A short proof of Fermat's Last Theorem based on the difference in volume of two cubes

Author:
Sigrid M.-L. Obenland

Abstract

Over the centuries, numerous mathematicians have tried to proof Fermat's Last Theorem. In the year 1994, Fermat's Last Theorem in the form of $a^{m}+b^{m} \neq c^{m}$ with a, b and c being natural numbers and m being a natural number >2 was shown to be correct In this publication I demonstrate that the difference in volume of two cubes having different side lengths cannot be a cube in itself with a side length having the value of a natural number. This also holds for cubes having higher dimensions than three, since the surfaces of these cubes all consist of three-dimensional cubes,

Proof for Three-Dimensional Cubes

In the year 1994. the equation

$$
a^{m}+b^{m}=c^{m} \quad(\mathbf{A} 1 a) \text { or }
$$

was proven not to have a solution for $m>2$ and element of naturals, when a, b and c are all natural numbers, i.e.

$$
\begin{equation*}
a^{m}+b^{m} \neq c^{m} \tag{A1b}
\end{equation*}
$$

(Fermat's Last Theorem), on over 90 pages. It is known that Fermat himself envisaged a short proof which, however, has never been found in his records.

In the following, I present a short proof of his last theorem based on the difference in volume of two cubes having different side lengths

We rearrange (A1a) to

$$
\begin{equation*}
a^{m}-c^{m}=b^{m} \tag{A2a}
\end{equation*}
$$

and show

$$
a^{m}-c^{m} \neq b^{m} \quad \text { (A2b) }
$$

with $\mathrm{m}>2$ being an element of naturals and also a, b and c being all natural numbers,

With a and $\mathrm{c}>\mathrm{a}$ being naturals (\mathbf{I}) in equation (A2a), the following can be defined:
$a^{3}=A$ (volume of a cube with a being the side length) and
$c^{3}=C$ (volume of a larger cube with c being the side length)
Since c >a, c can be expressed as follows (see Fig. 1 below):
$\mathrm{c}=\mathrm{a}+\mathrm{x}$, (II) with $\mathrm{x}<\mathrm{c}$, namely $\mathrm{x}=\mathrm{c}-\mathrm{a}$ and element of the naturals.
Then we get
$c^{3}=(a+x)^{3}=a^{3}+3 a^{2} x+3 a x^{2}+x^{3}=C$ (III) and
$\sqrt[3]{C}=c=\sqrt[3]{ }\left(a^{3}+3 a^{2} x+3 a x^{2}+x^{3}\right)$,
and furthermore
$c^{3}-a^{3}=B(I V)$,
wherein B is the difference of the volumes of cube C and cube A.
We then define
$\sqrt[3]{B}=b$, with b being the side of cube B,
and thus
$b^{3}=B$

We then can write:
$c^{3}-a^{3}=b^{3}=3 a^{2} x+3 a x^{2}+x^{3} \quad$ (V), which follows from (III) and (IV).
Obviously,:
$b^{3}>x^{3}$ and $b>x$ (see also Fig. 1 below)
Accordingly
$b-x>0$
We now define
$b-x=y$ and thus
$b=x+y(V I)$, wherein y is at least a positive real number..

Accordingly,
$b^{3}=B=(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
On the other hand,
$b^{3}=3 a^{2} x+3 a x^{2}+x^{3} \quad$ (V)
We now can set up the equation (VII) $=(\mathbf{V})$
$x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=3 a^{2} x+3 a x^{2}+x^{3}$
and examine, if $b=x+y$ can be a natural.
If b is to be a natural, also y has to be a natural, since x according to (II) is a natural.
Conversion of (VIII) delivers:
$3 x^{2} y+3 x y^{2}+y^{3}=3 a^{2} x+3 a x^{2}$
$y^{3}+3 x^{2} y+3 x y^{2}-3 x^{2} a-3 x a^{2}=0$ (IX);
This is a polynomial of third degree, which is notoriously difficult to solve.
However, (IX) is also a quadratic equation of x, which is considerably easier to solve than a polynomial of third degree.
(IX) solved for x gives:

$$
\begin{aligned}
& (3 a-3 y) x^{2}+\left(3 a^{2}-3 y^{2}\right) x-y^{3}=0 \quad(X) \\
& (a-y) x^{2}+\left(a^{2}-y^{2}\right) x-y^{3} / 3=0 \\
& x_{1}, x_{2}=\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{\left.\left(\left(a^{2}-y^{2}\right)^{2}-4(a-y)\left(-y^{3} / 3\right)\right)\right] / 2(a-y)(X I)} \begin{array}{rl}
& =\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{ }\left(a^{4}-2 a^{2} y^{2}+y^{4}-4(a-y)\left(-y^{3} / 3\right)\right)\right] / 2(a-y) \\
& \left.=\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{\left(a^{4}-2\right.} a^{2} y^{2}+y^{4}-4 y^{4} / 3+4 a y^{3} / 3\right)\right] / 2(a-y)
\end{array}\right.
\end{aligned}
$$

or further converted

$$
\begin{aligned}
& =\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{ }\left(a^{4}+y^{4}-4 y^{4} / 3+4 a y^{3} / 3-2 a^{2} y^{2}\right) / 2(a-y)\right. \text { (XII) } \\
& =\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{\left(a^{4}-y^{2} / 3\left(y^{2}-4 a y+6 a^{2}\right)\right) / 2(a-y)(\text { XIII })}\right.
\end{aligned}
$$

X in (XI) und (XII) is expressed as a function of y , which according to (II) has to deliver x as a natural, if equation (VIII) were to yield $x+y=b$ with b being the side of a cube as
a natural. This means that the function for x may in no case contain an irrational or complex number, and more specifically that the expression under the square root as a whole may not yield an irrational or complex number, nor y as an Irrational or complex number.

The total expression under the square root can be natural or rational only in three instances:

1) If the total expression could be converted to $\left(\left(s^{2} a^{2}-t^{2} y^{2}\right)^{2}\right.$ with s and t being optional fractions; this is obviously not the case.
2) If the total expression under the square root could be converted to (sa+ty) ${ }^{4}$, with s and t having the same meanings as above. This, too, is obviously not the case, since $y^{4} / 3$ is not the fourth potency of a natural or rational number.
3) If the expression $-y^{2} / 3\left(y^{2}+4 a y-6 a^{2}\right)$ were set to zero, since then only $\sqrt{ } a^{4}$ remains. This can be done in two ways. One is to set y to 0 , but this contradicts prerequisite (VI). The other one is to set
$\left(y^{2}-4 a y+6 a^{2}\right)=0$
With this we get
$y_{1,2}=\left[4 a+/-\sqrt{ }\left(16 a^{2}-24 a^{2}\right)\right] / 2=2 a+/-a \sqrt{ }-2$
Thus, the square root yields an natural, but at the cost of y being a complex number. If this solution for y is put into
$x_{1,2}=\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{(} a^{4}-y^{2} / 3\left(y^{2}-4 a y+6 a^{2}\right)\right] / 2(a-y)$
we get:
$x_{1,2}=\left[-\left(a^{2}-y^{2}\right)+/-\sqrt{a^{4}}\right] / 2(a-y)$,
and with
$y_{1,2}=2 a+/-a \sqrt{ }-2$
we get

$$
\begin{aligned}
\mathrm{x}_{1,2} & =\left[-(a+2 a+/-a \sqrt{ }-2)(a-(2 a+/-a \sqrt{ }-2))+/-a^{2}\right] / 2(a-2 a+/-a \sqrt{ }-2) \\
& =-(a+2 a+/-a \sqrt{ }-2) / 2+/-a^{2} / 2(a-2 a+/-a \sqrt{ }-2) \\
& =-a(1+2+/-\sqrt{ }-2) / 2+/-a^{2} / 2 a(1-2+/-\sqrt{ }-2) \\
& =(-a / 2)(1+2+/-\sqrt{ }-2)+/-a /[2(1-2+/-\sqrt{ }-2)] \\
& =(-a / 2)(3+/-\sqrt{ }-2)+/-a /[2(-1+/-\sqrt{ }-2)]
\end{aligned}
$$

$$
\begin{aligned}
& =-3 \mathrm{a} / 2+/-\mathrm{a} \sqrt{ }-2 / 2)+/-\mathrm{a} /[-2+/-2 \sqrt{ }-2] \\
& =-3 \mathrm{a} / 2+/-(\mathrm{a} 2) \mathrm{i} / 2)+/-\mathrm{a} /[-2+/-(2 \sqrt{ } 2) \mathrm{i}]
\end{aligned}
$$

Thus, $\mathrm{x}_{1,2}$ are also complex numbers, when $\mathrm{y}_{1,2}$ are complex numbers.
According to the above, we showed that there is no solution for b in (VI), wherein $\mathrm{b}=\mathrm{x}+$ $y(V I)$ is a natural, and accordingly there is no solution for (A1a) or (A2a), in which $m=3$ and all three of a, b and c are naturals,

Since the surfaces of all cubes of dimensions higher than three consist of threedimensional cubes, the above also proves Fermat's Last Theorem for all $\mathrm{m}>3$.

Fig. 1

