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Abstract 

 
Over the centuries, numerous mathematicians have tried to proof 
Fermat’s Last Theorem. In the year 1994, Fermat’s Last Theorem in 
the form of am + bm ≠ cm with a, b and c being natural numbers and m 
being a natural number > 2 was shown to be correct In this 
publication I demonstrate that the difference in volume of two cubes 
having different side lengths cannot be a cube in itself with a side 
length having the value of a natural number.This also holds for cubes 
 having higher dimensions than three, since the surfaces of these 
cubes all consist of three-dimensional cubes, 
 

 
Proof for Three-Dimensional Cubes 

 
In the year 1994. the equation 

 
am + bm = cm    (A1a)  or 

 
was proven not to have a solution  for  m > 2 and element of  naturals, when a, b and c 
are all natural numbers, i.e. 

am + bm  ≠   cm    (A1b) 
 

 (Fermat’s Last Theorem), on over 90 pages.  It is known that Fermat himself envisaged 
a short proof which, however, has never been found in his records. 
 
In the following, I present a short proof of his last theorem based on the difference in 
volume of two cubes having different side lengths 
 
We rearrange (A1a) to 
 

am - cm  = bm  (A2a) 
 
and show 
 

am - cm ≠  bm  (A2b) 
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with m > 2 being an element of  naturals and also a, b and c being all natural numbers, 
 
 
 
With a and c>a being naturals (I) in equation (A2a), the following can be defined: 
 
a3 = A  (volume of a cube with a being the side length)     and  
c3 = C (volume of a larger cube with c being the side length)   
 
Since c >a,  c can be expressed as follows (see Fig. 1 below): 
 
c = a + x,     (II)   with   x < c, namely  x = c – a  and  element of the naturals. 
 
Then we get 
 
c3 = (a+x)3 = a3 + 3a2x + 3ax2  + x3 = C  (III)   and  
3√C = c = 3√( a3 + 3a2x + 3ax2 + x3), 
 
and furthermore 
 
c3 – a3 = B (IV), 
 
wherein B is the difference of the volumes of cube C and cube A. 
  
We then define 
 
 3√B = b, with b being the side of cube B, 
 
and thus 
 
b3 = B 
 
We then can write: 
 
c3 – a3 = b3 = 3a2x  + 3ax2 + x3    (V),  which follows from  (III) and (IV). 
 
Obviously,: 
 
b3 > x3   and b > x (see also Fig. 1 below) 
 
Accordingly 
 
b – x  > 0 
 
We now  define 
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b – x  = y    and  thus  
b = x + y  (VI), wherein  y is at least a positive real  number..   
 
Accordingly, 
 
b3 = B = (x + y )3 = x3 + 3x2y + 3x y2 + y3    (VII) 
 
On the other hand, 
 
b3 = 3a2x + 3ax2 + x3         (V) 
 
We now can set up the equation (VII)  = (V)  
 
x3 + 3x2y + 3x y2 + y3 = 3a2x + 3ax2 + x3       (VIII) 
 
and examine, if  b = x + y  can be a natural. 
 
If  b is to be a natural, also  y has to be a natural, since x  according to (II)  is a natural.  
 
Conversion of (VIII) delivers: 
 
3x2y + 3x y2 + y3 = 3a2x + 3ax2 
y3 + 3x2y + 3xy2 – 3x2a – 3xa2  = 0  (IX); 
 
This is a polynomial of third degree, which is notoriously difficult to solve. 
 
However, (IX) is also a quadratic equation of x, which is considerably easier to solve 
than a polynomial of third degree.   
 
(IX) solved for x gives: 
 
(3a-3y)x2  + (3a2-3y2)x - y3 = 0   (X) 
(a-y)x2  +  (a2-y2)x -y3/3 = 0  
x1, x2 =  [-(a2-y2) +/- √((a2-y2)2 -4(a-y)(-y3/3))]/2(a-y) (XI) 
         =  [-(a2-y2) +/- √(a4-2 a2y2+y4 -4(a-y)(-y3/3))]/2(a-y)  
        =  [-(a2-y2) +/- √(a4-2 a2y2+y4 -4y4/3+4ay3/3)]/2(a-y)  
 
or further  converted 
 
         =  [-(a2-y2) +/- √(a4 +y4 -4y4/3 + 4ay3/3-2a2y2)/ 2(a-y) (XII) 
         =  [-(a2-y2) +/- √(a4 -y2/3(y2 - 4ay + 6a2))/ 2(a-y) (XIII) 
 
x  in (XI) und (XII) is expressed  as a function of y,  which according to (II) has to deliver 
x as a natural, if equation (VIII) were to yield  x+y = b with b being the side of a cube as 
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a natural. This means that the function for x may in no case contain an irrational or 
complex number, and more specifically that the expression under the square root as a 
whole may not yield an irrational or complex number, nor y as an Irrational or complex 
number. 
 
The total expression under the square root can be natural or rational only in three 
instances:  
 
1) If the total expression could be converted to ((s2a2-t2y2)2 with s and t being   optional 
fractions; this is obviously not the case.  
 
2) If the total expression under the square root could be converted to (sa+ty)4, with s and 
t having the same meanings as above. This, too, is obviously not the case, since y4/3 is 
not the fourth potency of a natural or rational number.   
 
3) If the expression -y2/3(y2 + 4ay-6a2) were set to zero, since then only √a4 remains. 
This can be done in two ways. One is to set y to 0, but this contradicts prerequisite (VI).  
The other one is to set  
 
 (y2 - 4ay + 6a2) = 0  
 
With this we get 
 
y1,2 = [4a +/- √(16a2 – 24a2)]/2 =2a +/- a√-2 
 
Thus, the square root yields an natural, but at the cost of y being a complex number. If 
this solution for y is put into  
 
x1,2 =  [-(a2-y2) +/- √(a4 -y2/3(y2 - 4ay + 6a2)]/ 2(a-y) (XIII) 
 
we get: 
 
 x1,2 =  [-(a2-y2) +/- √a4]/2(a-y), 
 
and with 
 
y1,2 = 2a +/- a√-2 
 
we get 
 
x1,2 =  [-(a+2a +/- a√-2)( a-(2a +/- a√-2)) +/- a2]/2(a-2a +/- a√-2) 
      = -(a+2a +/- a√-2)/2 +/- a2/2(a-2a +/- a√-2) 
      = -a(1+2 +/- √-2)/2 +/- a2/2a(1-2 +/- √-2) 
     = (-a/2)(1+2 +/- √-2) +/- a/[2(1-2 +/- √-2)] 
     = (-a/2)(3 +/- √-2) +/- a/[2(-1 +/- √-2)] 
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     = -3a/2 +/- a√-2/2) +/- a/[-2 +/- 2√-2]  
    = -3a/2 +/- (a√2)i/2) +/- a/[-2 +/- (2√2)i] 
 
Thus, x1,2  are also complex numbers, when y1,2 are complex numbers. 
 
According to the above, we showed that there is no solution for b in (VI), wherein b = x + 
y (VI) is a natural, and accordingly there is no solution for (A1a) or (A2a), in which m = 3 
and all three of a, b and c are naturals, 
 
Since the surfaces of all cubes of dimensions higher than three consist of three-
dimensional cubes, the above also proves Fermat’s Last Theorem for all m>3. 
 
 

 
 
Fig. 1 


