map
where this time-independent problem could be solved by
interpreting some of the quantities that appear in Hopf’s
theories as Cauchy’s initial time values16.

We see from (21) that there exists (one) dimensional
reduction in such maps. We consider this dimensional re-
duction as a consequence of the isotropic (well-defined)
property of a subset field for an infinite r. The property
of a subset field as a function of space seems likely in har-
mony with the property of space-time itself. Space-time
could be locally anisotropic but globally isotropic (the
distribution of matter energy in the universe is assumed
to be homogeneous).

3



VI. SUBSET CURVATURE AND MAP OF THE
GRAVITATIONAL THEORY M3+1 → M2+1

We propose that the curvature tensor, as it is identi-
cal to the field strength tensor, in an empty space-time
could consist of the subset curvature, ea(~r, t), where the
superscript index a in ea(~r, t) represents a set of indices
that label the components of the subset curvature. These
subset curvature, as components of the curvature tensor,
have the property that can be interpreted using a map of
the gravitational theory in (3+1) to (2+1)-dimensional
space-time which is analog to the non-trivial Hopf map
(21), can be written as below

ea(~r, t) : M3+1 →M2+1 (22)

where M denotes manifold. This map (22) is a time-
dependent map. It differs from the Hopf map (21) which
is time-independent. Throughout this article, we will
work with the classical subset scalar curvature.

We see from (22), that there exists (one) dimensional
space reduction in such a map. Analog to the non-trivial
Hop map, we consider this dimensional reduction as a
consequence of the isotropic (well-defined) property of
subset curvature for an infinite r. The property of sub-
set curvature as functions of space-time are the same as
the property of space-time. Space-time could be locally
anisotropic but globally isotropic.

VII. NON-LINEAR AND LINEARIZED RICCI THEORIES

By considering that the field strength tensor is identi-
cal to the curvature13, we could write8,9 the non-linear
Ricci curvature tensor which its components satisfy the
map (22) as follows

Raµν ≈
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a

(1 + ea∗ea)2
(23)

where ea(~r, t) is a subset of Ricci curvature tensor, and
ea

∗
(~r, t) is its complex conjugate. Eq.(23) is the non-

linear curvature equation where the nonlinearity is shown
by the ea

∗
ea term in the denominator.

In the case of the weak field or empty space-time, the
subset curvature are very small, |ea∗ea| << 1, so eq.(23)
reduces to a linear curvature equation which can be writ-
ten as below

Raµν ≈ ∂µea
∗
∂νe

a − ∂νea
∗
∂µe

a (24)

We see that this linearized Ricci curvature tensor (24)
is identical to the electromagnetic field strength tensor,
Fµν = ∂µAν − ∂νAµ.

VIII. POTENTIAL AND CLEBSCH VARIABLES

Small perturbations of metric or linearized metric per-
turbations in eq.(12) take a role as ”potentials” in the

weak field or the linearized gravitation3. In the language
of a wave, the small perturbations of metric can be writ-
ten as3

hµν = ρµν e
i~k·~r (25)

where ρµν is amplitude, ~k, ~r are wave and position vec-
tors, respectively. In empty space-time, the space-time
of a weak field, the amplitude is constant.

In analogy to (25), we consider the subset curvature
(22) are related to perturbations of metric can be written
as17

ea(~r, t) = ρa(~r, t) eiq(~r,t) (26)

where ρa(~r, t) is the amplitude, q(~r, t) is the phase. We
could interpret the subset curvature as the perturbation
or disturbance where the physical disturbance is the real
part of the subset curvature18. The significant difference
between hµν (25) and ea(~r, t) (26) is ea(~r, t) is valid for
small and large perturbations of metric but hµν is valid
for small perturbations of metric only. We could interpret
that in the case of a weak field or empty space-time,
ea(~r, t) reduces to hµν .

We could write the connection (the Christoffel symbol)
as below

eaν = fa ∂νq (27)

where the function of amplitude, fa, could be written as

fa = −1/
{

2π[1 + (ρa)2]
}

(28)

We see from eq.(27) that eaν could be viewed as vector
potential which is identical to the connection. Here, eaν
(27) is not a total derivative, otherwise it would be a
pure gauge16. The subscript index ν in eaν represents
space-time coordinates.

We call the functions fa(~r, t) and q(~r, t) the Clebsch
variables16 or Gaussian potentials19,20. These Clebsch
variables are related to any divergenceless vector field8.
An example of a divergenceless vector field is vorticity,

~ω, in hydrodynamics20 or the magnetic field, ~B, where
~∇· ~B = 0. The Clebsch variables are not uniquely defined
(many different choices are possible for them)8.

By using eq.(27), the linearized Ricci curvature tensor
(24) could be written as16

Raµν ≈ ∂µ(fa ∂νq)− ∂ν(fa ∂µq) (29)

This is the linearized Ricci curvature tensor written in
terms of the Clebsch variables. Equation (29) is equiva-
lent to eq.(15).

The time-time component of the linearized Ricci cur-
vature tensor (29) could be written as

Ratt ≈ ∂α(fa ∂αq)− ∂t(fa ∂tq) (30)

where the index α denotes the space component (space
coordinate). The second term on the right-hand side of
(30) is equal to zero. It is because, in the Newtonian
limit, it is considered that the speed of the body as the
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gravitational source is very slow compared to the speed
of light. So eq.(30) becomes

Ratt ≈ ∂α(fa ∂αq) (31)

Eq.(31) is the equation of Newton’s theory of gravitation
expressed using the Clebsch variables. The first ∂α means
divergence and the second is gradient. Roughly speaking,
eq.(31) says that the source of the potential of gravitation
is the curvature. Eq.(31) is equivalent to (17).

IX. HIDDEN NONLINEARITY IN NEWTON’S SECOND
LAW OF GRAVITATION

By substituting eq.(8) into (7) we have

d2xα

dt2
= − ∂φ

∂xα
= −∂αφ (32)

where ∂α denotes gradient. In the case of (1+1)-
dimensional space-time, eq.(32) can be written as

d2~x

dt2
= −dφ

d~x
(33)

This equation (33) is the same as eq.(9).
Let us define (10) using index notation, we have

d2xα

dt2
≡ aα (34)

where as we have mentioned previously, α = 1, 2, de-
notes 2-dimensional space. By substituting eq.(34) into
eq.(32), we obtain

aα = −∂αφ (35)

By using index notation, eq.(18) can be written as

Rtt = ∂α∂αφ (36)

where ∂α = ∂/∂xα denotes divergence. We see from
eq.(36) that the divergence of the gradient of a scalar
function is a scalar, so Rtt is a scalar.

By substituting eq.(35) into eq.(36) we obtain

Rtt = ∂α(−aα) = −∂αaα (37)

By integrating both sides of eq.(37) with respect to xα,
we find that

aα = −
∫
Rtt dxα (38)

By substituting eq.(38) into (11) and replace ~a by aα, ~F
by Fα, we obtain

Fα = −m
∫
Rtt dxα (39)

where Fα is the gravitational (vector) force defined in
(2+1)-dimensional space-time.

By substituting eq.(31) into (39) and replace Rtt by
Ratt and Fα by F aα , we obtain

F aα ≈ −m
∫
∂α(fa ∂αq) dxα (40)

Eq.(40) is the equation of Newton’s second law of gravi-
tation in (2+1)-dimensional space-time written using the
Clebsch variables. Remember that mass, m, is a scalar,
and the displacement, xα, is a vector quantity.

X. HIDDEN NONLINEARITY IN WEAK FIELD SOUND
WAVE

In index notation, the sound wave in (2+1)-
dimensional space-time (5) can be written as

∂2t p = c2s ∂
2
αp (41)

by keeping in mind that eq.(2) is equal to eq.(40), we
have

dp Aaα = F aα ≈ −m
∫
∂α(fa ∂αq) dxα (42)

where Aaα denotes the area. So,

dp ≈ − m

Aaα

∫
∂α(fa ∂αq) dxα (43)

By substituting m = ρ Aaα dx
α into eq.(43) we obtain

∂αp ≈ −ρ
∫
∂α(fa ∂αq) dxα (44)

where ∂αp = ∂p/∂xα, ρ is a mass density.
By substituting (44) into (41), we have

∂2t p = −c2s ∂α
{
ρ

∫
∂α(fa ∂αq) dxα

}
(45)

Eq.(45) is the linear equation of weak field sound wave in
(2+1)-dimensional space-time which contains the hidden
nonlinearity. What we mean by the field in sound wave
(45) is pressure. The hidden nonlinearity is shown by the
functions of fa and q.

XI. DISCUSSION AND CONCLUSION

Roughly speaking, the general theory of relativity is
Einstein’s non-linear theory of gravitation, space, and
time21. It describes the interplay between the local dis-
tribution of matter energy and the curvature of space-
time22. In the limit of weak gravitational fields, low ve-
locities of the test body or the gravitational sources, and
small pressure, the general theory of relativity reduces
to Newton’s linear theory of gravitation1. Note that al-
though the predictions of the general theory of relativity
agree with those of Newton’s theory of gravitation, the
underlying point of view is radically different2.
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In the general theory of relativity point of view, the
mass-energy of the sky object e.g. the Sun produces a
curvature of the space-time. The Earth is in free mo-
tion without acceleration (no forces are acting upon the
Earth). The Earth travels on a geodesic ”straight line”
of the curved space-time to orbit the Sun. It is shown
by the geodesic equation (6). In Newton’s point of view,
the Sun creates the gravitational field (gravitational ac-
celeration) as shown in eq.(9) that exerts a gravitational
force upon the Earth. This gravitational force causes the
Earth to orbit (on a curved line) the Sun rather than
move in a straight line2 in a flat space-time.

Newton’s theory of gravitation, i.e. the curvature, Rtt,
expressed using the Christoffel symbol (17), satisfies a
linear field equation only, but subset curvature (expressed
using the Clebsch variables) satisfy linear and non-linear
field equations. Both satisfy a linear field equation in
the case of the weak field of gravitation or empty space-
time. It means that, in the case of the weak field or
empty space-time, a non-linear subset curvature theory
reduces to Newton’s linear theory of gravitation i.e. the
non-linear Ricci curvature tensor (23) reduces to the lin-
earized Ricci curvature tensor (24). An empty space-time
here means that there is no matter present and there is no
physical fields exist except the weak gravitational field.
This weak gravitational field does not disturb the empti-
ness. But other fields disturb the emptiness23.

The linearized Ricci curvature tensor (24) is locally
equivalent to eq.(15), but globally different. Eq.(15) is
no longer valid globally. The difference between the sub-
set curvature and the Ricci curvature tensor in empty
space is global instead of local since the subset curvature
obey the topological quantum condition but the Ricci
curvature tensor does not.

In analogy to the Hopf map (21), we assume that
subset curvature or components of the Ricci curvature
tensor as a map of gravitational theory in (3+1) to
(2+1)-dimensional space-time (22). This map (22) dif-
fers from a time-independent Hopf map (21). The time-
independent Hopf map problem could be solved by in-
terpreting some of the quantities that appear in Hopf’s
theories as Cauchy’s initial time values16.

A map of gravitational theory in (3+1) to (2+1)-
dimensional space-time implies that there exists (one) di-
mensional reduction in such a map (22). We consider this
dimensional reduction as a consequence of the isotropic
(well-defined) property of a subset field for an infinite
r (infinite distance from the source) where the gravita-
tional field is weak. It implies also that the linearized
Ricci curvature tensor and the derived Newton’s theory
of gravitation can be formulated in (2+1)-dimensional
space-time.

The related potential (27) which is identical to the
Christoffel symbol, a connection, can be written using the
Clebsch variables8,16 or Gaussian potentials19,20. These
Clebsch variables are related to any divergenceless vector
field8. An example of a divergenceless vector field is vor-

ticity, ~ω, in hydrodynamics20 or the magnetic field, ~B,

where ~∇ · ~B = 0. The Clebsch variables are not uniquely
defined (many different choices are possible for them)8.
The related potential (22) could be viewed as vector po-
tential. This vector potential is not a total derivative,
otherwise, it would be a pure gauge16.

By using the related potential (27), the Ricci curvature
tensor (29) and its time-time component in the case of the
weak-field and Newtonian limit (30), (31), can be formu-
lated using the Clebsch variables. In turn, the time-time
component of the Ricci curvature tensor (31) is useful
when we construct Newton’s second law of gravitation
(40).

We could say that Newton’s second law of gravitation
(40) contains the hidden nonlinearity. The hidden nonlin-
earity is contained in the Clebsch variables. The hidden
nonlinearity in Newton’s second law of gravitation or,
in general in Newton’s theory of gravitation, has a con-
sequence that sound wave which can be understood in
terms of Newton’s law7, especially Newton’s second law,
has hidden nonlinearity also. It is shown by eq.(45) where
eq.(45) is the linear equation of weak field sound wave in
(2+1)-dimensional space-time which contains the hidden
nonlinearity. What we mean by the field in sound wave
(45) is pressure. The hidden nonlinearity is shown by the
functions of fa and q. Nonlinearity is the important char-
acter of the topology. The hidden nonlinearity of sound
wave could have deep consequences as it could be related
to the existence of the topological object (a gravitational
knot) through the Chern-Simons action formulation24.
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